Vaginal dysbiosis increases risk of preterm fetal membrane rupture, neonatal sepsis and is exacerbated by erythromycin

Richard G Brown, Julian R Marchesi, Yun S Lee, Ann Smith, Benjamin Lehne, Lindsay M Kindinger, Vasso Terzidou, Elaine Holmes, Jeremy K Nicholson, Phillip R Bennett, David A MacIntyre, Richard G Brown, Julian R Marchesi, Yun S Lee, Ann Smith, Benjamin Lehne, Lindsay M Kindinger, Vasso Terzidou, Elaine Holmes, Jeremy K Nicholson, Phillip R Bennett, David A MacIntyre

Abstract

Background: Preterm prelabour rupture of the fetal membranes (PPROM) precedes 30% of preterm births and is a risk factor for early onset neonatal sepsis. As PPROM is strongly associated with ascending vaginal infection, prophylactic antibiotics are widely used. The evolution of vaginal microbiota compositions associated with PPROM and the impact of antibiotics on bacterial compositions are unknown.

Methods: We prospectively assessed vaginal microbiota prior to and following PPROM using MiSeq-based sequencing of 16S rRNA gene amplicons and examined the impact of erythromycin prophylaxis on bacterial load and community structures.

Results: In contrast to pregnancies delivering at term, vaginal dysbiosis characterised by Lactobacillus spp. depletion was present prior to the rupture of fetal membranes in approximately a third of cases (0% vs. 27%, P = 0.026) and persisted following membrane rupture (31%, P = 0.005). Vaginal dysbiosis was exacerbated by erythromycin treatment (47%, P = 0.00009) particularly in women initially colonised by Lactobacillus spp. Lactobacillus depletion and increased relative abundance of Sneathia spp. were associated with subsequent funisitis and early onset neonatal sepsis.

Conclusions: Our data show that vaginal microbiota composition is a risk factor for subsequent PPROM and is associated with adverse short-term maternal and neonatal outcomes. This highlights vaginal microbiota as a potentially modifiable antenatal risk factor for PPROM and suggests that routine use of erythromycin for PPROM be re-examined.

Keywords: Antibiotics; Erythromycin; Neonatal sepsis; Pregnancy; Preterm birth; Preterm prelabour rupture of membranes; Vaginal microbiota.

Conflict of interest statement

Ethics approval and consent to participate

Ethics approval for this studied was granted by the National Research Ethics Service Committee London–Stanmore of the National Health Service (REC 14/LO/0328), and all participants provided written informed consent.

