Neuropsychological attributes of urea cycle disorders: A systematic review of the literature

Susan E Waisbren, Arianna K Stefanatos, Teresa M Y Kok, Burcu Ozturk-Hismi, Susan E Waisbren, Arianna K Stefanatos, Teresa M Y Kok, Burcu Ozturk-Hismi

Abstract

Urea cycle disorders (UCDs) are rare inherited metabolic conditions that impair the effectiveness of the urea cycle responsible for removing excess ammonia from the body. The estimated incidence of UCDs is 1:35 000 births, or approximately 113 new patients with UCD per year. This review summarizes neuropsychological outcomes among patients with the eight UCDs in reports published since 1980. Rates of intellectual disabilities published before (and including) 2000 and after 2000 were pooled and compared for each UCD. Since diagnoses for UCDs tended to occur earlier and better treatments became more readily available after the turn of the century, this assessment will characterize the extent that current management strategies have improved neuropsychological outcomes. The pooled sample included data on cognitive abilities of 1649 individuals reported in 58 citations. A total of 556 patients (34%) functioned in the range of intellectual disabilities. The decline in the proportion of intellectual disabilities in six disorders, ranged from 7% to 41%. Results from various studies differed and the cohorts varied with respect to age at symptom onset, age at diagnosis and treatment initiation, current age, severity of the metabolic deficiency, management strategies, and ethnic origins. The proportion of cases with intellectual disabilities ranged from 9% to 65% after 2000 in the seven UCDs associated with cognitive deficits. Positive outcomes from some studies suggest that it is possible to prevent or reverse the adverse impact of UCDs on neuropsychological functioning. It is time to "raise the bar" in terms of expectations for treatment effectiveness.

Keywords: intellectual disabilities; neuropsychological outcomes; urea cycle disorders.

Conflict of interest statement

S.E. Waisbren is a consultant to Horizon, Ultragenyx and Shire on the psychological attributes of urea cycle disorders. She received no financial support for work on this manuscript. She is also a member of the Urea Cycle Disorders Consortium (UCDC; U54HD061221), which is a part of the National Institutes of Health (NIH) Rare Disease Clinical Research Network (RDCRN), supported through collaboration between the Office of Rare Diseases Research (ORDR), the National Center for Advancing Translational Science (NCATS) and the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD). A.K. Stefanatos has nothing to disclose. T.M.Y. Kok is an employee of and has stock in Horizon. B. Ozturk‐Hismi received grant support from The Türkiye Bilimsel ve Teknolojik Araştirma Kurumu (TUBITAK‐1059B191601447).

© 2019 The Authors. Journal of Inherited Metabolic Disease published by John Wiley & Sons Ltd on behalf of SSIEM.

Figures

Figure 1
Figure 1
The urea cycle. Abbreviations: ARG1, arginase 1; ASL, argininosuccinate lyase; ASS, argininosuccinate synthetase; CPSI, carbamoyl phosphate synthetase 1; NAGS, N‐acetylglutamate synthase; OTC, ornithine transcarbamylase; ORNT1, mitochondrial ornithine transporter 1
Figure 2
Figure 2
The rates of intellectual disabilities ≤2000 and >2000 for individual UCDs, proximal and distal UCDs and overall UCDs. P values for odds ratios for intellectual deficiencies >2000 compared to ≤2000 were calculated with the Fisher's exact test. *P < .05; **P < .01; ***P < .001; ****P < .0001; n.s., not significant. ǂData are only available after the year 2000 for Citrin deficiency. Abbreviations: ARGD, arginase deficiency; ASLD, argininosuccinate lyase deficiency; ASSD, argininosuccinate synthetase deficiency; CPS1D, carbamoyl phosphate synthetase 1 deficiency; HHH, hyperornithinemia‐hyperammonemia‐homocitrullinuria; NAGSD, N‐acetylglutamate synthase deficiency; OTCD, ornithine transcarbamylase deficiency

References

    1. Ah Mew N, Simpson KL, Gropman AL, Lanpher BC, Chapman KA, Summar ML. Urea cycle disorders overview. 2003 Apr 29 [updated 2017 Jun 22] In: Adam MP, Ardinger HH, Pagon RA, et al., eds. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 2017. 1993‐2019.Available from: .
