Platelet-Rich Plasma: New Performance Understandings and Therapeutic Considerations in 2020

Peter Everts, Kentaro Onishi, Prathap Jayaram, José Fábio Lana, Kenneth Mautner, Peter Everts, Kentaro Onishi, Prathap Jayaram, José Fábio Lana, Kenneth Mautner

Abstract

Emerging autologous cellular therapies that utilize platelet-rich plasma (PRP) applications have the potential to play adjunctive roles in a variety of regenerative medicine treatment plans. There is a global unmet need for tissue repair strategies to treat musculoskeletal (MSK) and spinal disorders, osteoarthritis (OA), and patients with chronic complex and recalcitrant wounds. PRP therapy is based on the fact that platelet growth factors (PGFs) support the three phases of wound healing and repair cascade (inflammation, proliferation, remodeling). Many different PRP formulations have been evaluated, originating from human, in vitro, and animal studies. However, recommendations from in vitro and animal research often lead to different clinical outcomes because it is difficult to translate non-clinical study outcomes and methodology recommendations to human clinical treatment protocols. In recent years, progress has been made in understanding PRP technology and the concepts for bioformulation, and new research directives and new indications have been suggested. In this review, we will discuss recent developments regarding PRP preparation and composition regarding platelet dosing, leukocyte activities concerning innate and adaptive immunomodulation, serotonin (5-HT) effects, and pain killing. Furthermore, we discuss PRP mechanisms related to inflammation and angiogenesis in tissue repair and regenerative processes. Lastly, we will review the effect of certain drugs on PRP activity, and the combination of PRP and rehabilitation protocols.

Keywords: analgesic effects; angiogenesis; immunomodulation; inflammation; lymphocytes; monocytes; neutrophils; platelet dosing; platelet-rich plasma; regenerative medicine; rehabilitation; serotonin.

Conflict of interest statement

P.E. is Chief Scientific Officer of EmCyte Corporation and Director Gulf Coast Biologics. All other authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Cellular density separation of whole blood following a two-spin centrifugation procedure using the PurePRP-SP® device (EmCyte Corporation, Fort Myers, FL, USA). After the first centrifugation procedure, the whole blood components are separated in two basic layers, the platelet (poor) plasma suspension and the RBC layer. In A, the second centrifugation step has been completed. The factual needed PRP volume can be extracted for patient application. The magnification in B shows at the bottom of the device the organized multicomponent buffy coat layer (indicated by the blue lines), containing high concentrations of platelets, monocytes, lymphocytes, based on density gradients. In this example, a minimal percentage of neutrophils (<0.3%) and RBCs (<0.1%) will be extracted, following a neutrophil poor C-PRP preparation protocol.
Figure 2
Figure 2
Electron microscopic picture of a cluster of platelets from a PRP vial and a extrapolation of a single platelet (original magnification × 10,000) (from volunteer PE), representing the most familiar cellular constituents of α-granules (α), dense granules (DG), and lysosomes (L), including some platelet surface adhesion molecules. Adapted and modified from Everts et al. [61].
Figure 3
Figure 3
Activated platelets, releasing PGF, and adhesion molecules mediate a variety of cellular interactions: chemotaxis, cell adhesion, migration, cell differentiation, and stipulate to immunomodulatory activities [67,68]. These platelet cell-cell interactions contribute to angiogenesis [46,69,70] and inflammatory [71,72] activities, ultimately to stimulate tissue repair processes. Abbreviations: BMA: bone marrow aspirate, EPC: endothelial progenitor cell, EC: endothelial cells, 5-HT: serotonin, RANTES: Regulated upon Activation Normal T Cell Expressed and Presumably Secreted, JAM: junctional adhesion molecules type, CD40L: cluster of differentiation 40 ligand, SDF-1α: stromal cell-derived factor 1 alpha, CXCL: chemokine (C-X-C motif) ligand, PF4: platelet factor 4. Adapted and modified from Everts et al. [9].
Figure 4
Figure 4
Platelet and leukocyte interactions in innate immunity cell interactions. Platelets interact with neutrophils, monocytes, and ultimately as well with MΦs, modulating and increasing their effector functions. These platelet-leukocyte interactions result in inflammatory contributions through different mechanisms, including NETosis [67]. Abbreviations: MPO: myeloperoxidase, ROS: reactive oxygen species, TF: tissue factor, NET: neutrophil extracellular traps, NF-κB: nuclear factor kappa B, MΦ: macrophage.
Figure 5
Figure 5
Illustration of the multifaceted 5-HT responses following inflammatory PRP-platelet activation. After platelet activation, platelets release their granules, including 5-HT from dense granules, inciting a wide range of differential effects on various immune, endothelial, and smooth muscle cells. Abbreviations: SMC: smooth muscle cell, EC: endothelial cell, Treg: regular T lymphocyte, MΦ: macrophage, DC: dendritic cell, IL: interleukin, IFN-γ: interferon gamma. Modified and adapted from Everts et al. and Herr et al. [9,69].
Figure 6
Figure 6
Platelet-derived growth factors and dense granular constituents are expressively involved in BMAC trophic processes, supporting MSC induced tissue repair and regeneration. Abbreviations: MSC: mesenchymal stem cell, HSC: hematopoietic stem cell.

References

    1. Marx R.E. Platelet-Rich Plasma (PRP): What Is PRP and What Is Not PRP? Implant Dent. 2001;10:225–228. doi: 10.1097/00008505-200110000-00002.
    1. Filardo G., Di Matteo B., Kon E., Merli G., Marcacci M. Platelet-rich plasma in tendon-related disorders: Results and indications. Knee Surg. Sports Traumatol. Arthrosc. 2016;26:1984–1999. doi: 10.1007/s00167-016-4261-4.
    1. Belk J.W., Kraeutler M.J., Houck D.A., Goodrich J.A., Dragoo J.L., McCarty E.C. Platelet-Rich Plasma Versus Hyaluronic Acid for Knee Osteoarthritis: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Am. J. Sports Med. 2020;17 doi: 10.1177/0363546520909397.
    1. Xuan Z., Yu W., Dou Y., Wang T. Efficacy of Platelet-rich Plasma for Low Back Pain: A Systematic Review and Meta-analysis. J. Neurol. Surg. Part A Central Eur. Neurosurg. 2020 doi: 10.1055/s-0040-1709170.
    1. Browning S.R., Weiser A.M., Woolf N., Golish S.R., SanGiovanni T.P., Scuderi G.J., Carballo C., Hanna L.S. Platelet-Rich Plasma Increases Matrix Metalloproteinases in Cultures of Human Synovial Fibroblasts. J. Bone Jt. Surg. Am. Vol. 2012;94:e172-1–e172-7. doi: 10.2106/JBJS.K.01501.
    1. Everts P.A. Autologous Platelet-Rich Plasma and Mesenchymal Stem Cells for the Treatment of Chronic Wounds. In: Hakan Dogan K., editor. Wound Healing—Current Perspectives. IntechOpen; London, UK: 2019.
    1. Sundman E.A., Cole B.J., Fortier L.A. Growth Factor and Catabolic Cytokine Concentrations Are Influenced by the Cellular Composition of Platelet-Rich Plasma. Am. J. Sports Med. 2011;39:2135–2140. doi: 10.1177/0363546511417792.
    1. Marrazzo P., Paduano F., Palmieri F., Marrelli M., Tatullo M. Highly Efficient In Vitro Reparative Behaviour of Dental Pulp Stem Cells Cultured with Standardised Platelet Lysate Supplementation. Stem Cells Int. 2016;2016:7230987. doi: 10.1155/2016/7230987.
    1. Everts P.A.M., Knape J.T.A., Weibrich G., Schönberger J.P., Hoffmann J., Overdevest E.P., Box H.A.M., Van Zundert A. Platelet-Rich Plasma and Platelet Gel: A Review. J. Extra Corpor. Technol. 2006;38:174–187.
    1. Everts P., Flanagan G.F., Rothenberg J., Mautner K. The Rationale of Autologously Prepared Bone Marrow Aspirate Concentrate for use in Regenerative Medicine Applications. In: Mahmood C., editor. Regenerative Medicine. IntechOpen; London, UK: 2020.