Competing interests

PRB serves as a consultant for ObsEva, a company that works in the field of preterm birth. All other authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Decreased vaginal Lactobacillus spp. abundance occurs prior to PPROM and is further exacerbated by membrane rupture and erythromycin treatment. a Ward’s linkage hierarchical clustering analysis of vaginal bacterial species data from cervical vaginal fluid samples (n = 165) collected from women with uncomplicated term delivery, sampled at 28 weeks (n = 20), pre-PPROM (n = 15), following PPROM before erythromycin (n = 39), after 48 hours of erythromycin (n = 43), 48 hours to 1 week of erythromycin (n = 22) and >1 week of erythromycin treatment (n = 26). Vaginal bacterial communities were classified based on Lactobacillus spp. abundance into dominant, intermediate and depleted, and further into eight vaginal microbiota groups: VMG 1: L. iners dominant, VMG 2: L. iners high diversity, VMG 3: L. crispatus dominant, VMG 4: L. gasseri dominant, VMG 5: L. jensenii dominant, VMG 6: L. crispatus high diversity, VMG 7: Lactobacillus spp. depleted and low diversity, VMG 8: Lactobacillus spp. depleted and high diversity. b Relative Lactobacillus spp. abundance is significantly lower in the pre-PPROM and membrane rupture groups compared to gestation age matched and normal pregnancy controls (P = 0.011). Erythromycin treatment exacerbates Lactobacillus spp. depletion and expansion of dysbiotic vaginal communities (P = 0.001). Reduced Lactobacillus spp. abundance is accompanied by a reciprocal increase in c richness and d diversity. e Bacterial load is significantly higher pre-membrane rupture in comparison to post-membrane rupture (P = 9.37 × 10-8) but remains stable thereafter, despite ongoing erythromycin treatment. PPROM preterm prelabour rupture of the fetal membranes
Fig. 2
Fig. 2
Bacterial taxonomic groups discriminate between normal-term delivery and women destined to experience PPROM. a Cladogram describing differentially abundant vaginal microbial clades and nodes observed between women subsequently experiencing normal-term delivery or PPROM as identified using LEfSe analysis. b The effect size for each differentially abundant species was estimated using LDA. Vaginal microbiota of patients prior to PPROM was enriched with Bacteroidales, Fusobacteriales and Clostridiales whereas those with a term delivery were comparatively enriched in Lactobacillales. c Stacked bar charts of relative abundance for each individual sampled highlight the emergence of a high-diversity microbial profile and reduced dominance of the Lactobacillus genus. d Comparison of relative abundance across the four differentially expressed bacterial genera showing reduced Lactobacillales (P = 0.0172) and increased Fusobacteriales (P = 0.0035), Clostridiales (P = 0.0356) and Bacteroidales (P = 0.009, Mann–Whitney U, two-tailed) in women prior to membrane rupture compared to controls. LDA latent discriminatory analysis, LEfSe linear discriminant analysis with effect size, PPROM preterm prelabour rupture of the fetal membranes
Fig. 3
Fig. 3
Erythromycin treatment promotes vaginal dysbiosis. a Analysis of vaginal microbiota communities from paired samples before and following 48 hours of erythromycin treatment demonstrates transition from Lactobacillus spp. dominance (n =  = 10, 63%) towards intermediate (n = 4) or complete Lactobacillus spp. depletion (n = 2) whilst communities initially low in Lactobacillus spp. remain so. Erythromycin treatment did not reduce b richness, c diversity or d bacterial load. A sub-analysis showed that erythromycin treatment was associated with decreased e richness (P = 0.03) and f diversity (P = 0.03) in communities initially depleted in Lactobacillus spp., treatment but was associated with a significant increase in diversity (P = 0.01) in communities initially dominated by Lactobacillus spp. g Bacterial load was similar between subgroups. h Lactobacillus spp. abundant communities experienced a 40% reduction in Lactobacillus spp. post treatment (P = 0.004, Wilcoxon signed rank test). Inv. inverse, VM vaginal microbiota
Fig. 4
Fig. 4
Vaginal dysbiosis is associated with increased risk of chorioamnionitis with funisitis following PPROM. a Differentially abundant vaginal taxa detected using LEfSe analysis in samples taken prior to delivery in women with normal histology or chorioamnionitis with funisitis. b The vaginal microbiome of patients with normal histology was enriched with Lactobacillus spp. whereas those with chorioamnionitis with funisitis were enriched with Fusobacteriales including Sneathia, Bacteroidales, Peptostreptococcus and Catonella species. c Increased prevalence of Lactobacillus depleted/dysbiotic communities with significantly reduced Lactobacillus abundance was observed in the chorioamnionitis with funisitis cohort (P = 0.0025, Fisher’s exact). d No difference was detected in vaginal microbial richness between groups. However, e diversity was increased in cases complicated by chorioamnionitis with funisitis. f Bacterial load was comparable between histological groups. g, h Serum markers of maternal infection and inflammation were significantly elevated in cases of chorioamnionitis, +/- funisitis (CRP: P = 0.000016, WCC: P = 0.0016). i, j Both WCC (rho = 0.54, P = 0.0001) and CRP (rho = 0.45, P =0.0013) were positively correlated with vaginal bacterial alpha diversity. CRP C-reactive protein, LDA latent discriminatory analysis, LEfSe linear discriminant analysis with effect size; WCC white cell count
Fig. 5
Fig. 5
Vaginal dysbiosis is a risk factor for early onset neonatal sepsis (EONS) following PPROM. a Cladogram and b LDA of differentially abundant species detected in vaginal swab samples collected just prior to delivery in cases who did or did not subsequently develop EONS. Lactobacillus crispatus was void from EONS samples, which were enriched with bacteria from genera Sneathia and Catonella. c Distribution of the 21 most abundant bacterial species across the two patient groups. Lactobacillus crispatus was present only in mothers whose babies did not develop EONS. d Relative abundance of differentially expressed genera: Lactobacillus (P = 0.001), Leptotrichiaceae (P = 0.0291) and Lachnospiraceae (P = 0.0114). EONS early onset neonatal sepsis, LDA latent discriminatory analysis, PPROM preterm prelabour rupture of the fetal membranes

