Identification of New Genes Involved in Germline Predisposition to Early-Onset Gastric Cancer

Cristina Herrera-Pariente, Roser Capó-García, Marcos Díaz-Gay, Sabela Carballal, Jenifer Muñoz, Joan Llach, Ariadna Sánchez, Laia Bonjoch, Coral Arnau-Collell, Yasmin Soares de Lima, Mariano Golubicki, Gerhard Jung, Juan José Lozano, Antoni Castells, Francesc Balaguer, Luis Bujanda, Sergi Castellví-Bel, Leticia Moreira, Cristina Herrera-Pariente, Roser Capó-García, Marcos Díaz-Gay, Sabela Carballal, Jenifer Muñoz, Joan Llach, Ariadna Sánchez, Laia Bonjoch, Coral Arnau-Collell, Yasmin Soares de Lima, Mariano Golubicki, Gerhard Jung, Juan José Lozano, Antoni Castells, Francesc Balaguer, Luis Bujanda, Sergi Castellví-Bel, Leticia Moreira

Abstract

The genetic cause for several families with gastric cancer (GC) aggregation is unclear, with marked relevance in early-onset patients. We aimed to identify new candidate genes involved in GC germline predisposition. Whole-exome sequencing (WES) of germline samples was performed in 20 early-onset GC patients without previous germline mutation identified. WES was also performed in nine tumor samples to analyze the somatic profile using SigProfilerExtractor tool. Sequencing germline data were filtered to select those variants with plausible pathogenicity, rare frequency and previously involved in cancer. Then, a manual filtering was performed to prioritize genes according to current knowledge and function. These genetic variants were prevalidated with Integrative Genomics Viewer 2.8.2 (IGV). Subsequently, a further selection step was carried out according to function and information obtained from tumor samples. After IGV and selection step, 58 genetic variants in 52 different candidate genes were validated by Sanger sequencing. Among them, APC, FAT4, CTNND1 and TLR2 seem to be the most promising genes because of their role in hereditary cancer syndromes, tumor suppression, cell adhesion and Helicobacter pylori recognition, respectively. These encouraging results represent the open door to the identification of new genes involved in GC germline predisposition.

Keywords: early-onset; gastric cancer; germline predisposition; next-generation sequencing; somatic profiling; whole-exome sequencing.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Somatic mutational profile analysis performed with SigProfilerExtractor in nine GC tumor samples. (a) tumor mutational burden (number of mutations per megabase). (b) single base substitution (SBS) signatures contribution in each sample. (c) indel signatures contribution in each sample. Pt, patient; Mb, megabase; ID, small insertions and deletions.
Figure 2
Figure 2
Scheme of the germline data analysis after whole-exome sequencing. Germline analysis pipeline characteristics can be found in Figure S1 in Supplementary Materials.
Figure 3
Figure 3
Example of prevalidation and Sanger sequencing of recessive and dominant candidate variants. (a) prevalidation by Integrative Genomics Viewer 2.8.2 (IGV) and validation by Sanger sequencing of homozygous TLR2 variant (c.1232C>T) of control (up) and patient from family 4 (down). (b) prevalidation by IGV and validation by Sanger sequencing of heterozygous RNF43 variant (c.1504A>G) of control (up) and patient from family 4 (down).
Figure 4
Figure 4
Gastric cancer predisposition candidate genes classify by function or involvement in hereditary cancer.

References

    1. Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018;68:394–424. doi: 10.3322/caac.21492.
    1. Kluijt I., Sijmons R.H., Hoogerbrugge N., Plukker J.T., De Jong D., Van Krieken J.H., Van Hillegersberg R., Ligtenberg M., Bleiker E., Cats A. Familial gastric cancer: Guidelines for diagnosis, treatment and periodic surveillance. Fam. Cancer. 2012;11:363–369. doi: 10.1007/s10689-012-9521-y.
    1. Lauren P. The Two Histological Main Types of Gastric Carcinoma: Diffuse and So-Called Intestinal-Type Carcinoma. An Attempt At a Histo-Clinical Classification. Acta Pathol. Microbiol. Scand. 1965;64:31–49. doi: 10.1111/apm.1965.64.1.31.
