Perinatal environment shapes microbiota colonization and infant growth: impact on host response and intestinal function

M Selma-Royo, M Calatayud Arroyo, I García-Mantrana, A Parra-Llorca, R Escuriet, C Martínez-Costa, M C Collado, M Selma-Royo, M Calatayud Arroyo, I García-Mantrana, A Parra-Llorca, R Escuriet, C Martínez-Costa, M C Collado

Abstract

Background: Early microbial colonization triggers processes that result in intestinal maturation and immune priming. Perinatal factors, especially those associated with birth, including both mode and place of delivery are critical to shaping the infant gut microbiota with potential health consequences.

Methods: Gut microbiota profile of 180 healthy infants (n = 23 born at home and n = 157 born in hospital, 41.7% via cesarean section [CS]) was analyzed by 16S rRNA gene sequencing at birth, 7 days, and 1 month of life. Breastfeeding habits and infant clinical data, including length, weight, and antibiotic exposure, were collected up to 18 months of life. Long-term personalized in vitro models of the intestinal epithelium and innate immune system were used to assess the link between gut microbiota composition, intestinal function, and immune response.

Results: Microbiota profiles were shaped by the place and mode of delivery, and they had a distinct biological impact on the immune response and intestinal function in epithelial/immune cell models. Bacteroidetes and Bifidobacterium genus were decreased in C-section infants, who showed higher z-scores BMI and W/L during the first 18 months of life. Intestinal simulated epithelium had a stronger epithelial barrier function and intestinal maturation, alongside a higher immunological response (TLR4 route activation and pro-inflammatory cytokine release), when exposed to home-birth fecal supernatants, compared with CS. Distinct host response could be associated with different microbiota profiles.

Conclusions: Mode and place of birth influence the neonatal gut microbiota, likely shaping its interplay with the host through the maturation of the intestinal epithelium, regulation of the intestinal epithelial barrier, and control of the innate immune system during early life, which can affect the phenotypic responses linked to metabolic processes in infants.

Trial registration: NCT03552939 . Video Abstract.

Keywords: Antibiotics; Early programming; Environment; Epithelial barrier; Immune system; Microbiota; Mode of birth.

Conflict of interest statement

The authors report no potential conflict of interest.