References

    1. Liu L, Oza S, Hogan D, Perin J, Rudan I, Lawn JE, et al. Global, regional, and national causes of child mortality in 2000–13, with projections to inform post-2015 priorities: an updated systematic analysis. Lancet. 2015;385(9966):430–40. doi: 10.1016/S0140-6736(14)61698-6.
    1. Iacovidou N, Varsami M, Syggellou A. Neonatal outcome of preterm delivery. Ann NY Acad Sci. 2010;1205:130–4. doi: 10.1111/j.1749-6632.2010.05657.x.
    1. Parry S, Strauss JF., 3rd Premature rupture of the fetal membranes. N Engl J Med. 1998;338(10):663–70. doi: 10.1056/NEJM199803053381006.
    1. Lamont RF, Duncan SLB, Mandal D, Bassett P. Intravaginal clindamycin to reduce preterm birth in women with abnormal genital tract flora. Obstet Gynecol. 2003;101(3):516–22.
    1. Pappas A, Kendrick DE, Shankaran S, et al. Chorioamnionitis and early childhood outcomes among extremely low-gestational-age neonates. JAMA Pediatr. 2014;168(2):137–47. doi: 10.1001/jamapediatrics.2013.4248.
    1. Chandiramani M, Bennett PR, Brown R, Lee Y, MacIntyre DA. Vaginal microbiome-pregnant host interactions determine a significant proportion of preterm labour. Fetal Matern Med Rev. 2014;25(01):73–8. doi: 10.1017/S0965539514000059.
    1. Kanayama N, Terao T, Horiuchi K. The role of human neutrophil elastase in the premature rupture of membranes. Asia Oceania J Obstet Gynaecol. 1988;14(3):389–97. doi: 10.1111/j.1447-0756.1988.tb00122.x.
    1. Fortunato SJ, Menon R, Lombardi SJ. Role of tumor necrosis factor-α in the premature rupture of membranes and preterm labor pathways. Am J Obstet Gynecol. 2002;187(5):1159–62. doi: 10.1067/mob.2002.127457.
    1. Shobokshi A, Shaarawy M. Maternal serum and amniotic fluid cytokines in patients with preterm premature rupture of membranes with and without intrauterine infection. Int J Gynaecol Obstet. 2002;79(3):209–15. doi: 10.1016/S0020-7292(02)00238-2.
    1. Helmig BR, Romero R, Espinoza J, Chaiworapongsa T, Bujold E, Gomez R, et al. Neutrophil elastase and secretory leukocyte protease inhibitor in prelabor rupture of membranes, parturition and intra-amniotic infection. J Matern Fetal Neonatal Med. 2002;12(4):237–46. doi: 10.1080/jmf.12.4.237.246.
    1. Fortner KB, Grotegut CA, Ransom CE, Bentley RC, Feng L, Lan L, et al. Bacteria localization and chorion thinning among preterm premature rupture of membranes. PloS One. 2014;9(1):e83338. doi: 10.1371/journal.pone.0083338.
    1. Peaceman AM, Lai Y, Rouse DJ, Spong CY, Mercer BM, Varner MW, et al. Length of latency with preterm premature rupture of membranes before 32 weeks' gestation. Am J Perinatol. 2015;32(1):57–62.
    1. Rocha G, Proenca E, Quintas C, Rodrigues T, Guimaraes H. Chorioamnionitis and brain damage in the preterm newborn. J Matern Fetal Neonatal Med. 2007;20(10):745–9. doi: 10.1080/14767050701580515.
    1. Lu H, Wang Q, Lu J, Zhang Q, Kumar P. Risk factors for intraventricular hemorrhage in preterm infants born at 34 weeks of gestation or less following preterm premature rupture of membranes. J Stroke Cerebrovasc Dis. 2016;25(4):807–12. doi: 10.1016/j.jstrokecerebrovasdis.2015.12.011.