    1. Cubiella J., Pérez Aisa Á., Cuatrecasas M., Díez Redondo P., Fernández Esparrach G., Marín-Gabriel J.C., Moreira L., Núñez H., Pardo López M.L., Rodríguez de Santiago E., et al. Gastric cancer screening in low incidence populations: Position statement of AEG, SEED and SEAP. Gastroenterol. Hepatol. 2020 doi: 10.1016/j.gastre.2020.08.001.
    1. Yusefi A.R., Lankarani K.B., Bastani P., Radinmanesh M., Kavosi Z. Risk factors for gastric cancer: A systematic review. Asian Pac. J. Cancer Prev. 2018;19:591–603.
    1. Lott P.C., Carvajal-Carmona L.G. Resolving gastric cancer aetiology: An update in genetic predisposition. Lancet Gastroenterol. Hepatol. 2018;3:874–883. doi: 10.1016/S2468-1253(18)30237-1.
    1. Hansford S., Kaurah P., Li-Chang H., Woo M., Senz J., Pinheiro H., Schrader K.A., Schaeffer D.F., Shumansky K., Zogopoulos G., et al. Hereditary diffuse gastric cancer syndrome: CDH1 mutations and beyond. JAMA Oncol. 2015;1:23–32. doi: 10.1001/jamaoncol.2014.168.
    1. Majewski I.J., Kluijt I., Cats A., Scerri T.S., De Jong D., Kluin R.J.C., Hansford S., Hogervorst F.B.L., Bosma A.J., Hofland I., et al. An α-E-catenin (CTNNA1) mutation in hereditary diffuse gastric cancer. J. Pathol. 2013;229:621–629. doi: 10.1002/path.4152.
    1. Li J., Woods S.L., Healey S., Beesley J., Chen X., Lee J.S., Sivakumaran H., Wayte N., Nones K., Waterfall J.J., et al. Point Mutations in Exon 1B of APC Reveal Gastric Adenocarcinoma and Proximal Polyposis of the Stomach as a Familial Adenomatous Polyposis Variant. Am. J. Hum. Genet. 2016;98:830–842. doi: 10.1016/j.ajhg.2016.03.001.
    1. Milne A.N., Offerhaus G.J.A. Early-onset gastric cancer: Learning lessons from the young. World J. Gastrointest. Oncol. 2010;2:59–64. doi: 10.4251/wjgo.v2.i2.59.
    1. Machlowska J., Kapusta P., Baj J., Morsink F.H.M., Wołkow P., Maciejewski R., Johan G.A.O., Sitarz R. High-Throughput Sequencing of Gastric Cancer Patients: Unravelling Genetic Predispositions Towards an Early-Onset Subtype. Cancers. 2020;12:1981. doi: 10.3390/cancers12071981.
    1. Corso G., Roviello F. Germline mutations of the E-cadherin gene (CDH1) in early onset gastric cancer. Semin. Oncol. 2020;47:125–126. doi: 10.1053/j.seminoncol.2020.04.002.
    1. Zang Z.J., Cutcutache I., Poon S.L., Zhang S.L., Mcpherson J.R., Tao J., Rajasegaran V., Heng H.L., Deng N., Gan A., et al. Exome sequencing of gastric adenocarcinoma identifies recurrent somatic mutations in cell adhesion and chromatin remodeling genes. Nat. Genet. 2012;44:570–574. doi: 10.1038/ng.2246.
    1. Yuan Y.-C., Nehoray B., Tao S., Castillo D., Woo Y., Sand S., Horcasitas D., Adamson A.W., Weitzel J., Wu X., et al. Genetic Gastric Cancer Susceptibility in the International Clinical Cancer Genomics Community Research Network. Cancer Genet. 2017;216–217:111–119.
    1. Sahasrabudhe R., Lott P., Bohorquez M., Toal T., Estrada A.P., Suarez J.J., Brea-Fernández A., Cameselle-Teijeiro J., Pinto C., Ramos I., et al. Germline Mutations in PALB2, BRCA1, and RAD51C, Which Regulate DNA Recombination Repair, in Patients With Gastric Cancer. Gastroenterology. 2017;152:983–986.e6. doi: 10.1053/j.gastro.2016.12.010.
    1. Fewings E., Larionov A., Redman J., Goldgraben M.A., Scarth J., Richardson S., Brewer C., Davidson R., Ellis I., Evans D.G., et al. Germline pathogenic variants in PALB2 and other cancer-predisposing genes in families with hereditary diffuse gastric cancer without CDH1 mutation: A whole-exome sequencing study. Lancet Gastroenterol. Hepatol. 2018;3:489–498. doi: 10.1016/S2468-1253(18)30079-7.
