Genetic Association Reveals Protection against Recurrence of Clostridium difficile Infection with Bezlotoxumab Treatment

Judong Shen, Devan V Mehrotra, Mary Beth Dorr, Zhen Zeng, Junhua Li, Xun Xu, David Nickle, Emily R Holzinger, Aparna Chhibber, Mark H Wilcox, Rebecca L Blanchard, Peter M Shaw, Judong Shen, Devan V Mehrotra, Mary Beth Dorr, Zhen Zeng, Junhua Li, Xun Xu, David Nickle, Emily R Holzinger, Aparna Chhibber, Mark H Wilcox, Rebecca L Blanchard, Peter M Shaw

Abstract

Bezlotoxumab is a human monoclonal antibody against Clostridium difficile toxin B, indicated to prevent recurrence of C. difficile infection (rCDI) in high-risk adults receiving antibacterial treatment for CDI. An exploratory genome-wide association study investigated whether human genetic variation influences bezlotoxumab response. DNA from 704 participants who achieved initial clinical cure in the phase 3 MODIFY I/II trials was genotyped. Single nucleotide polymorphisms (SNPs) and human leukocyte antigen (HLA) imputation were performed using IMPUTE2 and HIBAG, respectively. A joint test of genotype and genotype-by-treatment interaction in a logistic regression model was used to screen genetic variants associated with response to bezlotoxumab. The SNP rs2516513 and the HLA alleles HLA-DRB1*07:01 and HLA-DQA1*02:01, located in the extended major histocompatibility complex on chromosome 6, were associated with the reduction of rCDI in bezlotoxumab-treated participants. Carriage of a minor allele (homozygous or heterozygous) at any of the identified loci was related to a larger difference in the proportion of participants experiencing rCDI versus placebo; the effect was most prominent in the subgroup at high baseline risk for rCDI. Genotypes associated with an improved bezlotoxumab response showed no association with rCDI in the placebo cohort. These data suggest that a host-driven, immunological mechanism may impact bezlotoxumab response. Trial registration numbers are as follows: NCT01241552 (MODIFY I) and NCT01513239 (MODIFY II).IMPORTANCEClostridium difficile infection is associated with significant clinical morbidity and mortality; antibacterial treatments are effective, but recurrence of C. difficile infection is common. In this genome-wide association study, we explored whether host genetic variability affected treatment responses to bezlotoxumab, a human monoclonal antibody that binds C. difficile toxin B and is indicated for the prevention of recurrent C. difficile infection. Using data from the MODIFY I/II phase 3 clinical trials, we identified three genetic variants associated with reduced rates of C. difficile infection recurrence in bezlotoxumab-treated participants. The effects were most pronounced in participants at high risk of C. difficile infection recurrence. All three variants are located in the extended major histocompatibility complex on chromosome 6, suggesting the involvement of a host-driven immunological mechanism in the prevention of C. difficile infection recurrence.

Keywords: Clostridium difficile; antibacterials; bezlotoxumab; genomics.

Copyright © 2020 Shen et al.

Figures

FIG 1
FIG 1
Manhattan plot (A) and QQ plot (B) showing the significance of SNP rs2516513 associated with drug-induced reduction on rCDI in the GWAS analysis (placebo arm versus bezlotoxumab and bezlotoxumab + actoxumab arms). λGC is 1.06 in the QQ plot. Open triangles represent the assayed SNPs; solid symbols represent the imputed SNPs. The dotted line is the genome-wide significance P value threshold of 5 × 10−08. GWAS, genome-wide association study; rCDI, recurrent Clostridium difficile infection; SNP, single nucleotide polymorphism.
FIG 2
FIG 2
Regional association plot of 500 kb on each side of the rs2516513 SNP before (A) and after (B) conditioning. SNP, single nucleotide polymorphism.
FIG 3
FIG 3
Proportion of participants with rCDI stratified by genotype and risk category. (A) rs2516513 genotype. (B) HLA-DRB1*07:01 genotype. The high-risk subgroup included participants with one or more of the following factors: prior episode of CDI in the past 6 months, severe CDI at baseline (per Zar score [37]), age of ≥65 years, CDI due to a hypervirulent strain (027, 078, or 244 ribotypes), immunocompromised, or receiving concomitant systemic antibiotics. Participants at low risk of rCDI were those with none of the above risk factors. P values were calculated from two-sided Fisher’s exact tests. BEZ, bezlotoxumab; CDI, Clostridium difficile infection; HLA, human leukocyte antigen; PBO, placebo; rCDI, recurrent Clostridium difficile infection.
FIG 4
FIG 4
CDI recurrence stratified by genotypes and rCDI risk categories: rs2516513 genotype (A) and HLA-DRB1*07:01 genotype (B). The high-risk subgroup included participants with one or more of the following factors: prior episode of CDI in the past 6 months, severe CDI at baseline (per Zar score [37]), age of ≥65 years, CDI due to a hypervirulent strain (027, 078, or 244 ribotypes), immunocompromised, or receiving concomitant systemic antibiotics. Participants at low risk of rCDI were those with none of the above risk factors. BEZ, bezlotoxumab; CDI, Clostridium difficile infection; CI, confidence interval; PBO, placebo; rCDI, recurrent Clostridium difficile infection.