    1. Vigneswaran R. Infection and preterm birth: evidence of a common causal relationship with bronchopulmonary dysplasia and cerebral palsy. J Paediatr Child Health. 2000;36(4):293–6. doi: 10.1046/j.1440-1754.2000.00536.x.
    1. Yoon BH, Romero R, Park JS, Kim CJ, Kim SH, Choi JH, et al. Fetal exposure to an intra-amniotic inflammation and the development of cerebral palsy at the age of three years. Am J Obstet Gynecol. 2000;182(3):675–81. doi: 10.1067/mob.2000.104207.
    1. Drassinower D, Friedman AM, Obican SG, Levin H, Gyamfi-Bannerman C. Prolonged latency of preterm premature rupture of membranes and risk of cerebral palsy. J Matern Fetal Neonatal Med. 2016;29(17):2748–52.
    1. van Dillen J, Zwart J, Schutte J, van Roosmalen J. Maternal sepsis: epidemiology, etiology and outcome. Curr Opin Infect Dis. 2010;23(3):249–54. doi: 10.1097/QCO.0b013e328339257c.
    1. Puri K, Taft DH, Ambalavanan N, Schibler KR, Morrow AL, Kallapur SG. Association of chorioamnionitis with aberrant neonatal gut colonization and adverse clinical outcomes. PloS One. 2016;11(9):e0162734. doi: 10.1371/journal.pone.0162734.
    1. Gajer P, Brotman RM, Bai G, Sakamoto J, Schutte UM, Zhong X, et al. Temporal dynamics of the human vaginal microbiota. Sci Transl Med. 2012;4(132):132ra152. doi: 10.1126/scitranslmed.3003605.
    1. Aagaard K, Riehle K, Ma J, Segata N, Mistretta TA, Coarfa C, et al. A metagenomic approach to characterization of the vaginal microbiome signature in pregnancy. PloS One. 2012;7(6):e36466. doi: 10.1371/journal.pone.0036466.
    1. MacIntyre DA, Chandiramani M, Lee YS, Kindinger L, Smith A, Angelopoulos N, et al. The vaginal microbiome during pregnancy and the postpartum period in a European population. Sci Rep. 2015;5:8988. doi: 10.1038/srep08988.
    1. Romero R, Hassan SS, Gajer P, Tarca AL, Fadrosh DW, Nikita L, et al. The composition and stability of the vaginal microbiota of normal pregnant women is different from that of non-pregnant women. Microbiome. 2014;2:10. doi: 10.1186/2049-2618-2-10.
    1. Reid G, Younes JA, Van der Mei HC, Gloor GB, Knight R, Busscher HJ. Microbiota restoration: natural and supplemented recovery of human microbial communities. Nat Rev Microbiol. 2011;9(1):27–38. doi: 10.1038/nrmicro2473.
    1. Kindinger LM, Bennett PR, Lee YS, Marchesi JR, Smith A, Cacciatore S, et al. The interaction between vaginal microbiota, cervical length, and vaginal progesterone treatment for preterm birth risk. Microbiome. 2017;5(1):6. doi: 10.1186/s40168-016-0223-9.
    1. Petricevic L, Domig KJ, Nierscher FJ, Sandhofer MJ, Fidesser M, Krondorfer I, et al. Characterisation of the vaginal Lactobacillus microbiota associated with preterm delivery. Sci Rep. 2014;4:5136. doi: 10.1038/srep05136.
    1. McGregor JA, French JI, Seo K. Premature rupture of membranes and bacterial vaginosis. Am J Obstet Gynecol. 1993;169(2 Pt 2):463–6. doi: 10.1016/0002-9378(93)90342-G.