    1. Vogelaar I.P., Van Der Post R.S., Van Krieken J.H.J.M., Spruijt L., Van Zelst-Stams W.A.G., Kets C.M., Lubinski J., Jakubowska A., Teodorczyk U., Aalfs C.M., et al. Unraveling genetic predisposition to familial or early onset gastric cancer using germline whole-exome sequencing. Eur. J. Hum. Genet. 2017;25:1246–1252. doi: 10.1038/ejhg.2017.138.
    1. Weren R.D.A., Van Der Post R.S., Vogelaar I.P., Han Van Krieken J., Spruijt L., Lubinski J., Jakubowska A., Teodorczyk U., Aalfs C.M., Van Hest L.P., et al. Role of germline aberrations affecting CTNNA1, MAP3K6 and MYD88 in gastric cancer susceptibility. J. Med. Genet. 2018;55:669–674. doi: 10.1136/jmedgenet-2017-104962.
    1. Campbell B.B., Light N., Fabrizio D., Zatzman M., Fuligni F., de Borja R., Davidson S., Edwards M., Elvin J.A., Hodel K.P., et al. Comprehensive Analysis of Hypermutation in Human Cancer. Cell. 2017;171:1042–1056. doi: 10.1016/j.cell.2017.09.048.
    1. Cao Z., Xue J., Cheng Y., Wang J., Liu Y., Li H., Jiang W., Li G. MDM2 promotes genome instability by ubiquitinating the transcription factor HBP1. Oncogene. 2019;4:4835–4855. doi: 10.1038/s41388-019-0761-2.
    1. Wang H., Shen L., Li Y., Lv J. Integrated characterisation of cancer genes identifies key molecular biomarkers in stomach adenocarcinoma. J. Clin. Pathol. 2020;73:579–586. doi: 10.1136/jclinpath-2019-206400.
    1. Cai J., Feng D., Hu L., Chen H., Yang G., Cai Q., Gao C., Wei D. FAT4 functions as a tumour suppressor in gastric cancer by modulating Wnt/β-catenin signalling. Br. J. Cancer. 2015;113:1720–1729. doi: 10.1038/bjc.2015.367.
    1. Rahman N. Realising the Promise of Cancer Predisposition Genes. Nature. 2014;505:302–308. doi: 10.1038/nature12981.
    1. Zhang X., Liu J., Liang X., Chen J., Hong J., Li L., He Q., Cai X. History and progression of fat cadherins in health and disease. OncoTargets Ther. 2016;9:7337–7343. doi: 10.2147/OTT.S111176.
    1. Katoh M. Function and cancer genomics of FAT family genes (Review) Int. J. Oncol. 2012;41:1913–1918. doi: 10.3892/ijo.2012.1669.
    1. Jiang X., Liu Z., Xia Y., Luo J., Xu J., He X., Tao H. Low FAT4 expression is associated with a poor prognosis in gastric cancer patients. Oncotarget. 2018;9:5137–5154. doi: 10.18632/oncotarget.23702.
    1. Alders M., Al-Gazali L., Cordeiro I., Dallapiccola B., Garavelli L., Tuysuz B., Salehi F., Haagmans M.A., Mook O.R., Majoie C.B., et al. Hennekam syndrome can be caused by FAT4 mutations and be allelic to Van Maldergem syndrome. Hum. Genet. 2014;133:1161–1167. doi: 10.1007/s00439-014-1456-y.
    1. Thoreson M.A., Reynolds A.B. Altered expression of the catenin p120 in human cancer: Implications for tumor progression. Differentiation. 2002;70:583–589. doi: 10.1046/j.1432-0436.2002.700911.x.
    1. Reichert M., Bakir B., Moreira L., Pitarresi J.R., Feldmann K., Simon L., Suzuki K., Maddipati R., Rhim A.D., Schlitter A.M., et al. Regulation of Epithelial Plasticity Determines Metastatic Organotropism in Pancreatic Cancer. Dev. Cell. 2018;45:696–711.e8. doi: 10.1016/j.devcel.2018.05.025.
    1. Schuetz J.M., Leach S., Kaurah P., Jeyes J., Butterfield Y., Huntsman D., Brooks-Wilson A.R. Catenin family genes are not commonly mutated in hereditary diffuse gastric cancer. Cancer Epidemiol. Biomark. Prev. 2012;21:2272–2274. doi: 10.1158/1055-9965.EPI-12-1110.