Figures

Fig. 1
Fig. 1
Factors affecting neonatal microbiota during the first month of life. ac Discriminant analysis of principal components (DAPC) of the neonatal (a) and infant fecal microbiota at 7 days (b) and 31 days (c) at ASV level. Each point represented microbiota from a neonate. Adonis analysis was used to stablish the significance of studied variables. d Colonization patterns during the first moth of life. Neonatal microbiota composition at phylum level at birth (0d), 7 days (7d), and 1 month (31d). C-section (CS, n = 65), vaginal delivery at hospital (VAG, n = 92), and homebirth (HB, n = 23)
Fig. 2
Fig. 2
Differences in relative abundance of most important and variable genera in fecal microbiota among the first month of life. Each point represented the mean and SEM of relative abundance of each genus in that point from the fecal samples of babies born by cesarean section (blue), vaginal delivery at hospital (green), and at home (orange). Kruskal-Wallis test with a Dunn’s post hoc test was performed to compare the different groups. Data not sharing the same letter in each point were significantly different (p < 0.05). Significant variations within the same group at different time points were marked by an asterisk (*). C-section (CS, n = 65), hospitalized vaginal delivery (VAG, n = 92), and homebirth (HB, n = 23)
Fig. 3
Fig. 3
Place and mode of birth impact the infant growth. BMI z-scores (a) and weight for length (b) z-scores curves from delivery to 18 months of life according to mode of birth and place adjusted by covariates, breastfeeding duration, antibiotic intake during the first year of life, maternal pre-gestational BMI and infant BMI and weight for length (W/L) z-scores at birth. General linear model multivariate test adjusted by covariates was done and p < 0.05 was considered significant. Kruskal-Wallis was performed on the adjusted values (different letters indicate significant differences between three studied groups). C-section (CS, n = 58), hospitalized vaginal delivery (VAG, n = 85), and homebirth (HB, n = 23)
Fig. 4
Fig. 4
Microbial functions computationally predicted present in neonatal microbiota along the first month of life. a, b Discriminant analysis of principal components (DAPC) of the neonatal (a) and infant fecal microbiota at 7 days and 31 days (b). Adonis analysis was used to stablish the significance of studied variables. c, d Computational analysis of lipopolysaccharide (LPS) biosynthesis (c) bacterial toxins (d) routs presents in the fecal microbiota of newborns along the first month of life. Results were expressed as percentage of total functional routs for each sample. *p < 0.05, **p < 0.01, ***p < 0.001. C-section (CS, n = 65), hospitalized vaginal delivery (VAG, n = 92), and homebirth (HB, n = 23)
Fig. 5
Fig. 5
Effect of 1-month infant fecal water exposure in epithelial (a) and macrophages-like (b) cell lines after 24 h. a Cytokine production by HT-29 cells after exposure to fecal water from neonates born by C-Section (CS), vaginal delivery at hospital (VAG), and homebirth (HB). IL6 production in HT-29 cell line was below detection limit. b Cytokine production of THP1 cells after 24 h exposure to fecal water of each group. Data was presented as median and whiskers represented the 5–95 percentile. Kruskal-Wallis and Dunn’s post hoc (FDR adjustment) test was used to test the significance of the differences in cytokine response between the groups. *p < 0.05, **p < 0.01, ***p < 0.001. C-section (CS), hospitalized vaginal delivery (VAG), and homebirth (HB)
Fig. 6
Fig. 6
Effect of fecal water long-term exposure (7 days) on the triple co-culture system. a, b Epithelial barrier function measured as trans-epithelial electric resistance (TEER) (a) and Lucifer yellow transport (LY) (b). c Mucus production by LSTH17 cells after the long-term exposure on the triple co-culture system measured by Bradford assay. d Interleukin (IL) 8 production by cells on the apical compartment (CacO-2 and LSTH17) measured by ELISA and expressed as increment respect to control condition. e, f Intestinal cells functional maturation degree measured as intestinal alkaline phosphatase activity (IAP) on apical compartment during the treatment (e) and at final time point (f). g, h Cytokine production in the basal compartment by THP-1 cells. IL-8 (g) and IL-6 (h) production after fecal supernatant long-term exposure expressed as increment respect to control condition. The treatments were fecal water from infants born by C-section (CS), vaginal delivery at hospital (VAG), and homebirth (HB). Non-normal data was presented as median and whiskers represented the 5–95 percentile while normal data was showed as mean and SD. Kruskal-Wallis/ANOVA and Dunn’s/Tukey’s post hoc (FDR adjustment) test was used to test the significance of the normal/non normal distributed variables between the groups. In the cytokine analysis, the symbol (*) represented variations between time within the same studied group according to the color. *p < 0.05, **p < 0.01, ***p < 0.001