    1. Summar ML, Koelker S, Freedenberg D, et al. The incidence of urea cycle disorders. Mol Genet Metab. 2013;110:179‐180.
    1. Summar ML, Mew NA. Inborn errors of metabolism with Hyperammonemia: urea cycle defects and related disorders. Pediatr Clin North Am. 2018;65:231‐246.
    1. Husson MC, Schiff M, Fouilhoux A, et al. Efficacy and safety of i.v. sodium benzoate in urea cycle disorders: a multicentre retrospective study. Orphanet J Rare Dis. 2016;11:127.
    1. Haberle J, Boddaert N, Burlina A, et al. Suggested guidelines for the diagnosis and management of urea cycle disorders. Orphanet J Rare Dis. 2012;7:32.
    1. El‐Hattab AW. Inborn errors of metabolism. Clin Perinatol. 2015;42:413‐439.
    1. Foschi FG, Morelli MC, Savini S, et al. Urea cycle disorders: a case report of a successful treatment with liver transplant and a literature review. World J Gastroenterol. 2015;21:4063‐4068.
    1. Kido J, Matsumoto S, Momosaki K, et al. Liver transplantation may prevent neurodevelopmental deterioration in high‐risk patients with urea cycle disorders. Pediatr Transplant. 2017;21(6):e12987.
    1. Unsinn C, Das A, Valayannopoulos V, et al. Clinical course of 63 patients with neonatal onset urea cycle disorders in the years 2001‐2013. Orphanet J Rare Dis. 2016;11:116.
    1. Batshaw ML, Brusilow S, Waber L, et al. Treatment of inborn errors of urea synthesis: activation of alternative pathways of waste nitrogen synthesis and excretion. N Engl J Med. 1982;306:1387‐1392.
    1. Summar M, O'Malley M (2017) Carbamoyl Phosphate Synthetase I Deficiency Available from
    1. Takeoka M, Soman TB, Shih VE, Caviness VS Jr, Krishnamoorthy KS. Carbamyl phosphate synthetase 1 deficiency: a destructive encephalopathy. Pediatr Neurol. 2001;24:193‐199.
    1. Yang X, Shi J, Lei H, Xia B, Mu D. Neonatal‐onset carbamoyl phosphate synthetase I deficiency: a case report. Medicine (Baltimore). 2017;96:e7365.
    1. Enns GM, Berry SA, Berry GT, Rhead WJ, Brusilow SW, Hamosh A. Survival after treatment with phenylacetate and benzoate for urea‐cycle disorders. N Engl J Med. 2007;356:2282‐2292.
    1. Diez‐Fernandez C, Haberle J. Targeting CPS1 in the treatment of carbamoyl phosphate synthetase 1 (CPS1) deficiency, a urea cycle disorder. Expert Opin Ther Targets. 2017;21:391‐399.
    1. Klaus V, Vermeulen T, Minassian B, et al. Highly variable clinical phenotype of carbamylphosphate synthetase 1 deficiency in one family: an effect of allelic variation in gene expression? Clin Genet. 2009;76:263‐269.
    1. Kosho T, Nakamura T, Kaneko T, Tamura M. A case of neonatal‐onset carbamoyl‐phosphate synthase I deficiency treated by continuous haemodiafiltration. Eur J Pediatr. 2000;159:629‐630.
    1. Ali EZ, Khalid MK, Yunus ZM, et al. Carbamoylphosphate synthetase 1 (CPS1) deficiency: clinical, biochemical, and molecular characterization in Malaysian patients. Eur J Pediatr. 2016;175:339‐346.
    1. Rüegger CM, Lindner M, Ballhausen D, et al. Cross‐sectional observational study of 208 patients with non‐classical urea cycle disorders. J Inherit Metab Dis. 2014;37:21‐30.
    1. Ono H, Suto T, Kinoshita Y, Sakano T, Furue T, Ohta T. A case of carbamoyl phosphate synthetase 1 deficiency presenting symptoms at one month of age. Brain Dev. 2009;31:779‐781.