    1. Ireton R.C., Davis M.A., Van Hengel J., Mariner D.J., Barnes K., Thoreson M.A., Anastasiadis P.Z., Matrisian L., Bundy L.M., Sealy L., et al. A novel role for p120 catenin in E-cadherin function. J. Cell Biol. 2002;159:465–476. doi: 10.1083/jcb.200205115.
    1. Figueiredo J., Söderberg O., Simões-Correia J., Grannas K., Suriano G., Seruca R. The importance of E-cadherin binding partners to evaluate the pathogenicity of E-cadherin missense mutations associated to HDGC. Eur. J. Hum. Genet. 2013;21:301–309. doi: 10.1038/ejhg.2012.159.
    1. Li T.-F., Quin S.-H., Ruan X.-Z., Wang X. p120-catenin participates in the progress of gastric cancer through regulating the Rac1 and Pak1 signaling pathway. Oncol. Rep. 2015;34:2357–2364. doi: 10.3892/or.2015.4226.
    1. Xing A.Y., Wang Y.W., Su Z.X., Shi D.B., Wang B., Gao P. Catenin-δ 1, negatively regulated by miR-145, promotes tumour aggressiveness in gastric cancer. J. Pathol. 2015;236:53–64. doi: 10.1002/path.4495.
    1. Li S., Cao M., Song L., Qi P., Chen C., Wang X., Li N., Peng J., Wu D., Hu G., et al. The contribution of toll-like receptor 2 on Helicobacter pylori activation of the nuclear factor-kappa B signaling pathway in gastric epithelial cells. Microb. Pathog. 2016;98:63–68. doi: 10.1016/j.micpath.2016.06.028.
    1. Smith S.M., Moran A.P., Duggan S.P., Ahmed S.E., Mohamed A.S., Windle H.J., O’Neill L.A., Kelleher D.P. Tribbles 3: A novel regulator of TLR2-mediated signaling in response to Helicobacter pylori lipopolysaccharide. J. Immunol. 2011;186:2462–2471. doi: 10.4049/jimmunol.1000864.
    1. Yokota S.-i., Okabayashi T., Rehli M., Fujii N., Amano K.-i. Helicobacter pylori lipopolysaccharides upregulate Toll-Like receptor 4 expression and proliferation of gastric epithelial cells via the MEK1/2-ERK1/2 mitogen-activated protein kinase pathway. Infect. Immun. 2010;78:468–476. doi: 10.1128/IAI.00903-09.
    1. West A.C., Tang K., Tye H., Yu L., Deng N., Najdovska M., Lin S.J., Balic J.J., Okochi-Takada E., McGuirk P., et al. Identification of a TLR2-regulated gene signature associated with tumor cell growth in gastric cancer. Oncogene. 2017;36:5134–5144. doi: 10.1038/onc.2017.121.
    1. Nemati M., Larussa T., Khorramdelazad H., Mahmoodi M., Jafarzadeh A. Toll-like receptor 2: An important immunomodulatory molecule during Helicobacter pylori infection. Life Sci. 2017;178:17–29. doi: 10.1016/j.lfs.2017.04.006.
    1. de Oliveira J.G., Silva A.E. Polymorphisms of the TLR2 and TLR4 genes are associated with risk of gastric cancer in a Brazilian population. World J. Gastroenterol. 2012;18:1235–1242. doi: 10.3748/wjg.v18.i11.1235.
    1. Castaño-Rodríguez N., Kaakoush N.O., Goh K.L., Fock K.M., Mitchell H.M. The Role of TLR2, TLR4 and CD14 genetic polymorphisms in gastric carcinogenesis: A case-control study and meta-analysis. PLoS ONE. 2013;8:e60327. doi: 10.1371/journal.pone.0060327.
    1. Saeki N., Saito A., Choi I.J., Matsuo K., Ohnami S., Totsuka H., Chiku S., Kuchiba A., Lee Y., Yoon K., et al. A functional single nucleotide polymorphism in Mucin 1, at chromosome 1q22, determines susceptibility to diffuse-type gastric cancer. Gastroenterology. 2011;140:892–902. doi: 10.1053/j.gastro.2010.10.058.