References

    1. LeBlanc JG, Milani C, de Giori GS, Sesma F, van Sinderen D, Ventura M. Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol. 2013;24:160–168. doi: 10.1016/j.copbio.2012.08.005.
    1. Rowland I, Gibson G, Heinken A, Scott K, Swann J, Thiele I, et al. Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr. Springer. 2018;57:1–24. doi: 10.1007/s00394-017-1445-8.
    1. Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes. 2016;7:189–200. doi: 10.1080/19490976.2015.1134082.
    1. Penders J, Thijs C, Vink C, Stelma FF, Snijders B, Kummeling I, et al. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics. 2006;118:511–521. doi: 10.1542/peds.2005-2824.
    1. Hansen CHF, Andersen LSF, Krych Ł, Metzdorff SB, Hasselby JP, Skov S, et al. Mode of delivery shapes gut colonization pattern and modulates regulatory immunity in mice. J Immunol. The American Association of Immunologists. 2014;193:1213–1222.
    1. Rutayisire E, Huang K, Liu Y, Tao F. The mode of delivery affects the diversity and colonization pattern of the gut microbiota during the first year of infants’ life: a systematic review. BMC Gastroenterol. BioMed Central. 2016;16:86. doi: 10.1186/s12876-016-0498-0.
    1. Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci. 2010;107:11971–11975. doi: 10.1073/pnas.1002601107.
    1. Jakobsson HE, Abrahamsson TR, Jenmalm MC, Harris K, Quince C, Jernberg C, et al. Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by Caesarean section. Gut. 2014;63:559–566. doi: 10.1136/gutjnl-2012-303249.
    1. Betrán AP, Ye J, Moller A-B, Zhang J, Gülmezoglu AM, Torloni MR. The increasing trend in caesarean section rates: global, regional and national estimates: 1990-2014. PLoS One. Public Library of Science. 2016;11:e0148343. doi: 10.1371/journal.pone.0148343.
    1. Boerma T, Ronsmans C, Melesse DY, Barros AJD, Barros FC, Juan L, et al. Global epidemiology of use of and disparities in caesarean sections. Lancet. Lancet Publishing Group. 2018:1341–8.
    1. OECD. Health Division. Health at a Glance: Europe. 2018;2018.
    1. WHO . WHO statement on caesarean section rates. WHO. World Health Organization. 2019.
    1. Kuhle S, Tong OS, Woolcott CG. Association between caesarean section and childhood obesity: a systematic review and meta-analysis. Obes. Rev. Blackwell Publishing Ltd. 2015:295–303.
    1. Hansen S, Halldorsson TI, Olsen SF, Rytter D, Bech BH, Granström C, et al. Birth by cesarean section in relation to adult offspring overweight and biomarkers of cardiometabolic risk. Int J Obes. Nature Publishing Group. 2018;42:15–19. doi: 10.1038/ijo.2017.175.
    1. Gu L, Zhang W, Yang W, Liu H. Systematic review and meta-analysis of whether cesarean section contributes to the incidence of allergic diseases in children: a protocol for systematic review and meta analysis. Med. (United States). Lippincott Williams and Wilkins; 2019.
    1. Tollånes MC, Moster D, Daltveit AK, Irgens LM. Cesarean section and risk of severe childhood asthma: a population-based cohort study. J Pediatr. 2008;153:112-116.e1.
    1. Chu S, Chen Q, Chen Y, Bao Y, Wu M, Zhang J. Cesarean section without medical indication and risk of childhood asthma, and attenuation by breastfeeding. Faragher EB, editor. PLoS One. 2017;12:e0184920.
    1. Thavagnanam S, Fleming J, Bromley A, Shields MD, Cardwell CR. A meta-analysis of the association between Caesarean section and childhood asthma. Clin Exp Allergy. 2008;38:629–633. doi: 10.1111/j.1365-2222.2007.02780.x.