    1. Kurokawa K, Yorifuji T, Kawai M, et al. Molecular and clinical analyses of Japanese patients with carbamoylphosphate synthetase 1 (CPS1) deficiency. J Hum Genet. 2007;52:349‐354.
    1. Funghini S, Thusberg J, Spada M, et al. Carbamoyl phosphate synthetase 1 deficiency in Italy: clinical and genetic findings in a heterogeneous cohort. Gene. 2012;493:228‐234.
    1. Waisbren SE, Gropman AL, Batshaw ML. Improving long term outcomes in urea cycle disorders‐report from the urea cycle disorders consortium. J Inherit Metab Dis. 2016;39:573‐584.
    1. Serrano M, Martins C, Perez‐Duenas B, et al. Neuropsychiatric manifestations in late‐onset urea cycle disorder patients. J Child Neurol. 2010;25:352‐358.
    1. Wakutani Y, Nakayasu H, Takeshima T, et al. A case of late‐onset carbamoyl phosphate synthetase I deficiency, presenting periodic psychotic episodes coinciding with menstrual periods. Rinsho Shinkeigaku. 2001;41:780‐785.
    1. Eather G, Coman D, Lander C, McGill J. Carbamyl phosphate synthase deficiency: diagnosed during pregnancy in a 41‐year‐old. J Clin Neurosci. 2006;13:702‐706.
    1. Bates TR, Lewis BD, Burnett JR, et al. Late‐onset carbamoyl phosphate synthetase 1 deficiency in an adult cured by liver transplantation. Liver Transpl. 2011;17:1481‐1484.
    1. Ah Mew N, Caldovic L. N‐acetylglutamate synthase deficiency: an insight into the genetics, epidemiology, pathophysiology, and treatment. Appl Clin Genet. 2011;4:127‐135.
    1. Takayanagi M. A commentary on short‐term efficacy of N‐carbamylglutamate in a patient with N‐acetylglutamate synthase deficiency. J Hum Genet. 2015;60:347.
    1. Bachmann C, Brandis M, Weissenbarth‐Riedel E, Burghard R, Colombo JP. N‐acetylglutamate synthetase deficiency, a second patient. J Inherit Metab Dis. 1988;11:191‐193.
    1. Schubiger G, Bachmann C, Barben P, Colombo JP, Tonz O, Schupbach D. N‐acetylglutamate synthetase deficiency: diagnosis, management and follow‐up of a rare disorder of ammonia detoxication. Eur J Pediatr. 1991;150:353‐356.
    1. Pandya AL, Koch R, Hommes FA, Williams JC. N‐acetylglutamate synthetase deficiency: clinical and laboratory observations. J Inherit Metab Dis. 1991;14:685‐690.
    1. Burlina AB, Bachmann C, Wermuth B, et al. Partial N‐acetylglutamate synthetase deficiency: a new case with uncontrollable movement disorders. J Inherit Metab Dis. 1992;15:395‐398.
    1. Forget PP, van Oosterhout M, Bakker JA, Wermuth B, Vles JS, Spaapen LJ. Partial N‐acetyl‐glutamate synthetase deficiency masquerading as a valproic acid‐induced Reye‐like syndrome. Acta Paediatr. 1999;88:1409‐1411.
    1. Guffon N, Vianey‐Saban C, Bourgeois J, Rabier D, Colombo JP, Guibaud P. A new neonatal case of N‐acetylglutamate synthase deficiency treated by carbamylglutamate. J Inherit Metab Dis. 1995;18:61‐65.
    1. Hinnie J, Colombo JP, Wermuth B, Dryburgh FJ. N‐Acetylglutamate synthetase deficiency responding to carbamylglutamate. J Inherit Metab Dis. 1997;20:839‐840.
    1. Morris AA, Richmond SW, Oddie SJ, Pourfarzam M, Worthington V, Leonard JV. N‐acetylglutamate synthetase deficiency: favourable experience with carbamylglutamate. J Inherit Metab Dis. 1998;21:867‐868.