    1. Hussain T., Liu B., Shrock M.S., Williams T., Aldaz C.M. WWOX, the FRA16D gene: A target of and a contributor to genomic instability. Genes Chromosom. Cancer. 2019;58:324–338. doi: 10.1002/gcc.22693.
    1. Bass A.J., Thorsson V., Shmulevich I., Reynolds S.M., Miller M., Bernard B., Hinoue T., Laird P.W., Curtis C., Shen H., et al. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014;513:202–209.
    1. Xu L., Li X., Chu E.S.H., Zhao G., Go M.Y.Y., Tao Q., Jin H., Zeng Z., Sung J.J.Y., Yu J. Epigenetic inactivation of BCL6B, a novel functional tumour suppressor for gastric cancer, is associated with poor survival. Gut. 2012;61:977–985. doi: 10.1136/gutjnl-2011-300411.
    1. Cai W.Y., Lin L.Y., Wang L., Yang L., Ye G.D., Zeng Q., Cheng J., Xie Y.Y., Chen M.L., Luo Q.C. Inhibition of Bcl6b promotes gastric cancer by amplifying inflammation in mice. Cell Commun. Signal. 2019;17:1–13. doi: 10.1186/s12964-019-0387-6.
    1. Zhang J., Wang G., Chu S.-J., Zhu J.-S., Zhang R., Lu W.-W., Xia L.-Q., Lu Y.-M., Da W., Sun Q. Loss of large tumor suppressor 1 promotes growth and metastasis of gastric cancer cells through upregulation of the YAP signaling. Oncotarget. 2016;7:16180–16193. doi: 10.18632/oncotarget.7568.
    1. Chiurillo M.A. Role of the Wnt/β-catenin pathway in gastric cancer: An in-depth literature review. World J. Exp. Med. 2015;5:84–102. doi: 10.5493/wjem.v5.i2.84.
    1. Pouptsis A., Swafe L., Patwardhan M., Stavraka C. Surgical and Systemic Treatment of Hereditary Breast Cancer: A Mini-Review With a Focus on BRCA1 and BRCA2 Mutations. Front. Oncol. 2020;10:553080. doi: 10.3389/fonc.2020.553080.
    1. Llach J., Moreno L., Sánchez A., Herrera-Pariente C., Ocaña T., Cuatrecasas M., Rivero-Sánchez L., Moreira R., Díaz M., Jung G., et al. Genetic Counseling for Hereditary Gastric and Pancreatic Cancer in High-Risk Gastrointestinal Cancer Clinics: An Effective Strategy. Cancers. 2020;12:2386. doi: 10.3390/cancers12092386.
    1. Llach J., Carballal S., Moreira L. Familial pancreatic cancer: Current perspectives. Cancer Manag. Res. 2020;12:743–758. doi: 10.2147/CMAR.S172421.
    1. Cheng X., Lu Y. A review of capecitabine-based adjuvant therapy for gastric cancer in the Chinese population. Futur. Oncol. 2018;14:771–779. doi: 10.2217/fon-2017-0558.
    1. Johansson L.F., van Dijk F., de Boer E.N., van Dijk-Bos K.K., Jongbloed J.D.H., van der Hout A.H., Westers H., Sinke R.J., Swertz M.A., Sijmons R.H., et al. CoNVaDING: Single Exon Variation Detection in Targeted NGS Data. Hum. Mutat. 2016;37:457–464. doi: 10.1002/humu.22969.
    1. Esteban-Jurado C., Vila-Casadesús M., Garre P., Lozano J.J., Pristoupilova A., Beltran S., Muñoz J., Ocaña T., Balaguer F., López-Cerón M., et al. Whole-exome sequencing identifies rare pathogenic variants in new predisposition genes for familial colorectal cancer. Genet. Med. 2015;17:131–142. doi: 10.1038/gim.2014.89.
    1. Alexandrov L.B., Kim J., Haradhvala N.J., Huang M.N., Tian Ng A.W., Wu Y., Boot A., Covington K.R., Gordenin D.A., Bergstrom E.N., et al. The repertoire of mutational signatures in human cancer. Nature. 2020;578:94–101. doi: 10.1038/s41586-020-1943-3.
    1. Robinson J.T., Thorvaldsdóttir H., Wenger A.M., Zehir A., Mesirov J.P. Variant Review with the Integrative Genomics Viewer. Cancer Res. 2017;77:e31–e34. doi: 10.1158/0008-5472.CAN-17-0337.

Source: PubMed

3
Iratkozz fel