    1. Flynn CA, Helwig AL, Meurer LN. Bacterial vaginosis in pregnancy and the risk of prematurity: a meta-analysis. J Fam Pract. 1999;48(11):885–92.
    1. Hillier SL, Nugent RP, Eschenbach DA, Krohn MA, Gibbs RS, Martin DH, et al. Association between bacterial vaginosis and preterm delivery of a low-birth-weight infant. N Engl J Med. 1995;333(26):1737–42. doi: 10.1056/NEJM199512283332604.
    1. DiGiulio DB, Callahan BJ, McMurdie PJ, Costello EK, Lyell DJ, Robaczewska A, et al. Temporal and spatial variation of the human microbiota during pregnancy. Proc Natl Acad Sci USA. 2015;112(35):11060–5. doi: 10.1073/pnas.1502875112.
    1. Kindinger LM, MacIntyre DA, Lee YS, Marchesi JR, Smith A, McDonald JA, et al. Relationship between vaginal microbial dysbiosis, inflammation, and pregnancy outcomes in cervical cerclage. Sci Transl Med. 2016;8(350):350ra102. doi: 10.1126/scitranslmed.aag1026.
    1. Gibbs RS. Chorioamnionitis and bacterial vaginosis. Am J Obstet Gynecol. 1993;169(2 Pt 2):460–2. doi: 10.1016/0002-9378(93)90341-F.
    1. Martius J, Eschenbach DA. The role of bacterial vaginosis as a cause of amniotic fluid infection, chorioamnionitis and prematurity – a review. Arch Gynecol Obstet. 1990;247(1):1–13. doi: 10.1007/BF02390649.
    1. Takei H, Ruiz B. Shift in vaginal flora (bacterial vaginosis) and the frequency of chorioamnionitis in a high-risk population. Acta Cytol. 2006;50(4):410–14. doi: 10.1159/000325983.
    1. Baldwin EA, Walther-Antonio M, MacLean AM, Gohl DM, Beckman KB, Chen J, et al. Persistent microbial dysbiosis in preterm premature rupture of membranes from onset until delivery. PeerJ. 2015;3:e1398. doi: 10.7717/peerj.1398.
    1. Kacerovsky M, Vrbacky F, Kutova R, Pliskova L, Andrys C, Musilova I, et al. Cervical microbiota in women with preterm prelabor rupture of membranes. PloS One. 2015;10(5):e0126884. doi: 10.1371/journal.pone.0126884.
    1. Paramel Jayaprakash T, Wagner EC, van Schalkwyk J, Albert AY, Hill JE, Money DM. High diversity and variability in the vaginal microbiome in women following preterm premature rupture of membranes (PPROM): a prospective cohort study. PloS One. 2016;11(11):e0166794. doi: 10.1371/journal.pone.0166794.
    1. Ramsey PS, Nuthalapaty FS, Lu G, Ramin S, Nuthalapaty ES, Ramin KD. Contemporary management of preterm premature rupture of membranes (PPROM): a survey of maternal-fetal medicine providers. Am J Obstet Gynecol. 2004;191(4):1497–502. doi: 10.1016/j.ajog.2004.08.005.
    1. Kenyon S, Pike K, Jones D, Brocklehurst P, Marlow N, Salt A, et al. Has publication of the results of the ORACLE Children Study changed practice in the UK? BJOG. 2010;117(11):1344–9. doi: 10.1111/j.1471-0528.2010.02661.x.
    1. NICE. Preterm labour and birth. 2015. .
    1. Kenyon S, Taylor DJ, Tarnow-Mordi WO. ORACLE – antibiotics for preterm prelabour rupture of the membranes: short-term and long-term outcomes. Acta Paediatr Suppl. 2002;91(437):12–15. doi: 10.1080/08035250260095735.