    1. Plecko B, Erwa W, Wermuth B. Partial N‐acetylglutamate synthetase deficiency in a 13‐year‐old girl: diagnosis and response to treatment with N‐carbamylglutamate. Eur J Pediatr. 1998;157:996‐998.
    1. Vockley J, Vockley CMW, Lin S‐P, et al. Normal N‐acetylglutamate concentration measured in liver from a new patient with N‐acetylglutamate synthetase deficiency: physiologic and biochemical implications. Biochem Med Metab Biol. 1992;47:38‐46.
    1. Gessler P, Buchal P, Schwenk HU, Wermuth B. Favourable long‐term outcome after immediate treatment of neonatal hyperammonemia due to N‐acetylglutamate synthase deficiency. Eur J Pediatr. 2010;169:197‐199.
    1. Nordenstrom A, Halldin M, Hallberg B, Alm J. A trial with N‐carbamylglutamate may not detect all patients with NAGS deficiency and neonatal onset. J Inherit Metab Dis. 2007;30:400.
    1. Reigstad H, Woldseth B, Haberle J. Normal neurological development during infancy despite massive Hyperammonemia in early treated NAGS deficiency. JIMD Rep. 2017;37:45‐47.
    1. Sancho‐Vaello E, Marco‐Marin C, Gougeard N, et al. Understanding N‐acetyl‐L‐glutamate synthase deficiency: mutational Spectrum, impact of clinical mutations on enzyme functionality, and structural considerations. Hum Mutat. 2016;37:679‐694.
    1. Lichter‐Konecki U, Caldovic L, Morizono H, Simpson K (1993) Ornithine Transcarbamylase deficiency. 2013 Aug 29 [updated 2016 Apr 14] In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993‐2019. Available from:
    1. Msall M, Batshaw ML, Suss R, Brusilow SW, Mellits ED. Neurologic outcome in children with inborn errors of urea synthesis. Outcome of urea‐cycle enzymopathies. N Engl J Med. 1984;310:1500‐1505.
    1. Rowe PC, Newman SL, Brusilow SW. Natural history of symptomatic partial ornithine transcarbamylase deficiency. N Engl J Med. 1986;314:541‐547.
    1. Msall M, Monahan PS, Chapanis N, Batshaw ML. Cognitive development in children with inborn errors of urea synthesis. Acta Paediatr Jpn. 1988;30:435‐441.
    1. Uchino T, Endo F, Matsuda I. Neurodevelopmental outcome of long‐term therapy of urea cycle disorders in Japan. J Inherit Metab Dis. 1998;21(Suppl 1):151‐159.
    1. Nassogne MC, Heron B, Touati G, Rabier D, Saudubray JM. Urea cycle defects: management and outcome. J Inherit Metab Dis. 2005;28:407‐414.
    1. Nicolaides P, Liebsch D, Dale N, Leonard J, Surtees R. Neurological outcome of patients with ornithine carbamoyltransferase deficiency. Arch Dis Child. 2002;86:54‐56.
    1. Bachmann C. Outcome and survival of 88 patients with urea cycle disorders: a retrospective evaluation. Eur J Pediatr. 2003;162:410‐416.
    1. Krivitzky L, Babikian T, Lee HS, Thomas NH, Burk‐Paull KL, Batshaw ML. Intellectual, adaptive, and behavioral functioning in children with urea cycle disorders. Pediatr Res. 2009;66:96‐101.
    1. Martín‐Hernández E, Aldamiz‐Echevarria L, Castejon‐Ponce E, et al. Urea cycle disorders in Spain: an observational, cross‐sectional and multicentric study of 104 cases. Orphanet J Rare Dis. 2014;9:187.
    1. Sprouse C, King J, Helman G, et al. Investigating neurological deficits in carriers and affected patients with ornithine transcarbamylase deficiency. Mol Genet Metab. 2014;113:136‐141.
    1. Gyato K, Wray J, Huang ZJ, Yudkoff M, Batshaw ML. Metabolic and neuropsychological phenotype in women heterozygous for ornithine transcarbamylase deficiency. Ann Neurol. 2004;55:80‐86.