    1. Renz-Polster H, David MR, Buist AS, Vollmer WM, O’Connor EA, Frazier EA, et al. Caesarean section delivery and the risk of allergic disorders in childhood. Clin Exp Allergy. 2005;35:1466–1472. doi: 10.1111/j.1365-2222.2005.02356.x.
    1. Abrahamsson TR, Wu RY, Jenmalm MC. Gut microbiota and allergy: the importance of the pregnancy period. Pediatr Res. Nature Publishing Group. 2015;77:214–219.
    1. Gosalbes MJ, Llop S, Vallès Y, Moya A, Ballester F, Francino MP. Meconium microbiota types dominated by lactic acid or enteric bacteria are differentially associated with maternal eczema and respiratory problems in infants. Clin Exp Allergy. Wiley/Blackwell (10.1111); 2013;43:198–211.
    1. Wang L, Alamian A, Southerland J, Wang K, Anderson J, Stevens M. Cesarean section and the risk of overweight in grade 6 children. Eur J Pediatr. 2013;172:1341–1347. doi: 10.1007/s00431-013-2043-2.
    1. Mueller NT, Whyatt R, Hoepner L, Oberfield S, Dominguez-Bello MG, Widen EM, et al. Prenatal exposure to antibiotics, cesarean section and risk of childhood obesity. Int J Obes. 2015;39:665–670. doi: 10.1038/ijo.2014.180.
    1. Laimighofer M, Lickert R, Fuerst R, Theis FJ, Winkler C, Bonifacio E, et al. Common patterns of gene regulation associated with Cesarean section and the development of islet autoimmunity – indications of immune cell activation. Sci Rep. 2019;9:6250. doi: 10.1038/s41598-019-42750-5.
    1. Vehik K, Dabelea D. Why are C-section deliveries linked to childhood type 1 diabetes? Diabetes. American Diabetes Association. 2012;61:36–37.
    1. Cho CE, Norman M. Cesarean section and development of the immune system in the offspring. YMOB. 2012;.
    1. Francino MP. Early development of the gut microbiota and immune health. Pathogens. Multidisciplinary Digital Publishing Institute (MDPI); 2014;3:769.
    1. Hansen CHF, Nielsen DS, Kverka M, Zakostelska Z, Klimesova K, Hudcovic T, et al. Patterns of early gut colonization shape future immune responses of the host. Gray CM. PLoS One. Public Library of Science. 2012;7:e34043. doi: 10.1371/journal.pone.0034043.
    1. Sprockett D, Fukami T, Relman DA. Role of priority effects in the early-life assembly of the gut microbiota. Nat Rev Gastroenterol Hepatol. Nature Publishing Group. 2018;15:197–205. doi: 10.1038/nrgastro.2017.173.
    1. Ege MJ. The hygiene hypothesis in the age of the microbiome. Ann Am Thorac Soc. American Thoracic Society. 2017;14:S348–S353. doi: 10.1513/AnnalsATS.201702-139AW.
    1. Daley D. The evolution of the hygiene hypothesis: the role of early-life exposures to viruses and microbes and their relationship to asthma and allergic diseases. Curr. Opin. Allergy Clin. Immunol. Lippincott Williams and Wilkins. 2014:390–6.
    1. MacDorman MF, Declercq E. Trends and state variations in out-of-hospital births in the United States, 2004-2017. Birth. Blackwell Publishing Inc. 2019;46:279–288.
    1. European Perinatal Health Report 2010 - Euro-Peristat [Internet]. [cited 2020 Feb 28]. Available from: .
    1. Combellick JL, Shin H, Shin D, Cai Y, Hagan H, Lacher C, et al. Differences in the fecal microbiota of neonates born at home or in the hospital. Sci Rep. 2018;8:15660. doi: 10.1038/s41598-018-33995-7.
    1. Hobbs AJ, Mannion CA, McDonald SW, Brockway M, Tough SC. The impact of caesarean section on breastfeeding initiation, duration and difficulties in the first four months postpartum. BMC Pregnancy Childbirth. BioMed Central. 2016;16:90. doi: 10.1186/s12884-016-0876-1.