References

    1. Carter GP, Rood JI, Lyras D. 2010. The role of toxin A and toxin B in Clostridium difficile-associated disease: past and present perspectives. Gut Microbes 1:58–64. doi:10.4161/gmic.1.1.10768.
    1. Centers for Disease Control and Prevention. 2012. CDC vital signs. Making health care safer: stopping C. difficile infections. Centers for Disease Control and Prevention, Atlanta, GA. .
    1. Lessa FC, Gould CV, McDonald LC. 2012. Current status of Clostridium difficile infection epidemiology. Clin Infect Dis 55(Suppl 2):S65–S70. doi:10.1093/cid/cis319.
    1. McDonald LC, Gerding DN, Johnson S, Bakken JS, Carroll KC, Coffin SE, Dubberke ER, Garey KW, Gould CV, Kelly C, Loo V, Shaklee Sammons J, Sandora TJ, Wilcox MH. 2018. Clinical practice guidelines for Clostridium difficile infection in adults and children: 2017 update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin Infect Dis 66:e1–e48. doi:10.1093/cid/cix1085.
    1. Johnson S, Louie TJ, Gerding DN, Cornely OA, Chasan-Taber S, Fitts D, Gelone SP, Broom C, Davidson DM, Polymer Alternative for CDI Treatment (PACT) Investigators. 2014. Vancomycin, metronidazole, or tolevamer for Clostridium difficile infection: results from two multinational, randomized, controlled trials. Clin Infect Dis 59:345–354. doi:10.1093/cid/ciu313.
    1. Louie TJ, Miller MA, Mullane KM, Weiss K, Lentnek A, Golan Y, Gorbach S, Sears P, Shue YK, OPT-80–003 Clinical Study Group. 2011. Fidaxomicin versus vancomycin for Clostridium difficile infection. N Engl J Med 364:422–431. doi:10.1056/NEJMoa0910812.
    1. Sheitoyan-Pesant C, Abou Chakra CN, Pepin J, Marcil-Héguy A, Nault V, Valiquette L. 2016. Clinical and healthcare burden of multiple recurrences of Clostridium difficile infection. Clin Infect Dis 62:574–580. doi:10.1093/cid/civ958.
    1. Cornely OA, Miller MA, Louie TJ, Crook DW, Gorbach SL. 2012. Treatment of first recurrence of Clostridium difficile infection: fidaxomicin versus vancomycin. Clin Infect Dis 55(Suppl 2):S154–S161. doi:10.1093/cid/cis462.
    1. Smits WK, Lyras D, Lacy DB, Wilcox MH, Kuijper EJ. 2016. Clostridium difficile infection. Nat Rev Dis Primers 2:16020. doi:10.1038/nrdp.2016.20.
    1. Wilcox MH, Fawley WN, Settle CD, Davidson A. 1998. Recurrence of symptoms in Clostridium difficile infection—relapse or reinfection? J Hosp Infect 38:93–100. doi:10.1016/s0195-6701(98)90062-7.
    1. Eyre DW, Walker AS, Wyllie D, Dingle KE, Griffiths D, Finney J, O’Connor L, Vaughan A, Crook DW, Wilcox MH, Peto TEA, Infections in Oxfordshire Research Database. 2012. Predictors of first recurrence of Clostridium difficile infection: implications for initial management. Clin Infect Dis 55(Suppl 2):S77–S87. doi:10.1093/cid/cis356.
    1. Gerding DN, Kelly CP, Rahav G, Lee C, Dubberke ER, Kumar PN, Yacyshyn B, Kao D, Eves K, Ellison MC, Hanson ME, Guris D, Dorr MB. 2018. Bezlotoxumab for prevention of recurrent Clostridium difficile infection in patients at increased risk for recurrence. Clin Infect Dis 67:649–656. doi:10.1093/cid/ciy171.