    1. Gropman AL, Prust M, Breeden A, Fricke S, VanMeter J. Urea cycle defects and hyperammonemia: effects on functional imaging. Metab Brain Dis. 2013;28:269‐275.
    1. Brusilow SW, Horwich AL. Urea cycle enzymes In: Scriver CRBAL, Sly WS, Valle D, eds. The Metabolic and Molecular Bases of Inherited Disease. 8th ed. New York: McGraw‐Hill; 2001.
    1. Quinonez SC, Thoene JG (1993) Citrullinemia type I. 2004 Jul 7 [updated 2016 Sep 1] In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2019. Available from:
    1. Gunz AC, Choong K, Potter M, Miller E. Magnetic resonance imaging findings and neurodevelopmental outcomes in neonates with urea‐cycle defects. Int Med Case Rep J. 2013;6:41‐48.
    1. Faghfoury H, Baruteau J, de Baulny HO, Haberle J, Schulze A. Transient fulminant liver failure as an initial presentation in citrullinemia type I. Mol Genet Metab. 2011;102:413‐417.
    1. De Bie I, Lemyre E, Lambert M. Favorable long‐term outcome following severe neonatal Hyperammonemic coma in a patient with argininosuccinate synthetase deficiency. JIMD Reports. 2011;1:83‐88.
    1. Glamuzina E, Marquis‐Nicholson R, Knoll D, Love DR, Wilson C. Citrullinaemia type I: a common mutation in the Pacific Island population. J Paediatr Child Health. 2011;47:262‐265.
    1. Karall D, Haberlandt E, Albrecht U, Rostasy K, Haberle J, Scholl‐Burgi S. Unrecognized citrullinemia mimicking encephalitis in a 14‐year‐old boy: unexpected result through the use of a standardized lumbar puncture protocol. Neuropediatrics. 2012;43:59‐63.
    1. Brunetti‐Pierri N, Lamance KM, Lewis RA, Craigen WJ. 30‐year follow‐up of a patient with classic citrullinemia. Mol Genet Metab. 2012;106:248‐250.
    1. Waisbren SE, Cuthbertson D, Burgard P, Holbert A, McCarter R, Cederbaum S. Biochemical markers and neuropsychological functioning in distal urea cycle disorders. J Inherit Metab Dis. 2018;41:657‐667.
    1. Lee BH, Kim YM, Heo SH, et al. High prevalence of neonatal presentation in Korean patients with citrullinemia type 1, and their shared mutations. Mol Genet Metab. 2013;108:18‐24.
    1. Ficicioglu C, Mandell R, Shih VE. Argininosuccinate lyase deficiency: longterm outcome of 13 patients detected by newborn screening. Mol Genet Metab. 2009;98:273‐277.
    1. Mercimek‐Mahmutoglu S, Moeslinger D, Haberle J, et al. Long‐term outcome of patients with argininosuccinate lyase deficiency diagnosed by newborn screening in Austria. Mol Genet Metab. 2010;100:24‐28.
    1. Kolker S, Valayannopoulos V, Burlina AB, et al. The phenotypic spectrum of organic acidurias and urea cycle disorders. Part 2: the evolving clinical phenotype. J Inherit Metab Dis. 2015;38:1059‐1074.
    1. Nagamani SCS, Erez A, Lee B (1993) Argininosuccinate Lyase deficiency. 2011 Feb 3 [updated 2019 mar 28] In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993‐2019. Available from:
    1. Burgard P, Kolker S, Haege G, Lindner M, Hoffmann GF. Neonatal mortality and outcome at the end of the first year of life in early onset urea cycle disorders‐‐review and meta‐analysis of observational studies published over more than 35 years. J Inherit Metab Dis. 2016;39:219‐229.
    1. Barends M, Pitt J, Morrissy S, Tzanakos N, Boneh A. Biochemical and molecular characteristics of patients with organic acidaemias and urea cycle disorders identified through newborn screening. Mol Genet Metab. 2014;113:46‐52.
    1. Yankol Y, Mecit N, Kanmaz T, Acarli K, Kalayoglu M. Argininosuccinic Aciduria‐a rare indication for liver transplant: report of two cases. Exp Clin Transplant. 2017;15:581‐584.