    1. Kenyon S, Pike K, Jones DR, Brocklehurst P, Marlow N, Salt A, et al. Childhood outcomes after prescription of antibiotics to pregnant women with preterm rupture of the membranes: 7-year follow-up of the ORACLE I trial. Lancet. 2008;372(9646):1310–18. doi: 10.1016/S0140-6736(08)61202-7.
    1. Marlow N, Bower H, Jones D, Brocklehurst P, Kenyon S, Pike K, et al. The ORACLE Children Study: educational outcomes at 11 years of age following antenatal prescription of erythromycin or co-amoxiclav. Arch Dis Child Fetal Neonatal Ed. 2016;102(2):F131-F135.
    1. Kuriyama T, Williams DW, Yanagisawa M, Iwahara K, Shimizu C, Nakagawa K, et al. Antimicrobial susceptibility of 800 anaerobic isolates from patients with dentoalveolar infection to 13 oral antibiotics. Oral Microbiol Immunol. 2007;22(4):285–8. doi: 10.1111/j.1399-302X.2007.00365.x.
    1. Lee MY, Kim MH, Lee WI, Kang SY, Jeon YL. Prevalence and antibiotic susceptibility of Mycoplasma hominis and Ureaplasma urealyticum in pregnant women. Yonsei Med J. 2016;57(5):1271–5. doi: 10.3349/ymj.2016.57.5.1271.
    1. Desjardins M, Delgaty KL, Ramotar K, Seetaram C, Toye B. Prevalence and mechanisms of erythromycin resistance in group A and group B Streptococcus: implications for reporting susceptibility results. J Clin Microbiol. 2004;42(12):5620–3. doi: 10.1128/JCM.42.12.5620-5623.2004.
    1. Meeraus WH, Petersen I, Gilbert R. Association between antibiotic prescribing in pregnancy and cerebral palsy or epilepsy in children born at term: a cohort study using the health improvement network. PloS One. 2015;10(3):e0122034. doi: 10.1371/journal.pone.0122034.
    1. Korpela K, Salonen A, Virta LJ, Kekkonen RA, Forslund K, Bork P, et al. Intestinal microbiome is related to lifetime antibiotic use in Finnish pre-school children. Nat Commun. 2016;7:10410. doi: 10.1038/ncomms10410.
    1. Sundquist A, Bigdeli S, Jalili R, Druzin ML, Waller S, Pullen KM, et al. Bacterial flora-typing with targeted, chip-based pyrosequencing. BMC Microbiol. 2007;7:108. doi: 10.1186/1471-2180-7-108.
    1. Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol. 2013;79(17):5112–20. doi: 10.1128/AEM.01043-13.
    1. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73(16):5261–7. doi: 10.1128/AEM.00062-07.
    1. Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26(19):2460–1. doi: 10.1093/bioinformatics/btq461.
    1. Liu CM, Aziz M, Kachur S, Hsueh P-R, Huang Y-T, Keim P, et al. BactQuant: an enhanced broad-coverage bacterial quantitative real-time PCR assay. BMC Microbiol. 2012;12(1):1–13. doi: 10.1186/1471-2180-12-1.
    1. Parks DH, Beiko RG. Identifying biologically relevant differences between metagenomic communities. Bioinformatics. 2010;26(6):715–21. doi: 10.1093/bioinformatics/btq041.
    1. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12(6):R60. doi: 10.1186/gb-2011-12-6-r60.
    1. Ravel J, Gajer P, Abdo Z, Schneider GM, Koenig SS, McCulle SL, et al. Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci USA. 2011;108:4680–7. doi: 10.1073/pnas.1002611107.