    1. Goorhuis A, Bakker D, Corver J, Debast SB, Harmanus C, Notermans DW, Bergwerff AA, Dekker FW, Kuijper EJ. 2008. Emergence of Clostridium difficile infection due to a new hypervirulent strain, polymerase chain reaction ribotype 078. Clin Infect Dis 47:1162–1170. doi:10.1086/592257.
    1. Majors D, Ellis P. 2015. Risk factors for recurrent Clostridium difficile infections and strategies to decrease readmissions in a community hospital. Hosp Pharm 50:1003–1010. doi:10.1310/hpj5011-1003.
    1. Petrella LA, Sambol SP, Cheknis A, Nagaro K, Kean Y, Sears PS, Babakhani F, Johnson S, Gerding DN. 2012. Decreased cure and increased recurrence rates for Clostridium difficile infection caused by the epidemic C. difficile BI strain. Clin Infect Dis 55:351–357. doi:10.1093/cid/cis430.
    1. Lim SK, Stuart RL, Mackin KE, Carter GP, Kotsanas D, Francis MJ, Easton M, Dimovski K, Elliott B, Riley TV, Hogg G, Paul E, Korman TM, Seemann T, Stinear TP, Lyras D, Jenkin GA. 2014. Emergence of a ribotype 244 strain of Clostridium difficile associated with severe disease and related to the epidemic ribotype 027 strain. Clin Infect Dis 58:1723–1730. doi:10.1093/cid/ciu203.
    1. Wilcox MH, Gerding DN, Poxton IR, Kelly C, Nathan R, Birch T, Cornely OA, Rahav G, Bouza E, Lee C, Jenkin G, Jensen W, Kim YS, Yoshida J, Gabryelski L, Pedley A, Eves K, Tipping R, Guris D, Kartsonis N, Dorr MB, MODIFY I and MODIFY II Investigators. 2017. Bezlotoxumab for prevention of recurrent Clostridium difficile infection. N Engl J Med 376:305–317. doi:10.1056/NEJMoa1602615.
    1. Walker AS, Eyre DW, Wyllie DH, Dingle KE, Griffiths D, Shine B, Oakley S, O’Connor L, Finney J, Vaughan A, Crook DW, Wilcox MH, Peto TEA, Infections in Oxfordshire Research Database. 2013. Relationship between bacterial strain type, host biomarkers, and mortality in Clostridium difficile infection. Clin Infect Dis 56:1589–1600. doi:10.1093/cid/cit127.
    1. 1000 Genomes Project Consortium, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, Marchini JL, McCarthy S, McVean GA, Abecasis GR. 2015. A global reference for human genetic variation. Nature 526:68–74. doi:10.1038/nature15393.
    1. van Beurden YH, Nezami S, Mulder CJJ, Vandenbroucke-Grauls C. 2018. Host factors are more important in predicting recurrent Clostridium difficile infection than ribotype and use of antibiotics. Clin Microbiol Infect 24:85.e1–85.e4. doi:10.1016/j.cmi.2017.07.025.
    1. Garey KW, Jiang ZD, Ghantoji S, Tam VH, Arora V, Dupont HL. 2010. A common polymorphism in the interleukin-8 gene promoter is associated with an increased risk for recurrent Clostridium difficile infection. Clin Infect Dis 51:1406–1410. doi:10.1086/657398.
    1. Miyajima F, Swale A, Zhang JE, Alfirevic A, Little M, Beeching NJ, Smith G, Kolamunnage-Dona R, Pirmohamed M. 2014. Is the interleukin 8 promoter polymorphism rs4073/-251T >A associated with Clostridium difficile infection? Clin Infect Dis 58:e148–e151. doi:10.1093/cid/ciu152.
    1. Hung YP, Lin HJ, Wu TC, Liu HC, Lee JC, Lee CI, Wu YH, Wan L, Tsai PJ, Ko WC. 2013. Risk factors of fecal toxigenic or non-toxigenic Clostridium difficile colonization: impact of Toll-like receptor polymorphisms and prior antibiotic exposure. PLoS One 8:e69577. doi:10.1371/journal.pone.0069577.