    1. Keskinen P, Siitonen A, Salo M. Hereditary urea cycle diseases in Finland. Acta Paediatr. 2008;97:1412‐1419.
    1. Tuchman M, Lee B, Lichter‐Konecki U, et al. Cross‐sectional multicenter study of patients with urea cycle disorders in the United States. Mol Genet Metab. 2008;94:397‐402.
    1. Ganetzky RD, Bedoukian E, Deardorff MA, Ficicioglu C. Argininosuccinic acid lyase deficiency missed by newborn screen. JIMD Rep. 2017;34:43‐47.
    1. Grioni D, Furlan F, Corbetta C, et al. Epilepsy and argininosuccinic aciduria. Neuropediatrics. 2011;42:97‐103.
    1. Baruteau J, Jameson E, Morris AA, et al. Expanding the phenotype in argininosuccinic aciduria: need for new therapies. J Inherit Metab Dis. 2017;40:357‐368.
    1. Sin YY, Baron G, Schulze A, Funk CD. Arginase‐1 deficiency. J Mol Med (Berl). 2015;93:1287‐1296.
    1. Lee BH, Jin HY, Kim GH, Choi JH, Yoo HW. Argininemia presenting with progressive spastic diplegia. Pediatr Neurol. 2011;44:218‐220.
    1. Cederbaum SD, Moedjono SJ, Shaw KN, Carter M, Naylor E, Walzer M. Treatment of hyperargininaemia due to arginase deficiency with a chemically defined diet. J Inherit Metab Dis. 1982;5:95‐99.
    1. Scaglia F, Lee B. Clinical, biochemical, and molecular spectrum of hyperargininemia due to arginase I deficiency. Am J Med Genet C Semin Med Genet. 2006;142c:113‐120.
    1. Silva ES, Cardoso ML, Vilarinho L, Medina M, Barbot C, Martins E. Liver transplantation prevents progressive neurological impairment in argininemia. JIMD Rep. 2013;11:25‐30.
    1. Görker I, Tüzün Ü. Autistic‐like findings associated with a urea cycle disorder in a 4‐year‐old girl. J Psychiatry Neurosci. 2005;30:133‐135.
    1. Baranello G, Alfei E, Martinelli D, et al. Hyperargininemia: 7‐month follow‐up under sodium benzoate therapy in an Italian child presenting progressive spastic paraparesis, cognitive decline, and novel mutation in ARG1 gene. Pediatr Neurol. 2014;51:430‐433.
    1. Saheki T, Song YZ (1993) Citrin deficiency. 2005 Sep 16 [updated 2017 Aug 10] In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2019. Available from:
    1. Hutchin T, Preece MA, Hendriksz C, et al. Neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD) as a cause of liver disease in infants in the UK. J Inherit Metab Dis. 2009;32(Suppl 1):S151‐S155.
    1. Dimmock D, Maranda B, Dionisi‐Vici C, et al. Citrin deficiency, a perplexing global disorder. Mol Genet Metab. 2009;96:44‐49.
    1. Huang HP, Chu KL, Chien YH, et al. Tandem mass neonatal screening in Taiwan‐‐report from one center. J Formos Med Assoc. 2006;105:882‐886.
    1. Shigetomi H, Tanaka T, Nagao M, Tsutsumi H. Early detection and diagnosis of neonatal intrahepatic cholestasis caused by Citrin deficiency missed by Newborn screening using tandem mass spectrometry. Int J Neonatal Screen. 2018;4:5.
    1. Chen HW, Chen HL, Ni YH, et al. Chubby face and the biochemical parameters for the early diagnosis of neonatal intrahepatic cholestasis caused by citrin deficiency. J Pediatr Gastroenterol Nutr. 2008;47:187‐192.
    1. Song YZ, Deng M, Chen FP, et al. Genotypic and phenotypic features of citrin deficiency: five‐year experience in a Chinese pediatric center. Int J Mol Med. 2011;28:33‐40.
    1. Guo L, Li B‐X, Deng M, et al. Etiological analysis of neurodevelopmental disabilities: single‐Center eight‐year clinical experience in South China. J Biomed Biotechnol. 2011;2011:11.