    1. Prior E, Santhakumaran S, Gale C, Philipps LH, Modi N, Hyde MJ. Breastfeeding after cesarean delivery: a systematic review and meta-analysis of world literature. Am J Clin Nutr. 2012;95:1113–1135. doi: 10.3945/ajcn.111.030254.
    1. Zielinski R, Ackerson K, Low LK. Planned home birth: benefits, risks, and opportunities. Int. J. Womens. Health. Dove Medical Press Ltd. 2015:361–77.
    1. Olsen O, Clausen JA. Planned hospital birth versus planned home birth: Cochrane Database Syst. Rev. John Wiley and Sons Ltd; 2012.
    1. Hesla HM, Stenius F, Jäderlund L, Nelson R, Engstrand L, Alm J, et al. Impact of lifestyle on the gut microbiota of healthy infants and their mothers - the ALADDIN birth cohort. FEMS Microbiol Ecol. Blackwell Publishing Ltd. 2014;90:791–801. doi: 10.1111/1574-6941.12434.
    1. Chu DM, Ma J, Prince AL, Antony KM, Seferovic MD, Aagaard KM, et al. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat Med. Nature Publishing Group. 2017;23:314–326. doi: 10.1038/nm.4272.
    1. O’Neill I, Schofield Z, Hall LJ. Exploring the role of the microbiota member Bifidobacterium in modulating immune-linked diseases. Emerg Top Life Sci. Portland Press Journals portal. 2017;1:333–349.
    1. Wang W, Chen L, Zhou R, Wang X, Song L, Huang S, et al. Increased proportions of Bifidobacterium and the Lactobacillus group and loss of butyrate-producing bacteria in inflammatory bowel disease. J Clin Microbiol. 2014;52:398–406. doi: 10.1128/JCM.01500-13.
    1. Tojo R, Suárez A, Clemente MG. de los Reyes-Gavilán CG, Margolles A, Gueimonde M, et al. Intestinal microbiota in health and disease: role of bifidobacteria in gut homeostasis. World J Gastroenterol. Baishideng Publishing Group Inc. 2014;20:15163–15176.
    1. MGI L. Exploring linkages between taxonomic and functional profiles of the human microbiome. mSystems. American Society for Microbiology Journals. 2018;3:e00163–e00117.
    1. Hisamatsu T, Okamoto S, Hashimoto M, Muramatsu T, Andou A, Uo M, et al. Novel, objective, multivariate biomarkers composed of plasma amino acid profiles for the diagnosis and assessment of inflammatory bowel disease. Niess J-H. PLoS One. Public Library of Science. 2012;7:e31131. doi: 10.1371/journal.pone.0031131.
    1. Gershon MD, Tack J. The serotonin signaling system: from basic understanding to drug development for functional GI disorders. Gastroenterology. W.B. Saunders. 2007;132:397–414. doi: 10.1053/j.gastro.2006.11.002.
    1. Ma N, Guo P, Zhang J, He T, Kim SW, Zhang G, et al. Nutrients mediate intestinal bacteria-mucosal immune crosstalk. Front. Immunol. Frontiers Media S.A. 2018.
    1. Ma N, Ma X. Dietary amino acids and the gut-microbiome-immune axis: physiological metabolism and therapeutic prospects. Compr Rev Food Sci Food Saf. Blackwell Publishing Inc. 2019;18:221–242. doi: 10.1111/1541-4337.12401.
    1. Wampach L, Heintz-Buschart A, Fritz JV, Ramiro-Garcia J, Habier J, Herold M, et al. Birth mode is associated with earliest strain-conferred gut microbiome functions and immunostimulatory potential. Nat Commun. Nature Publishing Group. 2018;9:1–14.
    1. Sun S, Jones RB, Fodor AA. Inference based PICRUSt accuracy varies across sample types and functional categories. bioRxiv. Cold Spring Harbor Laboratory. 2019:655746.
    1. Taylor SN, Basile LA, Ebeling M, Wagner CL. Intestinal permeability in preterm infants by feeding type: mother’s milk versus formula. Breastfeed Med. Mary Ann Liebert, Inc. 2009;4:11–15.