    1. Hersant B., Sid-Ahmed M., Braud L., Jourdan M., Baba-Amer Y., Meningaud J.-P., Rodriguez A.-M. Platelet-Rich Plasma Improves the Wound Healing Potential of Mesenchymal Stem Cells through Paracrine and Metabolism Alterations. Stem Cells Int. 2019;2019:1234263. doi: 10.1155/2019/1234263.
    1. Johal H., Khan M., Yung S.P., Dhillon M.S., Fu F.H., Bedi A., Bhandari M. Impact of Platelet-Rich Plasma Use on Pain in Orthopaedic Surgery: A Systematic Review and Meta-analysis. Sports Health Multidiscip. Approach. 2019;11:355–366. doi: 10.1177/1941738119834972.
    1. Giusti I., D’Ascenzo S., Macchiarelli G., Dolo V. In vitro evidence supporting applications of platelet derivatives in regenerative medicine. Blood Transfus. 2020 doi: 10.2450/2019.0164-19.
    1. Andia I., Maffulli N. A contemporary view of platelet-rich plasma therapies: Moving toward refined clinical protocols and precise indications. Regen. Med. 2018;13:717–728. doi: 10.2217/rme-2018-0042.
    1. Puzzitiello R.N., Patel B.H., Forlenza E.M., Nwachukwu B.U., Allen A.A., Forsythe B., Salzler M.J. Adverse Impact of Corticosteroids on Rotator Cuff Tendon Health and Repair: A Systematic Review of Basic Science Studies. Arthrosc. Sports Med. Rehabil. 2020;2:e161–e169. doi: 10.1016/j.asmr.2020.01.002.
    1. Beitzel K., Allen D., Apostolakos J., Russell R., McCarthy M., Gallo G., Coté M., Mazzocca A. US Definitions, Current Use, and FDA Stance on Use of Platelet-Rich Plasma in Sports Medicine. J. Knee Surg. 2014;28:29–34. doi: 10.1055/s-0034-1390030.
    1. Everts P.A.M., Hoffmann J., Weibrich G., Mahoney C.B., Schönberger J.P.A.M., Van Zundert A., Knape J.T.A. Differences in platelet growth factor release and leucocyte kinetics during autologous platelet gel formation. Transfus. Med. 2006;16:363–368. doi: 10.1111/j.1365-3148.2006.00708.x.
    1. Mazzucco L., Balbo V., Cattana E., Guaschino R., Borzini P. Not every PRP-gel is born equal Evaluation of growth factor availability for tissues through four PRP-gel preparations: Fibrinet®, RegenPRP-Kit®, Plateltex® and one manual procedure. Vox Sang. 2009;97:110–118. doi: 10.1111/j.1423-0410.2009.01188.x.
    1. Mosesson M.W., Siebenlist K.R., Meh D.A. The Structure and Biological Features of Fibrinogen and Fibrin. Ann. N. Y. Acad. Sci. 2006;936:11–30. doi: 10.1111/j.1749-6632.2001.tb03491.x.
    1. Silverberg G.D., Harbury C.B., Rubenstein E. A physiological sealant for cerebrospinal fluid leaks. J. Neurosurg. 1977;46:215–219. doi: 10.3171/jns.1977.46.2.0215.
    1. Chahla J., Cinque M.E., Piuzzi N.S., Mannava S., Geeslin A.G., Murray I.R., Dornan G.J., Muschler G.F., Laprade R.F. A Call for Standardization in Platelet-Rich Plasma Preparation Protocols and Composition Reporting. J. Bone Jt. Surg. Am. Vol. 2017;99:1769–1779. doi: 10.2106/JBJS.16.01374.
    1. Everts P.A.M., Van Zundert A., Schönberger J.P.A.M., Devilee R.J.J., Knape J.T.A. What do we use: Platelet-rich plasma or platelet-leukocyte gel? J. Biomed. Mater. Res. Part A. 2008;85:1135–1136. doi: 10.1002/jbm.a.31570.
    1. Kingsley C. Blood Coagulation: Evidence of an Antagonist to Factor VI in Platelet-Rich Human Plasma. Nature. 1954;173:723–724. doi: 10.1038/173723a0.
    1. Dohan Ehrenfest D.M., Rasmusson L., Albrektsson T. Classification of platelet concentrates: From pure platelet-rich plasma (P-PRP) to leucocyte- and platelet-rich fibrin (L-PRF) Trends Biotechnol. 2009;27:158–167. doi: 10.1016/j.tibtech.2008.11.009.
    1. Delong J.M., Russell R.P., Mazzocca A.D. Platelet-Rich Plasma: The PAW Classification System. Arthrosc. J. Arthrosc. Relat. Surg. 2012;28:998–1009. doi: 10.1016/j.arthro.2012.04.148.
    1. Mishra A., Harmon K., Woodall J., Vieira A. Sports Medicine Applications of Platelet Rich Plasma. Curr. Pharm. Biotechnol. 2012;13:1185–1195. doi: 10.2174/138920112800624283.
    1. Mautner K., Malanga G.A., Smith J., Shiple B., Ibrahim V., Sampson S., Bowen J.E. A Call for a Standard Classification System for Future Biologic Research: The Rationale for New PRP Nomenclature. PM&R. 2015;7:S53–S59.
    1. Magalon J., Chateau A.L., Bertrand B., Louis M.L., Silvestre A., Giraudo L., Veran J., Sabatier F. DEPA classification: A proposal for standardising PRP use and a retrospective application of available devices. BMJ Open Sport Exerc. Med. 2016;2:e000060. doi: 10.1136/bmjsem-2015-000060.
    1. Lana J.F.S.D., Purita J., Paulus C., Huber S.C., Rodrigues B.L., Rodrigues A.A., Santana M.H., Madureira J.L., Jr., Luzo Ângela C.M., Belangero W.D., et al. Contributions for classification of platelet rich plasma—Proposal of a new classification: MARSPILL. Regen. Med. 2017;12:565–574. doi: 10.2217/rme-2017-0042.
    1. Harrison P., The Subcommittee on Platelet Physiology The use of platelets in regenerative medicine and proposal for a new classification system: Guidance from the SSC of the ISTH. J. Thromb. Haemost. 2018;16:1895–1900. doi: 10.1111/jth.14223.
    1. Rossi L.A., Murray I.R., Chu C.R., Muschler G.F., Rodeo S.A., Piuzzi N.S. Classification systems for platelet-rich plasma. Bone Jt. J. 2019:891–896. doi: 10.1302/0301-620X.101B8.BJJ-2019-0037.R1.
    1. Ehrenfest D.M.D., Bielecki T., Mishra A., Borzini P., Inchingolo F., Sammartino G., Rasmusson L., Everts P.A. In Search of a Consensus Terminology in the Field of Platelet Concentrates for Surgical Use: Platelet-Rich Plasma (PRP), Platelet-Rich Fibrin (PRF), Fibrin Gel Polymerization and Leukocytes. Curr. Pharm. Biotechnol. 2012;13:1131–1137. doi: 10.2174/138920112800624328.
    1. The GRIP (Groupe de Recherche sur les Injections de PRP, PRP Injection Research Group) Eymard P.A., Ornetti P., Maillet J., Noel É., Adam P., Legré-Boyer V., Boyer T., Allali F., Gremeaux V., et al. Intra-articular injections of platelet-rich plasma in symptomatic knee osteoarthritis: A consensus statement from French-speaking experts. Knee Surg. Sports Traumatol. Arthrosc. 2020 doi: 10.1007/s00167-020-06102-5.
    1. Lana J.F., Macedo A., Ingrao I.L.G., Huber S.C., Santos G.S., Santana M.H.A. Leukocyte-rich PRP for knee osteoarthritis: Current concepts. J. Clin. Orthop. Trauma. 2019;10:S179–S182. doi: 10.1016/j.jcot.2019.01.011.
    1. Fadadu P.P., Mazzola A.J., Hunter C.W., Davis T.T. Review of concentration yields in commercially available platelet-rich plasma (PRP) systems: A call for PRP standardization. Reg. Anesth. Pain Med. 2019;44:652–659. doi: 10.1136/rapm-2018-100356.