    1. Borgdorff H, Tsivtsivadze E, Verhelst R, Marzorati M, Jurriaans S, Ndayisaba GF, et al. Lactobacillus-dominated cervicovaginal microbiota associated with reduced HIV/STI prevalence and genital HIV viral load in African women. ISME J. 2014;8(9):1781–93. doi: 10.1038/ismej.2014.26.
    1. Kenyon S, Boulvain M, Neilson JP. Antibiotics for preterm rupture of membranes. Cochrane Database Syst Rev. 2013;12:CD001058.
    1. Cousens S, Blencowe H, Gravett M, Lawn JE. Antibiotics for pre-term pre-labour rupture of membranes: prevention of neonatal deaths due to complications of pre-term birth and infection. Int J Epidemiol. 2010;39(Suppl 1):i134–143. doi: 10.1093/ije/dyq030.
    1. World Health Organization. WHO recommendations on interventions to improve preterm birth outcomes. 2015. .
    1. Yudin MH, van Schalkwyk J, Van Eyk N, Boucher M, Castillo E, Cormier B, et al. Antibiotic therapy in preterm premature rupture of the membranes. J Obstet Gynaecol Can. 2009;31(9):863–7. doi: 10.1016/S1701-2163(16)34305-5.
    1. Seelbach-Goebel B. Antibiotic therapy for premature rupture of membranes and preterm labor and effect on fetal outcome. Geburtshilfe Frauenheilkd. 2013;73(12):1218–27. doi: 10.1055/s-0033-1360195.
    1. Royal Australian and New Zealand College of Obstetricians and Gynaecologists. Green-top Guideline No. 44. Preterm prelabour rupture of membranes. 2010. .
    1. Goldenberg RL, Culhane JF, Iams JD, Romero R. Epidemiology and causes of preterm birth. Lancet. 2008;371(9606):75–84. doi: 10.1016/S0140-6736(08)60074-4.
    1. Romero R, Dey SK, Fisher SJ. Preterm labor: one syndrome, many causes. Science. 2014;345(6198):760–5. doi: 10.1126/science.1251816.
    1. Romero R, Espinoza J, Goncalves LF, Kusanovic JP, Friel L, Hassan S. The role of inflammation and infection in preterm birth. Semin Reprod Med. 2007;25(1):21–39. doi: 10.1055/s-2006-956773.
    1. Kenyon SL, Taylor DJ, Tarnow-Mordi W. Broad-spectrum antibiotics for preterm, prelabour rupture of fetal membranes: the ORACLE I randomised trial. Lancet. 2001;357(9261):979–88. doi: 10.1016/S0140-6736(00)04233-1.
    1. Iliopoulou A, Thin RN, Turner P. Fluorimetric and microbiological assays of erythromycin concentrations in plasma and vaginal washings. Br J Vener Dis. 1981;57(4):263–7.
    1. Harwich MD, Serrano MG, Fettweis JM, Alves JM, Reimers MA, Buck GA, et al. Genomic sequence analysis and characterization of Sneathia amnii sp. nov. BMC Genomics. 2012;13(8):S4. doi: 10.1186/1471-2164-13-S8-S4.
    1. Salminen MK, Rautelin H, Tynkkynen S, Poussa T, Saxelin M, Valtonen V, et al. Lactobacillus bacteremia, species identification, and antimicrobial susceptibility of 85 blood isolates. Clin Infect Dis. 2006;42(5):e35–44. doi: 10.1086/500214.
    1. Koyama H, Geddes DM. Erythromycin and diffuse panbronchiolitis. Thorax. 1997;52(10):915–18. doi: 10.1136/thx.52.10.915.
    1. Desaki M, Okazaki H, Sunazuka T, Omura S, Yamamoto K, Takizawa H. Molecular mechanisms of anti-inflammatory action of erythromycin in human bronchial epithelial cells: possible role in the signaling pathway that regulates nuclear factor-κB activation. Antimicrob Agents Chemother. 2004;48(5):1581–5. doi: 10.1128/AAC.48.5.1581-1585.2004.