    1. Kull I, Wickman M, Lilja G, Nordvall SL, Pershagen G. Breast feeding and allergic diseases in infants-a prospective birth cohort study. Arch Dis Child. BMJ Publishing Group Ltd. 2002;87:478–481. doi: 10.1136/adc.87.6.478.
    1. Kelishadi R, Farajian S. The protective effects of breastfeeding on chronic non-communicable diseases in adulthood: a review of evidence. Adv Biomed Res. Wolters Kluwer -- Medknow Publications. 2014;3:3.
    1. Mendes V, Galvão I, Vieira AT. Mechanisms by which the gut microbiota influences cytokine production and modulates host inflammatory responses. J Interf Cytokine Res. Mary Ann Liebert Inc. 2019;39:393–409. doi: 10.1089/jir.2019.0011.
    1. Pelaseyed T, Bergström JH, Gustafsson JK, Ermund A, Birchenough GMH, Schütte A, et al. The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system. Immunol Rev. 2014;260:8–20. doi: 10.1111/imr.12182.
    1. Johansson MEV, Jakobsson HE, Holmén-Larsson J, Schütte A, Ermund A, Rodríguez-Piñeiro AM, et al. Normalization of host intestinal mucus layers requires long-term microbial colonization. Cell Host Microbe. NIH Public Access. 2015;18:582–592. doi: 10.1016/j.chom.2015.10.007.
    1. Bhinder G, Stahl M, Sham HP, Crowley SM, Morampudi V, Dalwadi U, et al. Intestinal epithelium-specific MyD88 signaling impacts host susceptibility to infectious colitis by promoting protective goblet cell and antimicrobial responses. Infect Immun. American Society for Microbiology (ASM) 2014;82:3753. doi: 10.1128/IAI.02045-14.
    1. Schroeder BO. Fight them or feed them: how the intestinal mucus layer manages the gut microbiota. Gastroenterol. Rep. Oxford University Press. 2019:3–12.
    1. Huurre A, Kalliomäki M, Rautava S, Rinne M, Salminen S, Isolauri E. Mode of delivery – effects on gut microbiota and humoral immunity. Neonatology. 2008;93:236–240. doi: 10.1159/000111102.
    1. Nikischin W, Peter M, Oldigs HD. The influence of mode of delivery on hematologic values in the umbilical vein. Gynecol Obstet Invest. 1997;43:104–107. doi: 10.1159/000291831.
    1. Muniz-Junqueira MI, Peçanha LMF, da Silva-Filho VL, de Almeida Cardoso MC, Tosta CE. Novel microtechnique for assessment of postnatal maturation of the phagocytic function of neutrophils and monocytes. Clin Diagn Lab Immunol. American Society for Microbiology. 2003;10:1096–1102. doi: 10.1128/CDLI.10.6.1096-1102.2003.
    1. Dhakal S, Wang L, Antony L, Rank J, Bernardo P, Ghimire S, et al. Amish (Rural) vs. non-Amish (Urban) infant fecal microbiotas are highly diverse and their transplantation lead to differences in mucosal immune maturation in a humanized germfree piglet model. Front Immunol. Frontiers Media S.A. 2019;10:1509. doi: 10.3389/fimmu.2019.01509.
    1. House JS, Wyss AB, Hoppin JA, Richards M, Long S, Umbach DM, et al. Early-life farm exposures and adult asthma and atopy in the Agricultural Lung Health Study. J Allergy Clin Immunol. Mosby Inc. 2017;140:249–256. doi: 10.1016/j.jaci.2016.09.036.
    1. Kirjavainen PV, Karvonen AM, Adams RI, Täubel M, Roponen M, Tuoresmäki P, et al. Farm-like indoor microbiota in non-farm homes protects children from asthma development. Nat. Med. Nature Publishing Group. 2019:1089–95.
    1. Trasande L, Blustein J, Liu M, Corwin E, Cox LM, Blaser MJ. Infant antibiotic exposures and early-life body mass. Int J Obes. Nature Publishing Group. 2013;37:16–23. doi: 10.1038/ijo.2012.132.
    1. Ajslev TA, Andersen CS, Gamborg M, Sørensen TIA, Jess T. Childhood overweight after establishment of the gut microbiota: the role of delivery mode, pre-pregnancy weight and early administration of antibiotics. Int J Obes. Nature Publishing Group. 2011;35:522–529. doi: 10.1038/ijo.2011.27.