    1. Amable P., Carias R.B., Teixeira M.V., da Cruz Pacheco Í., Corrêa do Amaral R.J., Granjeiro J., Borojevic R. Platelet-rich plasma preparation for regenerative medicine: Optimization and quantification of cytokines and growth factors. Stem Cell Res. Ther. 2013;4:67. doi: 10.1186/scrt218.
    1. Gentile P., Calabrese C., De Angelis B., Dionisi L., Pizzicanella J., Kothari A., De Fazio D., Garcovich S. Impact of the Different Preparation Methods to Obtain Autologous Non-Activated Platelet-Rich Plasma (A-PRP) and Activated Platelet-Rich Plasma (AA-PRP) in Plastic Surgery: Wound Healing and Hair Regrowth Evaluation. Int. J. Mol. Sci. 2020;21:431. doi: 10.3390/ijms21020431.
    1. Samadi P., Sheykhhasan M., Khoshinani H.M. The Use of Platelet-Rich Plasma in Aesthetic and Regenerative Medicine: A Comprehensive Review. Aesthetic Plast. Surg. 2018;43:803–814. doi: 10.1007/s00266-018-1293-9.
    1. Nguyen P.A., Pham T.A.V. Effects of platelet-rich plasma on human gingival fibroblast proliferation and migration in vitro. J. Appl. Oral Sci. 2018;26 doi: 10.1590/1678-7757-2018-0077.
    1. Vahabi S., Yadegari Z., Mohammad-Rahimi H. Comparison of the effect of activated or non-activated PRP in various concentrations on osteoblast and fibroblast cell line proliferation. Cell Tissue Bank. 2017;18:347–353. doi: 10.1007/s10561-017-9640-7.
    1. Graziani F., Ivanovski S., Cei S., Ducci F., Tonetti M., Gabriele M. The in vitro effect of different PRP concentrations on osteoblasts and fibroblasts. Clin. Oral Implant. Res. 2006;17:212–219. doi: 10.1111/j.1600-0501.2005.01203.x.
    1. Park M.S., Moon S.-H., Kim T.-H., Oh J.K., Yoon W.Y., Chang H.G. Platelet-rich plasma for the spinal fusion. J. Orthop. Surg. 2018;26 doi: 10.1177/2309499018755772.
    1. De Mos M., Van Der Windt A.E., Jahr H., Van Schie H.T.M., Weinans H., Verhaar J.A.N., Van Osch G.J.V.M. Can Platelet-Rich Plasma Enhance Tendon Repair? Am. J. Sports Med. 2008;36:1171–1178. doi: 10.1177/0363546508314430.
    1. Yuan T., Zhang C.-Q., Wang H.-C. Augmenting tendon and ligament repair with platelet-rich plasma (PRP) Muscle Ligaments Tendons J. 2019;3:139. doi: 10.32098/mltj.03.2013.05.
    1. Gupta A.K., Cole J., Deutsch D.P., Everts P.A., Niedbalski R.P., Panchaprateep R., Rinaldi F., Rose P.T., Sinclair R., Vogel J.E., et al. Platelet-Rich Plasma as a Treatment for Androgenetic Alopecia. Dermatol. Surg. 2019;45:1262–1273. doi: 10.1097/DSS.0000000000001894.
    1. Kirmani B.H., Jones S.G., Datta S., McLaughlin E.K., Hoschtitzky A.J. A meta-analysis of platelet gel for prevention of sternal wound infections following cardiac surgery. Blood Transfus. 2016 doi: 10.2450/2016.0231-15.
    1. Willemsen J.C.N., Van Dongen J., Spiekman M., Vermeulen K.M., Harmsen M.C., Van Der Lei B., Stevens H.P.J. The addition of PRP to facial lipofilling. Plast. Reconstr. Surg. 2017;141:331–343. doi: 10.1097/PRS.0000000000004081.
    1. Muchedzi T.A., Roberts S.B. A systematic review of the effects of platelet rich plasma on outcomes for patients with knee osteoarthritis and following total knee arthroplasty. Surgeon. 2018;16:250–258. doi: 10.1016/j.surge.2017.08.004.
    1. Cengiz I.F., Pereira H., Espregueira-Mendes J., Reis R.L., Oliveira J.M. The Clinical Use of Biologics in the Knee Lesions: Does the Patient Benefit? Curr. Rev. Musculoskelet. Med. 2019;12:406–414. doi: 10.1007/s12178-019-09573-3.
    1. Tuakli-Wosornu Y.A., Terry A., Boachie-Adjei K., Harrison J.R., Gribbin C.K., LaSalle E.E., Nguyen J.T., Solomon J.L., Lutz G.E. Lumbar Intradiskal Platelet-Rich Plasma (PRP) Injections: A Prospective, Double-Blind, Randomized Controlled Study. PM&R. 2015;8:1–10.
    1. Mariani E., Pulsatelli L. Platelet Concentrates in Musculoskeletal Medicine. Int. J. Mol. Sci. 2020;21:1328. doi: 10.3390/ijms21041328.
    1. Manini D.R., Shega F.D., Guo C., Wang Y. Role of Platelet-Rich Plasma in Spinal Fusion Surgery: Systematic Review and Meta-Analysis. Adv. Orthop. 2020;2020:1–8. doi: 10.1155/2020/8361798.
    1. Haunschild E.D., Huddleston H.P., Chahla J., Gilat R., Cole B.J., Yanke A.B. Platelet-Rich Plasma Augmentation in Meniscal Repair Surgery: A Systematic Review of Comparative Studies. Arthrosc. J. Arthrosc. Relat. Surg. 2020;36:1765–1774. doi: 10.1016/j.arthro.2020.01.038.
    1. Kushida S., Kakudo N., Morimoto N., Hara T., Ogawa T., Mitsui T., Kusumoto K. Platelet and growth factor concentrations in activated platelet-rich plasma: A comparison of seven commercial separation systems. J. Artif. Organs. 2014;17:186–192. doi: 10.1007/s10047-014-0761-5.
    1. Senzel L., Gnatenko D.V., Bahou W.F. The platelet proteome. Curr. Opin. Hematol. 2009;16:329–333. doi: 10.1097/MOH.0b013e32832e9dc6.
    1. Garcia A., Senis Y. In: Platelet Proteomics: Principles, Analysis, and Applications. García Á., Senis Y., editors. John Wiley & Sons; Hoboken, NJ, USA: 2011. p. 403. Wiley-Interscience Series on Mass, Spectrometry.
    1. Blair P., Flaumenhaft R. Platelet α-granules: Basic biology and clinical correlates. Blood Rev. 2009;23:177–189. doi: 10.1016/j.blre.2009.04.001.
    1. Iberg C.A., Hawiger D. Natural and Induced Tolerogenic Dendritic Cells. J. Immunol. 2020;204:733–744. doi: 10.4049/jimmunol.1901121.
    1. Younas M., Hue S., Lacabaratz C., Guguin A., Wiedemann A., Surenaud M., Beq S., Croughs T., Lelièvre J.-D., Lévy Y. IL-7 Modulates In Vitro and In Vivo Human Memory T Regulatory Cell Functions through the CD39/ATP Axis. J. Immunol. 2013;191:3161–3168. doi: 10.4049/jimmunol.1203547.
    1. Ganor Y., Besser M., Ben-Zakay N., Unger T., Levite M. Human T cells express a functional ionotropic glutamate receptor GluR3, and glutamate by itself triggers integrin-mediated adhesion to laminin and fibronectin and chemotactic migration. J. Immunol. 2003;170:4362–4372. doi: 10.4049/jimmunol.170.8.4362.
    1. Everts P.A., Jakimowicz J.J., Van Beek M., Schönberger J.P.A.M., Devilee R.J.J., Overdevest E.P., Knape J., Van Zundert A. Reviewing the Structural Features of Autologous Platelet-Leukocyte Gel and Suggestions for Use in Surgery. Eur. Surg. Res. 2007;39:199–207. doi: 10.1159/000101743.
    1. Xu J., Gou L., Zhang P., Li H., Qiu S. Platelet-rich plasma and regenerative dentistry. Aust. Dent. J. 2020;65:131–142. doi: 10.1111/adj.12754.