    1. Celik H, Ayar A, Sapmaz E. Effects of erythromycin on stretch-induced contractile activity of isolated myometrium from pregnant women. Acta Obstet Gynecol Scand. 2001;80(8):697–701. doi: 10.1034/j.1600-0412.2001.080008697.x.
    1. Bulska M, Szczesniak P, Pieta-Dolinska A, Oszukowski P, Orszulak-Michalak D. The placental transfer of erythromycin in human pregnancies with group B streptococcal infection. Ginekologia polska. 2015;86(1):33–9. doi: 10.17772/gp/1896.
    1. Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA. 2010;107(26):11971–5. doi: 10.1073/pnas.1002601107.
    1. Dominguez-Bello MG, De Jesus-Laboy KM, Shen N, Cox LM, Amir A, Gonzalez A, et al. Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer. Nat Med. 2016;22(3):250–3. doi: 10.1038/nm.4039.
    1. Yassour M, Vatanen T, Siljander H, Hamalainen AM, Harkonen T, Ryhanen SJ, et al. Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability. Sci Transl Med. 2016;8(343):343ra381. doi: 10.1126/scitranslmed.aad0917.
    1. Bokulich NA, Chung J, Battaglia T, Henderson N, Jay M, Li H, et al. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci Transl Med. 2016;8(343):343ra382. doi: 10.1126/scitranslmed.aad7121.
    1. Fujimura KE, Sitarik AR, Havstad S, Lin DL, Levan S, Fadrosh D, et al. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat Med. 2016;22(10):1187–91. doi: 10.1038/nm.4176.
    1. Jasarevic E, Howerton CL, Howard CD, Bale TL. Alterations in the vaginal microbiome by maternal stress are associated with metabolic reprogramming of the offspring gut and brain. Endocrinology. 2015;156(9):3265–76. doi: 10.1210/en.2015-1177.
    1. Koumans EH, Sternberg M, Bruce C, McQuillan G, Kendrick J, Sutton M, et al. The prevalence of bacterial vaginosis in the United States, 2001–2004; associations with symptoms, sexual behaviors, and reproductive health. Sex Transm Dis. 2007;34(11):864–9. doi: 10.1097/OLQ.0b013e318074e565.
    1. Boennelycke M, Christensen JJ, Arpi M, Krause S. Leptotrichia amnionii found in septic abortion in Denmark. Scand J Infect Dis. 2007;39(4):382–3. doi: 10.1080/00365540601053022.
    1. Hanff PA, Rosol-Donoghue JA, Spiegel CA, Wilson KH, Moore LH. Leptotrichia sanguinegens sp. nov., a new agent of postpartum and neonatal bacteremia. Clin Infect Dis. 1995;20(Suppl 2):S237–9. doi: 10.1093/clinids/20.Supplement_2.S237.
    1. Devi U, Bora R, Das JK, Malik V, Mahanta J. Sneathia species in a case of neonatal meningitis from Northeast India. Oxf Med Case Rep. 2014;2014(6):112–14. doi: 10.1093/omcr/omu044.
    1. Han YW, Shen T, Chung P, Buhimschi IA, Buhimschi CS. Uncultivated bacteria as etiologic agents of intra-amniotic inflammation leading to preterm birth. J Clin Microbiol. 2009;47(1):38–47. doi: 10.1128/JCM.01206-08.
    1. Underwood MA, Gilbert WM, Sherman MP. Amniotic fluid: not just fetal urine anymore. J Perinatol. 2005;25(5):341–8. doi: 10.1038/sj.jp.7211290.

Source: PubMed

3
Iratkozz fel