    1. International HIV Controllers Study, Pereyra F, Jia X, McLaren PJ, Telenti A, de Bakker PIW, Walker BD, Ripke S, Brumme CJ, Pulit SL, Carrington M, Kadie CM, Carlson JM, Heckerman D, Graham RR, Plenge RM, Deeks SG, Gianniny L, Crawford G, Sullivan J, Gonzalez E, Davies L, Camargo A, Moore JM, Beattie N, Gupta S, Crenshaw A, Burtt NP, Guiducci C, Gupta N, Gao X, Qi Y, Yuki Y, Piechocka-Trocha A, Cutrell E, Rosenberg R, Moss KL, Lemay P, O’Leary J, Schaefer T, Verma P, Toth I, Block B, Baker B, Rothchild A, Lian J, Proudfoot J, Alvino DML, Vine S, Addo MM, et al. . 2010. The major genetic determinants of HIV-1 control affect HLA class I peptide presentation. Science 330:1551–1557. doi:10.1126/science.1195271.
    1. Steinle A, Li P, Morris DL, Groh V, Lanier LL, Strong RK, Spies T. 2001. Interactions of human NKG2D with its ligands MICA, MICB, and homologs of the mouse RAE-1 protein family. Immunogenetics 53:279–287. doi:10.1007/s002510100325.
    1. Dunn C, Chalupny NJ, Sutherland CL, Dosch S, Sivakumar PV, Johnson DC, Cosman D. 2003. Human cytomegalovirus glycoprotein UL16 causes intracellular sequestration of NKG2D ligands, protecting against natural killer cell cytotoxicity. J Exp Med 197:1427–1439. doi:10.1084/jem.20022059.
    1. Janeway CA Jr, Travers P, Walport M, Shlomchik MJ. 2001. The major histocompatibility complex and its functions In Austin P, Lawrence E, Gibbs S (ed), Immunobiology: the immune system in health and disease, 5th ed Garland Publishing, New York, NY.
    1. Kyne L, Warny M, Qamar A, Kelly CP. 2001. Association between antibody response to toxin A and protection against recurrent Clostridium difficile diarrhoea. Lancet 357:189–193. doi:10.1016/S0140-6736(00)03592-3.
    1. Johnston PF, Gerding DN, Knight KL. 2014. Protection from Clostridium difficile infection in CD4 T cell- and polymeric immunoglobulin receptor-deficient mice. Infect Immun 82:522–531. doi:10.1128/IAI.01273-13.
    1. Montgomery DL, Matthews RP, Yee KL, Tobias LM, Dorr MB, Wrishko RE. 2020. Assessment of bezlotoxumab immunogenicity. Clin Pharmacol Drug Dev 9:330–340. doi:10.1002/cpdd.729.
    1. Lewis SJ, Heaton KW. 1997. Stool form scale as a useful guide to intestinal transit time. Scand J Gastroenterol 32:920–924. doi:10.3109/00365529709011203.
    1. Howie BN, Donnelly P, Marchini J. 2009. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet 5:e1000529. doi:10.1371/journal.pgen.1000529.
    1. Zheng X, Shen J, Cox C, Wakefield JC, Ehm MG, Nelson MR, Weir BS. 2014. HIBAG–HLA genotype imputation with attribute bagging. Pharmacogenomics J 14:192–200. doi:10.1038/tpj.2013.18.
    1. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. 2006. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909. doi:10.1038/ng1847.
    1. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC. 2007. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575. doi:10.1086/519795.
    1. R Core Team. 2019. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria: . Accessed 18 October 2019.