    1. Zheng C., Zhu Q., Liu X., Huang X., He C., Jiang L., Quan D., Zhou X., Zhu Z. Effect of platelet-rich plasma (PRP) concentration on proliferation, neurotrophic function and migration of Schwann cells in vitro. J. Tissue Eng. Regen. Med. 2016;10:428–436. doi: 10.1002/term.1756.
    1. Hee H.T., Majd M.E., Holt R.T., Myers L. Do autologous growth factors enhance transforaminal lumbar interbody fusion? Eur. Spine J. 2003;12:400–407. doi: 10.1007/s00586-003-0548-5.
    1. Giusti I., Rughetti A., D’Ascenzo S., Millimaggi D., Pavan A., Dell’Orso L., Dolo V. Identification of an optimal concentration of platelet gel for promoting angiogenesis in human endothelial cells. Transfusion (Paris) 2009;49:771–778. doi: 10.1111/j.1537-2995.2008.02033.x.
    1. Creeper F., Lichanska A.M., Marshall R.I., Seymour G.J., Ivanovski S. The effect of platelet-rich plasma on osteoblast and periodontal ligament cell migration, proliferation and differentiation. J. Periodontal Res. 2009;44:258–265. doi: 10.1111/j.1600-0765.2008.01125.x.
    1. Dale D.C., Boxer L., Liles W.C. The phagocytes: Neutrophils and monocytes. Blood. 2008;112:935–945. doi: 10.1182/blood-2007-12-077917.
    1. Zirlik A., Maier C., Gerdes N., Macfarlane L., Soosairajah J., Bavendiek U., Ahrens I., Ernst S., Bassler N., Missiou A., et al. CD40 Ligand Mediates Inflammation Independently of CD40 by Interaction with Mac-1. Circ. 2007;115:1571–1580. doi: 10.1161/CIRCULATIONAHA.106.683201.
    1. Herr N., Bode C., Duerschmied D. The Effects of Serotonin in Immune Cells. Front. Cardiovasc. Med. 2017;4:48. doi: 10.3389/fcvm.2017.00048.
    1. Hara G.R., Basu T. Platelet-rich plasma in regenerative medicine. Biomed. Res. Ther. 2014;1:25–31. doi: 10.7603/s40730-014-0005-6.
    1. Van Gils J.M., Zwaginga J.J., Hordijk P.L. Molecular and functional interactions among monocytes, platelets, and endothelial cells and their relevance for cardiovascular diseases. J. Leukoc. Biol. 2008;85:195–204. doi: 10.1189/jlb.0708400.
    1. Bennett J.S. Structure and function of the platelet integrin alphaIIbbeta3. J. Clin. Investig. 2005;115:3363–3369. doi: 10.1172/JCI26989.
    1. Soffer E., Ouhayoun J.-P., Dosquet C., Meunier A., Anagnostou F. Effects of platelet lysates on select bone cell functions. Clin. Oral Implant. Res. 2004;15:581–588. doi: 10.1111/j.1600-0501.2004.01063.x.
    1. Helms C.C., Gladwin M.T., Kim-Shapiro D.B. Erythrocytes and Vascular Function: Oxygen and Nitric Oxide. Front. Physiol. 2018;9:125. doi: 10.3389/fphys.2018.00125.
    1. Schaer D.J., Buehler P.W., Alayash A.I., Belcher J.D., Vercellotti G.M. Hemolysis and free hemoglobin revisited: Exploring hemoglobin and hemin scavengers as a novel class of therapeutic proteins. Blood. 2013;121:1276–1284. doi: 10.1182/blood-2012-11-451229.
    1. Repsold L., Joubert A.M. Eryptosis: An Erythrocyte’s Suicidal Type of Cell Death. BioMed Res. Int. 2018;2018:1–10. doi: 10.1155/2018/9405617.
    1. Fitzpatrick J., Bulsara M.K., McCrory P.R., Richardson M.D., Zheng M.H. Analysis of Platelet-Rich Plasma Extraction: Variations in Platelet and Blood Components between 4 Common Commercial Kits. Orthop. J. Sports Med. 2017;5 doi: 10.1177/2325967116675272.
    1. De Melo B.A., Luzo A.C.M., Lana J.F., Santana M.H.A. Centrifugation Conditions in the L-PRP Preparation Affect Soluble Factors Release and Mesenchymal Stem Cell Proliferation in Fibrin Nanofibers. Molecules. 2019;24:2729. doi: 10.3390/molecules24152729.
    1. Moojen D.J.F., Everts P.A., Schure R.-M., Overdevest E.P., Van Zundert A., Knape J.T.A., Castelein R.M., Creemers L.B., Dhert W.J. Antimicrobial activity of platelet-leukocyte gel against Staphylococcus aureus. J. Orthop. Res. 2008;26:404–410. doi: 10.1002/jor.20519.
    1. Tang Y.-Q., Yeaman M.R., Selsted M.E. Antimicrobial Peptides from Human Platelets. Infect. Immun. 2002;70:6524–6533. doi: 10.1128/IAI.70.12.6524-6533.2002.
    1. Kovtun A., Bergdolt S., Wiegner R., Radermacher P., Huber-Lang M., Ignatius A. The crucial role of neutrophil granulocytes in bone fracture healing. eCells Mater. 2016;32:152–162. doi: 10.22203/eCM.v032a10.
    1. Phillipson M., Kubes P. The Healing Power of Neutrophils. Trends Immunol. 2019;40:635–647. doi: 10.1016/j.it.2019.05.001.
    1. Zhou Y., Wang J.H.-C. PRP Treatment Efficacy for Tendinopathy: A Review of Basic Science Studies. BioMed Res. Int. 2016;2016:1–8. doi: 10.1155/2016/9103792.
    1. Fedorova N.V., Ksenofontov A.L., Serebryakova M.V., Stadnichuk V.I., Gaponova T.V., Baratova L.A., Sud’Ina G.F., Galkina S.I. Neutrophils Release Metalloproteinases during Adhesion in the Presence of Insulin, but Cathepsin G in the Presence of Glucagon. Mediat. Inflamm. 2018;2018:1574928. doi: 10.1155/2018/1574928.
    1. Ubezio G., Ghio M. Bio-modulators in platelet-rich plasma: A comparison of the amounts in products from healthy donors and patients produced with three different techniques. Blood Transfus. 2014 doi: 10.2450/2012.0128-12.
    1. Italiani P., Boraschi D. From Monocytes to M1/M2 Macrophages: Phenotypical vs. Functional Differentiation. Front. Immunol. 2014;5:514. doi: 10.3389/fimmu.2014.00514.
    1. Weirather J., Hofmann U.D.W., Beyersdorf N., Ramos G.C., Vogel B., Frey A., Ertl G., Kerkau T., Frantz S. Foxp3 + CD4 + T Cells Improve Healing After Myocardial Infarction by Modulating Monocyte/Macrophage Differentiation. Circ. Res. 2014;115:55–67. doi: 10.1161/CIRCRESAHA.115.303895.
    1. Das A., Sinha M., Datta S., Abas M., Chaffee S., Sen C.K., Roy S. Monocyte and Macrophage Plasticity in Tissue Repair and Regeneration. Am. J. Pathol. 2015;185:2596–2606. doi: 10.1016/j.ajpath.2015.06.001.
    1. Wynn T.A., Vannella K.M. Macrophages in Tissue Repair, Regeneration, and Fibrosis. Immunity. 2016;44:450–462. doi: 10.1016/j.immuni.2016.02.015.
    1. Ogle M.E., Segar C.E., Sridhar S., Botchwey E.A. Monocytes and macrophages in tissue repair: Implications for immunoregenerative biomaterial design. Exp. Biol. Med. 2016;241:1084–1097. doi: 10.1177/1535370216650293.
    1. Rőszer T. Understanding the Mysterious M2 Macrophage through Activation Markers and Effector Mechanisms. Mediat. Inflamm. 2015;2015:816460. doi: 10.1155/2015/816460.
    1. Ferrante C.J., Leibovich S.J. Regulation of Macrophage Polarization and Wound Healing. Adv. Wound Care. 2012;1:10–16. doi: 10.1089/wound.2011.0307.