    1. Wilczyńska P, Skarżyńska E, Lisowska-Myjak B. Meconium microbiome as a new source of information about long-term health and disease: questions and answers. J. Matern. Neonatal Med. Taylor and Francis Ltd. 2019:681–6.
    1. Amarasekera M, Prescott SL, Palmer DJ. Nutrition in early life, immune-programming and allergies: the role of epigenetics. Asian Pacific J allergy Immunol. 2013;31:175–182.
    1. Cho I, Yamanishi S, Cox L, Methé BA, Zavadil J, Li K, et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature. Nature Publishing Group. 2012;488:621–626.
    1. Cox LM, Blaser MJ. Antibiotics in early life and obesity. Nat Rev Endocrinol. 2015;11:182–190. doi: 10.1038/nrendo.2014.210.
    1. García-Mantrana I, Alcántara C, Selma-Royo M, Boix-Amorós A, Dzidic M, Gimeno-Alcañiz J, et al. MAMI: a birth cohort focused on maternal-infant microbiota during early life. BMC Pediatr. 2019;19:140. doi: 10.1186/s12887-019-1502-y.
    1. Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41.
    1. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. Oxford University Press. 2014;30:2114–2120.
    1. Callahan BJ, McMurdie PJ, Rosen M, Han A, Johnson A, Holmes S. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–583. doi: 10.1038/nmeth.3869.
    1. Davis NMN, Proctor D, Holmes SSP, Relman DA, Callahan BJ. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. bioRxiv. Cold Spring Harbor Laboratory. 2017;221499:221499.
    1. Core R. Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical. Computing. 2018.
    1. R Studio Team . RStudio: integrated development for R. RStudio, Inc. 2016.
    1. Langille MGII, Zaneveld J, Caporaso JGJ, McDonald D, Knights D, Reyes JA, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol. Nature Publishing Group. 2013;8:1–10.
    1. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12.
    1. Bowdish L. Maintenance & culture of THP-1 cells. Canada: Hamilton, ON; 2011..
    1. Calatayud M, Barrios JA, Vélez D, Devesa V. In vitro study of transporters involved in intestinal absorption of inorganic arsenic. Chem Res Toxicol. 2012;25:446–453. doi: 10.1021/tx200491f.
    1. Calatayud M, Devesa V, Montoro R, Vélez D. In vitro study of intestinal transport of arsenite, monomethylarsonous acid, and dimethylarsinous acid by Caco-2 cell line. Toxicol Lett. 2011;204:127–133. doi: 10.1016/j.toxlet.2011.04.023.
    1. McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. Watson M. PLoS One. 2013;8:e61217. doi: 10.1371/journal.pone.0061217.
    1. Dixon P. VEGAN, a package of R functions for community ecology. J Veg Sci. 2003;14:927–930. doi: 10.1111/j.1654-1103.2003.tb02228.x.
    1. Zakrzewski M, Proietti C, Ellis JJ, Hasan S, Brion M-J, Berger B, et al. Calypso: a user-friendly web-server for mining and visualizing microbiome-environment interactions. Bioinformatics. Oxford University Press. 2017;33:782–783.
    1. Ruijter JM, Ramakers C, Hoogaars WMH, Karlen Y, Bakker O, van den Hoff MJB, et al. Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res. 2009;37:e45. doi: 10.1093/nar/gkp045.
    1. Ramakers C, Ruijter JM, Deprez RHL, Moorman AFM. Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett. 2003;339:62–66. doi: 10.1016/S0304-3940(02)01423-4.
    1. Pfaffl MW, Horgan GW, Dempfle L. Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. Oxford University Press. 2002;30:e36. doi: 10.1093/nar/30.9.e36.

Source: PubMed

3
Iratkozz fel