    1. Zar FA, Bakkanagari SR, Moorthi KM, Davis MB. 2007. A comparison of vancomycin and metronidazole for the treatment of Clostridium difficile-associated diarrhea, stratified by disease severity. Clin Infect Dis 45:302–307. doi:10.1086/519265.
    1. Wakefield J. 2009. Bayes factors for genome-wide association studies: comparison with P-values. Genet Epidemiol 33:79–86. doi:10.1002/gepi.20359.
    1. Wellcome Trust Case Control Consortium, Maller JB, McVean G, Byrnes J, Vukcevic D, Palin K, Su Z, Howson JMM, Auton A, Myers S, Morris A, Pirinen M, Brown MA, Burton PR, Caulfield MJ, Compston A, Farrall M, Hall AS, Hattersley AT, Hill AVS, Mathew CG, Pembrey M, Satsangi J, Stratton MR, Worthington J, Craddock N, Hurles M, Ouwehand W, Parkes M, Rahman N, Duncanson A, Todd JA, Kwiatkowski DP, Samani NJ, Gough SCL, McCarthy MI, Deloukas P, Donnelly P. 2012. Bayesian refinement of association signals for 14 loci in 3 common diseases. Nat Genet 44:1294–1301. doi:10.1038/ng.2435.
    1. Giambartolomei C, Vukcevic D, Schadt EE, Franke L, Hingorani AD, Wallace C, Plagnol V. 2014. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet 10:e1004383. doi:10.1371/journal.pgen.1004383.
    1. GTex Consortium. 2017. Genetic effects on gene expression across human tissues. Nature 550:204–213. doi:10.1038/nature24277.
    1. Chen L, Ge B, Casale FP, Vasquez L, Kwan T, Garrido-Martín D, Watt S, Yan Y, Kundu K, Ecker S, Datta A, Richardson D, Burden F, Mead D, Mann AL, Fernandez JM, Rowlston S, Wilder SP, Farrow S, Shao X, Lambourne JJ, Redensek A, Albers CA, Amstislavskiy V, Ashford S, Berentsen K, Bomba L, Bourque G, Bujold D, Busche S, Caron M, Chen S-H, Cheung W, Delaneau O, Dermitzakis ET, Elding H, Colgiu I, Bagger FO, Flicek P, Habibi E, Iotchkova V, Janssen-Megens E, Kim B, Lehrach H, Lowy E, Mandoli A, Matarese F, Maurano MT, Morris JA, Pancaldi V, Pourfarzad F, Rehnstrom K, Rendon A, Risch T, Sharifi N, Simon M-M, Sultan M, Valencia A, Walter K, Wang S-Y, Frontini M, Antonarakis SE, Clarke L, Yaspo M-L, Beck S, Guigo R, Rico D, Martens JHA, Ouwehand WH, Kuijpers TW, Paul DS, Stunnenberg HG, Stegle O, Downes K, Pastinen T, Soranzo N. 2016. Genetic drivers of epigenetic and transcriptional variation in human immune cells. Cell 167:1398–1414.e24. doi:10.1016/j.cell.2016.10.026.
    1. Fairfax BP, Humburg P, Makino S, Naranbhai V, Wong D, Lau E, Jostins L, Plant K, Andrews R, McGee C, Knight JC. 2014. Innate immune activity conditions the effect of regulatory variants upon monocyte gene expression. Science 343:1246949–1246949. doi:10.1126/science.1246949.
    1. Sun BB, Maranville JC, Peters JE, Stacey D, Staley JR, Blackshaw J, Burgess S, Jiang T, Paige E, Surendran P, Oliver-Williams C, Kamat MA, Prins BP, Wilcox SK, Zimmerman ES, Chi A, Bansal N, Spain SL, Wood AM, Morrell NW, Bradley JR, Janjic N, Roberts DJ, Ouwehand WH, Todd JA, Soranzo N, Suhre K, Paul DS, Fox CS, Plenge RM, Danesh J, Runz H, Butterworth AS. 2018. Genomic atlas of the human plasma proteome. Nature 558:73–79. doi:10.1038/s41586-018-0175-2.
    1. Kraft P, Yen YC, Stram DO, Morrison J, Gauderman WJ. 2007. Exploiting gene-environment interaction to detect genetic associations. Hum Hered 63:111–119. doi:10.1159/000099183.

Source: PubMed

3
Iratkozz fel