    1. Riboh J.C., Saltzman B.M., Yanke A.B., Fortier L., Cole B.J. Effect of Leukocyte Concentration on the Efficacy of Platelet-Rich Plasma in the Treatment of Knee Osteoarthritis. Am. J. Sports Med. 2015;44:792–800. doi: 10.1177/0363546515580787.
    1. Mariani E., Canella V., Cattini L., Kon E., Marcacci M., Di Matteo B., Pulsatelli L., Filardo G. Leukocyte-Rich Platelet-Rich Plasma Injections Do Not Up-Modulate Intra-Articular Pro-Inflammatory Cytokines in the Osteoarthritic Knee. PLoS ONE. 2016;11:e0156137. doi: 10.1371/journal.pone.0156137.
    1. Parrish W.R. Physiology of Blood Components in Wound Healing: An Appreciation of Cellular Co-Operativity in Platelet Rich Plasma Action. J. Exerc. Sports Orthop. 2017;4:1–14. doi: 10.15226/2374-6904/4/2/00156.
    1. Seta N., Kuwana M. Human circulating monocytes as multipotential progenitors. Keio J. Med. 2007;56:41–47. doi: 10.2302/kjm.56.41.
    1. Perut F., Filardo G., Mariani E., Cenacchi A., Pratelli L., Devescovi V., Kon E., Marcacci M., Facchini A., Ebaldini N., et al. Preparation method and growth factor content of platelet concentrate influence the osteogenic differentiation of bone marrow stromal cells. Cytotherapy. 2013;15:830–839. doi: 10.1016/j.jcyt.2013.01.220.
    1. Li C., Li J., Li Y., Lang S., Yougbare I., Zhu G., Chen P., Ni H. Crosstalk between Platelets and the Immune System: Old Systems with New Discoveries. Adv. Hematol. 2012;2012:384685. doi: 10.1155/2012/384685.
    1. Morrell C.N., Aggrey A.A., Chapman L.M., Modjeski K.L. Emerging roles for platelets as immune and inflammatory cells. Blood. 2014;123:2759–2767. doi: 10.1182/blood-2013-11-462432.
    1. Thon J.N., Peters C.G., Machlus K.R., Aslam R., Rowley J., MacLeod H., Devine M.T., Fuchs T.A., Weyrich A.S., Semple J.W., et al. T granules in human platelets function in TLR9 organization and signaling. J. Cell Biol. 2012;198:561–574. doi: 10.1083/jcb.201111136.
    1. Rossaint J., Zarbock A. Platelets in leucocyte recruitment and function. Cardiovasc. Res. 2015;107:386–395. doi: 10.1093/cvr/cvv048.
    1. Cruz M., Diacovo T., Emsley J., Liddington R., Handin R. Mapping the Glycoprotein Ib-binding Site in the von Willebrand Factor A1 Domain. J. Biol. Chem. 2000;275:19098–19105. doi: 10.1074/jbc.M002292200.
    1. Zarbock A., Ley K., McEver R.P., Hidalgo A. Leukocyte ligands for endothelial selectins: Specialized glycoconjugates that mediate rolling and signaling under flow. Blood. 2011;118:6743–6751. doi: 10.1182/blood-2011-07-343566.
    1. Furie B., Furie B., Yang J. The Biology of P-Selectin Glycoprotein Ligand-1: Its Role as a Selectin Counterreceptor in Leukocyte-Endothelial and Leukocyte-Platelet Interaction. Thromb. Haemost. 1999;81:1–7. doi: 10.1055/s-0037-1614407.
    1. Weber C., Springer T. Neutrophil accumulation on activated, surface-adherent platelets in flow is mediated by interaction of Mac-1 with fibrinogen bound to alphaIIbbeta3 and stimulated by platelet-activating factor. J. Clin. Investig. 1997;100:2085–2093. doi: 10.1172/JCI119742.
    1. Diacovo T., Defougerolles A., Bainton D., Springer T. A functional integrin ligand on the surface of platelets: Intercellular adhesion molecule-2. J. Clin. Investig. 1994;94:1243–1251. doi: 10.1172/JCI117442.
    1. Woodell-May J.E., Sommerfeld S.D. Role of Inflammation and the Immune System in the Progression of Osteoarthritis. J. Orthop. Res. 2020;38:253–257. doi: 10.1002/jor.24457.
    1. Newton K., Dixit V.M. Signaling in Innate Immunity and Inflammation. Cold Spring Harb. Perspect. Biol. 2012;4:a006049. doi: 10.1101/cshperspect.a006049.
    1. Cognasse F., Laradi S., Berthelot P., Bourlet T., Marotte H., Mismetti P., Garraud O., Hamzeh-Cognasse H. Platelet Inflammatory Response to Stress. Front. Immunol. 2019;10:1478. doi: 10.3389/fimmu.2019.01478.
    1. Clemetson K., Clemetson J., Proudfoot A., Power C., Baggiolini M., Wells T. Functional expression of CCR1, CCR3, CCR4, and CXCR4 chemokine receptors on human platelets. Blood. 2000;96:4046–4054. doi: 10.1182/blood.V96.13.4046.
    1. Alberts B., Johnson A., Lewis J., Raff M., Roberts K., Walter P. In: Molecular Biology of the Cell. 4th ed. Alberts B., editor. Garland Science; New York, NY, USA: 2002. p. 1548.
    1. Vasina E.M., Cauwenberghs S., Feijge M.A.H., Heemskerk J.W.M., Weber C., Koenen R.R. Microparticles from apoptotic platelets promote resident macrophage differentiation. Cell Death Dis. 2011;2:e211. doi: 10.1038/cddis.2011.94.
    1. Gros A., Syvannarath V., Lamrani L., Ollivier V., Loyau S., Goerge T., Nieswandt B., Jandrot-Perrus M., Ho-Tin-Noé B. Single platelets seal neutrophil-induced vascular breaches via GPVI during immune-complex–mediated inflammation in mice. Blood. 2015;126:1017–1026. doi: 10.1182/blood-2014-12-617159.
    1. Clark S.R., Ma A.C., Tavener S.A., McDonald B., Goodarzi Z., Kelly M.M., Patel K.D., Chakrabarti S., McAvoy E., Sinclair G.D., et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat. Med. 2007;13:463–469. doi: 10.1038/nm1565.
    1. Kapur R., Zufferey A., Boilard E., Semple J.W. Nouvelle Cuisine: Platelets Served with Inflammation. J. Immunol. 2015;194:5579–5587. doi: 10.4049/jimmunol.1500259.
    1. Scheuerer B., Ernst M., Dürrbaum-Landmann I., Fleischer J., Grage-Griebenow E., Brandt E., Flad H.-D., Petersen F. The CXC-chemokine platelet factor 4 promotes monocyte survival and induces monocyte differentiation into macrophages. Blood. 2000;95:1158–1166. doi: 10.1182/blood.V95.4.1158.004k31_1158_1166.
    1. Acosta-Rodriguez E.V., Napolitani G., Lanzavecchia A., Sallusto F. Interleukins 1β and 6 but not transforming growth factor-β are essential for the differentiation of interleukin 17–producing human T helper cells. Nat. Immunol. 2007;8:942–949. doi: 10.1038/ni1496.
    1. Gaudino S.J., Kumar P. Cross-Talk between Antigen Presenting Cells and T Cells Impacts Intestinal Homeostasis, Bacterial Infections, and Tumorigenesis. Front. Immunol. 2019;10:360. doi: 10.3389/fimmu.2019.00360.
    1. Kaiko G.E., Horvat J.C., Beagley K.W., Hansbro P.M. Immunological decision-making: How does the immune system decide to mount a helper T-cell response? Immunology. 2008;123:326–338. doi: 10.1111/j.1365-2567.2007.02719.x.
    1. Sadtler K., Estrellas K., Allen B.W., Wolf M.T., Fan H., Tam A.J., Patel C.H., Luber B.S., Wang H., Wagner K.R., et al. Developing a pro-regenerative biomaterial scaffold microenvironment requires T helper 2 cells. Science. 2016;352:366–370. doi: 10.1126/science.aad9272.
    1. Henn V., Slupsky J.R., Gräfe M., Anagnostopoulos I., Förster R., Müller-Berghaus G., Kroczek R.A. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature. 1998;391:591–594. doi: 10.1038/35393.
    1. Yu Y., Ma X., Gong R., Zhu J., Wei L., Yao J. Recent advances in CD8+ regulatory T cell research (Review) Oncol. Lett. 2018;15:8187–8194. doi: 10.3892/ol.2018.8378.
    1. Renshaw B., Fanslow W., Armitage R., Campbell K.A., Liggitt D., Wright B., Davison B.L., Maliszewski C.R. Humoral immune responses in CD40 ligand-deficient mice. J. Exp. Med. 1994;180:1889–1900. doi: 10.1084/jem.180.5.1889.
    1. Semple J.W., Italiano J.E., Freedman J. Platelets and the immune continuum. Nat. Rev. Immunol. 2011;11:264–274. doi: 10.1038/nri2956.
    1. Arreola R., Becerril-Villanueva E., Cruz-Fuentes C., Velasco-Velázquez M.A., Garcés-Alvarez M.E., Hurtado-Alvarado G., Quintero-Fabian S., Pavón L. Immunomodulatory Effects Mediated by Serotonin. J. Immunol. Res. 2015;2015:1–21. doi: 10.1155/2015/354957.
    1. Berger M., Gray J.A., Roth B.L. The Expanded Biology of Serotonin. Annu. Rev. Med. 2009;60:355–366. doi: 10.1146/annurev.med.60.042307.110802.
    1. Cloëz-Tayarani I., Petit-Bertron A., Venters H.D., Cavaillon J. Differential effect of serotonin on cytokine production in lipopolysaccharide-stimulated human peripheral blood mononuclear cells: Involvement of 5-hydroxytryptamine2A receptors. Int. Immunol. 2003;15:233–240. doi: 10.1093/intimm/dxg027.
    1. Tao Z.-Y., Wang P.-X., Wei S.-Q., Traub R.J., Li J.-F., Cao D.-Y. The Role of Descending Pain Modulation in Chronic Primary Pain: Potential Application of Drugs Targeting Serotonergic System. Neural Plast. 2019;2019:1389296. doi: 10.1155/2019/1389296.
    1. Pakala R., Willerson J.T., Benedict C.R. Mitogenic effect of serotonin on vascular endothelial cells. Circulation. 1994;90:1919–1926. doi: 10.1161/01.CIR.90.4.1919.
    1. Mammadova-Bach E., Mauler M., Braun A., Duerschmied D. Autocrine and paracrine regulatory functions of platelet serotonin. Platelets. 2018;29:541–548. doi: 10.1080/09537104.2018.1478072.
    1. Wan M., Ding L., Wang D., Han J., Gao P. Serotonin: A Potent Immune Cell Modulator in Autoimmune Diseases. Front. Immunol. 2020;11:186. doi: 10.3389/fimmu.2020.00186.
    1. Duerschmied D., Suidan G.L., Demers M., Herr N., Carbo C., Brill A., Cifuni S.M., Mauler M., Cicko S., Bader M., et al. Platelet serotonin promotes the recruitment of neutrophils to sites of acute inflammation in mice. Blood. 2013;121:1008–1015. doi: 10.1182/blood-2012-06-437392.
    1. Freire-Garabal M., Núñez M.J., Balboa J., López-Delgado P., Gallego R., García-Caballero T., Fernández-Roel M.D., Brenlla J., Rey-Méndez M. Serotonin upregulates the activity of phagocytosis through 5-HT1Areceptors. Br. J. Pharmacol. 2003;139:457–463. doi: 10.1038/sj.bjp.0705188.
    1. Everts P.A., Devilee R.J.J., Mahoney C., Van Erp A., Oosterbos C.J.M., Stellenboom M., Knape J., Van Zundert A. Exogenous Application of Platelet-Leukocyte Gel during Open Subacromial Decompression Contributes to Improved Patient Outcome. Eur. Surg. Res. 2007;40:203–210. doi: 10.1159/000110862.
    1. Odem M.A., Bavencoffe A.G., Cassidy R.M., Lopez E.R., Tian J., Dessauer C., Walters E.T. Isolated nociceptors reveal multiple specializations for generating irregular ongoing activity associated with ongoing pain. Pain. 2018;159:2347–2362. doi: 10.1097/j.pain.0000000000001341.
    1. Sprott H., Franke S., Kluge H., Hein G. Pain treatment of fibromyalgia by acupuncture. Rheumatol. Int. 1998;18:35–36. doi: 10.1007/s002960050051.
    1. Sommer C. Serotonin in Pain and Analgesia: Actions in the Periphery. Mol. Neurobiol. 2004;30:117–126. doi: 10.1385/MN:30:2:117.
    1. Nicholson R., Small J., Dixon A., Spanswick D., Lee K. Serotonin receptor mRNA expression in rat dorsal root ganglion neurons. Neurosci. Lett. 2003;337:119–122. doi: 10.1016/S0304-3940(02)01256-9.
    1. Wu W.-P., Hao J.-X., Xu X.-J., Wiesenfeld-Hallin Z., Koek W., Colpaert F.C. The very-high-efficacy 5-HT1A receptor agonist, F 13640, preempts the development of allodynia-like behaviors in rats with spinal cord injury. Eur. J. Pharmacol. 2003;478:131–137. doi: 10.1016/j.ejphar.2003.08.047.
    1. Rosenthal N., Mazzanti C., Barnett R., Hardin T., Turner E., Lam G., Ozaki N., Goldman D. Role of serotonin transporter promoter repeat length polymorphism (5-HTTLPR) in seasonality and seasonal affective disorder. Mol. Psychiatry. 1998;3:175–177. doi: 10.1038/sj.mp.4000360.
    1. Patetsos E., Horjales-Araujo E. Treating Chronic Pain with SSRIs: What Do We Know? Pain Res. Manag. 2016;2016:2020915. doi: 10.1155/2016/2020915.
    1. Yoshida M., Funasaki H., Marumo K. Efficacy of autologous leukocyte-reduced platelet-rich plasma therapy for patellar tendinopathy in a rat treadmill model. Muscle Ligaments Tendons J. 2016;6:205–215. doi: 10.32098/mltj.02.2016.07.
    1. Fu C.-J., Sun J.-B., Bi Z.-G., Wang X.-M., Yang C.-L. Evaluation of platelet-rich plasma and fibrin matrix to assist in healing and repair of rotator cuff injuries: A systematic review and meta-analysis. Clin. Rehabil. 2017;31:158–172. doi: 10.1177/0269215516634815.
    1. Verhaegen F., Brys P., Debeer P. Rotator cuff healing after needling of a calcific deposit using platelet-rich plasma augmentation: A randomized, prospective clinical trial. J. Shoulder Elb. Surg. 2016;25:169–173. doi: 10.1016/j.jse.2015.10.009.
    1. Lin M.-T., Wei K.-C., Wu C.-H. Effectiveness of Platelet-Rich Plasma Injection in Rotator Cuff Tendinopathy: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Diagnostics. 2020;10:189. doi: 10.3390/diagnostics10040189.
    1. Urits I., Smoots D., Franscioni H., Patel A., Fackler N., Wiley S., Berger A.A., Kassem H., Urman R.D., Manchikanti L., et al. Injection Techniques for Common Chronic Pain Conditions of the Foot: A Comprehensive Review. Pain Ther. 2020;9:145–160. doi: 10.1007/s40122-020-00157-5.
    1. Kuffler D.P. Platelet-Rich Plasma Promotes Axon Regeneration, Wound Healing, and Pain Reduction: Fact or Fiction. Mol. Neurobiol. 2015;52:990–1014. doi: 10.1007/s12035-015-9251-x.
    1. Mohammadi S., Nasiri S., Mohammadi M.H., Mohammadi A.M., Nikbakht M., Panah M.Z., Safar H., Mostafaei S., Norooznezhad A.H., Soroosh A.R., et al. Evaluation of platelet-rich plasma gel potential in acceleration of wound healing duration in patients underwent pilonidal sinus surgery: A randomized controlled parallel clinical trial. Transfus. Apher. Sci. 2017;56:226–232. doi: 10.1016/j.transci.2016.12.032.
    1. Deppermann C., Kubes P. Start a fire, kill the bug: The role of platelets in inflammation and infection. Innate Immun. 2018;24:335–348. doi: 10.1177/1753425918789255.
    1. Lansdown D.A., Fortier L.A. Platelet-Rich Plasma: Formulations, Preparations, Constituents, and Their Effects. Oper. Tech. Sports Med. 2017;25:7–12. doi: 10.1053/j.otsm.2016.12.002.
    1. Walsh T.G., Metharom P., Berndt M.C. The functional role of platelets in the regulation of angiogenesis. Platelets. 2014;26:199–211. doi: 10.3109/09537104.2014.909022.
    1. Baka S., Clamp A.R., Jayson G.C. A review of the latest clinical compounds to inhibit VEGF in pathological angiogenesis. Expert Opin. Ther. Targets. 2006;10:867–876. doi: 10.1517/14728222.10.6.867.
    1. Ferrara N. The Role of the VEGF Signaling Pathway in Tumor Angiogenesis. In: Marmé D., editor. Tumor Angiogenesis: A Key Target for Cancer Therapy. Springer International Publishing; Cham, Switzerland: 2019. pp. 211–226.
    1. Brill A., Elinav H., Varon D. Differential role of platelet granular mediators in angiogenesis. Cardiovasc. Res. 2004;63:226–235. doi: 10.1016/j.cardiores.2004.04.012.
    1. Bir S.C., Esaki J., Marui A., Sakaguchi H., Kevil C.G., Ikeda T., Komeda M., Tabata Y., Sakata R. Therapeutic treatment with sustained-release platelet-rich plasma restores blood perfusion by augmenting ischemia-induced angiogenesis and arteriogenesis in diabetic mice. J. Vasc. Res. 2011;48:195–205. doi: 10.1159/000318779.
    1. Richardson T.P., Peters M.C., Ennett A.B., Mooney D.J. Polymeric system for dual growth factor delivery. Nat. Biotechnol. 2001;19:1029–1034. doi: 10.1038/nbt1101-1029.
    1. Marushima A., Nieminen M., Kremenetskaia I., Gianni-Barrera R., Woitzik J., von Degenfeld G., Banfi A., Vajkoczy P., Hecht N. Balanced single-vector co-delivery of VEGF/PDGF-BB improves functional collateralization in chronic cerebral ischemia. J. Cereb. Blood Flow Metab. 2020;40:404–419. doi: 10.1177/0271678X18818298.
    1. Jeon O.H., Kim C., Laberge R.-M., DeMaria M., Rathod S., Vasserot A.P., Chung J.W., Kim D.H., Poon Y., David N., et al. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat. Med. 2017;23:775–781. doi: 10.1038/nm.4324.
    1. Van Deursen J.M. The role of senescent cells in ageing. Nature. 2014;509:439–446. doi: 10.1038/nature13193.
    1. Ritschka B., Storer M., Mas A., Heinzmann F., Ortells M.C., Morton J.P., Sansom O.J., Zender L., Keyes W.M. The senescence-associated secretory phenotype induces cellular plasticity and tissue regeneration. Genes Dev. 2017;31:172–183. doi: 10.1101/gad.290635.116.
    1. Biran A., Zada L., Abou Karam P., Vadai E., Roitman L., Ovadya Y., Porat Z., Krizhanovsky V. Quantitative identification of senescent cells in aging and disease. Aging Cell. 2017;16:661–671. doi: 10.1111/acel.12592.
    1. Michaloglou C., Vredeveld L.C.W., Soengas M.S., Denoyelle C., Kuilman T., Van Der Horst C.M.A.M., Majoor D.M., Shay J.W., Mooi W.J., Peeper D.S. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature. 2005;436:720–724. doi: 10.1038/nature03890.
    1. Farr J.N., Xu M., Weivoda M.M., Monroe D.G., Fraser D.G., Onken J.L., Negley B.A., Sfeir J.G., Ogrodnik M.B., Hachfeld C.M., et al. Targeting cellular senescence prevents age-related bone loss in mice. Nat. Med. 2017;23:1072–1079. doi: 10.1038/nm.4385.
    1. Patil P., Dong Q., Wang D., Chang J., Wiley C., DeMaria M., Lee J., Kang J., Niedernhofer L.J., Robbins P.D., et al. Systemic clearance of p16 INK4a -positive senescent cells mitigates age-associated intervertebral disc degeneration. Aging Cell. 2019;18:e12927. doi: 10.1111/acel.12927.
    1. Walters H.E., Yun M.H. Rising from the ashes: Cellular senescence in regeneration. Curr. Opin. Genet. Dev. 2020;64:94–100. doi: 10.1016/j.gde.2020.06.002.
    1. Coppé J.-P., Desprez P.-Y., Krtolica A., Campisi J. The Senescence-Associated Secretory Phenotype: The Dark Side of Tumor Suppression. Annu. Rev. Pathol. Mech. Dis. 2010;5:99–118. doi: 10.1146/annurev-pathol-121808-102144.
    1. Baar M.P., Perdiguero E., Muñoz-Cánoves P., De Keizer P.L. Musculoskeletal senescence: A moving target ready to be eliminated. Curr. Opin. Pharmacol. 2018;40:147–155. doi: 10.1016/j.coph.2018.05.007.
    1. Panda A., Arjona A., Sapey E., Bai F., Fikrig E., Montgomery R.R., Lord J.M., Shaw A.C. Human innate immunosenescence: Causes and consequences for immunity in old age. Trends Immunol. 2009;30:325–333. doi: 10.1016/j.it.2009.05.004.
    1. Wang J.H.-C., Nirmala X. Perspectives on Improving the Efficacy of PRP Treatment for Tendinopathy. [(accessed on 17 October 2020)];J. Musculoskelet. Disord. Treat. 2016 2 doi: 10.23937/2572-3243.1510015. Available online: .
    1. Stolzing A., Jones E., McGonagle D., Scutt A. Age-related changes in human bone marrow-derived mesenchymal stem cells: Consequences for cell therapies. Mech. Ageing Dev. 2008;129:163–173. doi: 10.1016/j.mad.2007.12.002.
    1. Liu H.-Y., Huang C.-F., Lin T.-C., Tsai C.-Y., Chen S.-Y.T., Liu A., Chen W., Wei H.-J., Wang M.-F., Williams D.F., et al. Delayed animal aging through the recovery of stem cell senescence by platelet rich plasma. Biomaterials. 2014;35:9767–9776. doi: 10.1016/j.biomaterials.2014.08.034.
    1. Wang J.H.-C. Can PRP effectively treat injured tendons? Muscle Ligaments Tendons J. 2014;4:35–37. doi: 10.32098/mltj.01.2014.07.
    1. Moussa M., Lajeunesse D., Hilal G., El Atat O., Haykal G., Serhal R., Chalhoub A., Khalil C., Alaaeddine N. Platelet rich plasma (PRP) induces chondroprotection via increasing autophagy, anti-inflammatory markers, and decreasing apoptosis in human osteoarthritic cartilage. Exp. Cell Res. 2017;352:146–156. doi: 10.1016/j.yexcr.2017.02.012.
    1. Jia C., Lu Y., Bi B., Chen L., Yang Q., Yang P., Guo Y., Zhu J., Zhu N., Tianyi L. Platelet-rich plasma ameliorates senescence-like phenotypes in a cellular photoaging model. RSC Adv. 2017;7:3152–3160. doi: 10.1039/C6RA26725D.
    1. Oberlohr V., Lengel H., Hambright W.S., Whitney K.E., Evans T.A., Huard J. Biologics for Skeletal Muscle Healing: The Role of Senescence and Platelet-Based Treatment Modalities. Oper. Tech. Sports Med. 2020;28:150754. doi: 10.1016/j.otsm.2020.150754.
    1. Zhu Y., Tchkonia T., Pirtskhalava T., Gower A.C., Ding H., Giorgadze N., Palmer A.K., Ikeno Y., Hubbard G.B., Lenburg M., et al. The Achilles’ heel of senescent cells: From transcriptome to senolytic drugs. Aging Cell. 2015;14:644–658. doi: 10.1111/acel.12344.
    1. Caplan A.I., Dennis J.E. Mesenchymal stem cells as trophic mediators. J. Cell. Biochem. 2006;98:1076–1084. doi: 10.1002/jcb.20886.
    1. Kim S.J., Kim E.K., Kim S.J., Song D.H. Effects of bone marrow aspirate concentrate and platelet-rich plasma on patients with partial tear of the rotator cuff tendon. J. Orthop. Surg. Res. 2018;13:1–7. doi: 10.1186/s13018-017-0693-x.
    1. Zhao T., Yan W., Xu K., Qi Y., Dai X., Shi Z. Combined treatment with platelet-rich plasma and brain-derived neurotrophic factor-overexpressing bone marrow stromal cells supports axonal remyelination in a rat spinal cord hemi-section model. Cytotherapy. 2013;15:792–804. doi: 10.1016/j.jcyt.2013.04.004.
    1. Hede K., Christensen B.B., Jensen J., Foldager C.B., Lind M. Combined Bone Marrow Aspirate and Platelet-Rich Plasma for Cartilage Repair: Two-Year Clinical Results. Cartillage. 2019 doi: 10.1177/1947603519876329.
    1. Lian Z., Yin X., Li H., Jia L., He X., Yan Y., Liu N., Wan K., Li X., Lin S. Synergistic Effect of Bone Marrow-Derived Mesenchymal Stem Cells and Platelet-Rich Plasma in Streptozotocin-Induced Diabetic Rats. Ann. Dermatol. 2014;26:1–10. doi: 10.5021/ad.2014.26.1.1.
    1. Betsch M., Schneppendahl J., Thuns S., Herten M., Sager M., Jungbluth P., Hakimi M., Wild M. Bone Marrow Aspiration Concentrate and Platelet Rich Plasma for Osteochondral Repair in a Porcine Osteochondral Defect Model. PLoS ONE. 2013;8:e71602. doi: 10.1371/journal.pone.0071602.
    1. Kim G.B., Seo M.-S., Park W.T., Lee G.W. Bone Marrow Aspirate Concentrate: Its Uses in Osteoarthritis. Int. J. Mol. Sci. 2020;21:3224. doi: 10.3390/ijms21093224.
    1. Cassano J.M., Kennedy J.G., Ross K.A., Fraser E.J., Goodale M.B., Sundman E.A. Bone marrow concentrate and platelet-rich plasma differ in cell distribution and interleukin 1 receptor antagonist protein concentration. Knee Surg. Sports Traumatol. Arthrosc. 2016;26:333–342. doi: 10.1007/s00167-016-3981-9.
    1. Gharibi B., Hughes F.J. Effects of Medium Supplements on Proliferation, Differentiation Potential, and In Vitro Expansion of Mesenchymal Stem Cells. Stem Cells Transl. Med. 2012;1:771–782. doi: 10.5966/sctm.2010-0031.
    1. Muiños-López E., Delgado D., Sánchez P., Paiva B., Anitua E., Fiz N., Aizpurua B., Guadilla J., Padilla S., Granero-Moltó F., et al. Modulation of Synovial Fluid-Derived Mesenchymal Stem Cells by Intra-Articular and Intraosseous Platelet Rich Plasma Administration. Stem Cells Int. 2016;2016:1247950. doi: 10.1155/2016/1247950.
    1. Sassoli C., Vallone L., Tani A., Chellini F., Nosi D., Zecchi-Orlandini S. Combined use of bone marrow-derived mesenchymal stromal cells (BM-MSCs) and platelet rich plasma (PRP) stimulates proliferation and differentiation of myoblasts in vitro: New therapeutic perspectives for skeletal muscle repair/regeneration. Cell Tissue Res. 2018;372:549–570. doi: 10.1007/s00441-018-2792-3.
    1. Andia I., Maffulli N. Platelet-rich plasma for managing pain and inflammation in osteoarthritis. Nat. Rev. Rheumatol. 2013;9:721–730. doi: 10.1038/nrrheum.2013.141.
    1. Jayaram P., Yeh P., Patel S.J., Cela R., Shybut T.B., Grol M.W., Lee B.H. Effects of Aspirin on Growth Factor Release From Freshly Isolated Leukocyte-Rich Platelet-Rich Plasma in Healthy Men: A Prospective Fixed-Sequence Controlled Laboratory Study. Am. J. Sports Med. 2019;47:1223–1229. doi: 10.1177/0363546519827294.
    1. Frey C., Yeh P.C., Jayaram P. Effects of Antiplatelet and Nonsteroidal Anti-inflammatory Medications on Platelet-Rich Plasma: A Systematic Review. Orthop. J. Sports Med. 2020;8 doi: 10.1177/2325967120912841.
    1. Schippinger G., Prüller F., Divjak M., Mahla E., Fankhauser F., Rackemann S., Raggam R.B. Autologous Platelet-Rich Plasma Preparations. Orthop. J. Sports Med. 2015;3 doi: 10.1177/2325967115588896.
    1. Reed G.L., Fitzgerald M.L., Polgár J. Molecular mechanisms of platelet exocytosis: Insights into the “secrete” life of thrombocytes. Blood. 2000;96:10.
    1. Castaño E., Bartrons R., Gil J. Inhibition of cyclooxygenase-2 decreases DNA synthesis induced by platelet-derived growth factor in Swiss 3T3 fibroblasts. J. Pharmacol. Exp. Ther. 2000;293:509–513.
    1. Tarnawski A.S., Jones M.K. Inhibition of angiogenesis by NSAIDs: Molecular mechanisms and clinical implications. J. Mol. Med. 2003;81:627–636. doi: 10.1007/s00109-003-0479-y.
    1. Mannava S., Whitney K.E., Kennedy M.I., King J., Dornan G.J., Klett K., Chahla J., Evans T.A., Huard J., Laprade R.F. The Influence of Naproxen on Biological Factors in Leukocyte-Rich Platelet-Rich Plasma: A Prospective Comparative Study. Arthrosc. J. Arthrosc. Relat. Surg. 2019;35:201–210. doi: 10.1016/j.arthro.2018.07.030.
    1. Neph A., Schroeder A., Enseki K.R., Everts P.A., Wang J.H.-C., Onishi K. Role of Mechanical Loading for Platelet-Rich Plasma-Treated Achilles Tendinopathy. Curr. Sports Med. Rep. 2020;19:209–216. doi: 10.1249/JSR.0000000000000719.
    1. Andia I., Rubio-Azpeitia E., Martin J., Abate M. Current Concepts and Translational Uses of Platelet Rich Plasma Biotechnology. In: Ekinci D., editor. Biotechnology. InTech; London, UK: 2015.
    1. Filardo G., Previtali D., Napoli F., Candrian C., Zaffagnini S., Grassi A. PRP Injections for the Treatment of Knee Osteoarthritis: A Meta-Analysis of Randomized Controlled Trials. Cartilage. 2020 doi: 10.1177/1947603520931170.
    1. Virchenko O., Aspenberg P. How can one platelet injection after tendon injury lead to a stronger tendon after 4 weeks? Interplay between early regeneration and mechanical stimulation. Acta Orthop. 2006;77:806–812. doi: 10.1080/17453670610013033.
    1. Harshwardhan H., Saini H.K., Gupta P. Assessment of clinical outcomes of PRP therapy in OA knee. Int. J. Orthop. Sci. 2020;6:201–203. doi: 10.22271/ortho.2020.v6.i1d.1862.
    1. Bek N., Simşek I.E., Erel S., Yakut Y., Uygur F. Home-based general versus center-based selective rehabilitation in patients with posterior tibial tendon dysfunction. Acta Orthop. Traumatol. Turc. 2012;46:286–292. doi: 10.3944/AOTT.2012.2488.
    1. Lisiński P., Huber J., Wilkosz P., Witkowska A., Wytrazek M., Samborski W., Zagloba A. Supervised versus Uncontrolled Rehabilitation of Patients after Rotator Cuff Repair-Clinical and Neurophysiological Comparative Study. Int. J. Artif. Organs. 2012;35:45–54. doi: 10.5301/ijao.5000037.

Source: PubMed

3
Iratkozz fel