    1. Hayasaka K, Numakura C, Yamakawa M, et al. Medium‐chain triglycerides supplement therapy with a low‐carbohydrate formula can supply energy and enhance ammonia detoxification in the hepatocytes of patients with adult‐onset type II citrullinemia. J Inherit Metab Dis. 2018;41:777‐784.
    1. Mutoh K, Kurokawa K, Kobayashi K, Saheki T. Treatment of a citrin‐deficient patient at the early stage of adult‐onset type II citrullinaemia with arginine and sodium pyruvate. J Inherit Metab Dis. 2008;31(Suppl 2):S343‐S347.
    1. Saheki T, Inoue K, Tushima A, Mutoh K, Kobayashi K. Citrin deficiency and current treatment concepts. Mol Genet Metab. 2010;100(suppl 1):S59‐S64.
    1. Kyo M, Mii H, Takekita Y, et al. Case of adult‐onset type II citrullinemia treated as schizophrenia for a long time. Psychiatry Clin Neurosci. 2015;69:306‐307.
    1. Choi JJ, Kim HS, Lee KC, Shin Y, Jo YY. Anesthetic experience of an adult male with citrullinemia type II: a case report. BMC Anesthesiol. 2016;16:92.
    1. Komine R, Minamimura K, Watanabe A, et al. Sudden development of adult‐onset type II citrullinemia after total gastrectomy: a case report. Surg Case Rep. 2018;4:11.
    1. Tonini MC, Bignamini V, Mattioli M. Headache and neuropsychic disorders in the puerperium: a case report with suspected deficiency of urea cycle enzymes. Neurol Sci. 2011;32:157‐159.
    1. Saheki T, Nakano K, Kobayashi K, et al. Analysis of the enzyme abnormality in eight cases of neonatal and infantile citrullinaemia in Japan. J Inherit Metab Dis. 1985;8:155‐156.
    1. Saheki T, Ueda A, Hosoya M, et al. Qualitative and quantitative abnormalities of argininosuccinate synthetase in citrullinemia. Clinica Chimica Acta; International Journal of Clinical Chemistry. 1981;109:325‐335.
    1. Martinelli D, Diodato D, Ponzi E, et al. The hyperornithinemia‐hyperammonemia‐homocitrullinuria syndrome. Orphanet J Rare Dis. 2015;10:29.
    1. Kim SZ, Song WJ, Nyhan WL, Ficicioglu C, Mandell R, Shih VE. Long‐term follow‐up of four patients affected by HHH syndrome. Clin Chim Acta. 2012;413:1151‐1155.
    1. Guan HZ, Ding Y, Li DX, et al. Clinical diagnosis and treatment of three cases with hyperornithinemia‐hyperammonemia‐homocitrullinuria syndrome. Zhonghua Er Ke Za Zhi. 2017;55:428‐433.
    1. Seminara J, Tuchman M, Krivitzky L, et al. Establishing a consortium for the study of rare diseases: the urea cycle disorders consortium. Mol Genet Metab. 2010;100(Suppl 1):S97‐S105.
    1. Gropman AL, Summar M, Leonard JV. Neurological implications of urea cycle disorders. J Inherit Metab Dis. 2007;30:865‐879.
    1. Caldovic L, Abdikarim I, Narain S, Tuchman M, Morizono H. Genotype‐phenotype correlations in ornithine transcarbamylase deficiency: a mutation update. J Genet Genomics. 2015;42:181‐194.
    1. Debray FG, Lambert M, Lemieux B, et al. Phenotypic variability among patients with hyperornithinaemia‐hyperammonaemia‐homocitrullinuria syndrome homozygous for the delF188 mutation in SLC25A15. J Med Genet. 2008;45:759‐764.
    1. Diaz GA, Krivitzky LS, Mokhtarani M, et al. Ammonia control and neurocognitive outcome among urea cycle disorder patients treated with glycerol phenylbutyrate. Hepatology. 2013;57:2171‐2179.
    1. Glavind E, Aagaard NK, Grønbæk H, et al. Alcoholic hepatitis markedly decreases the capacity for urea synthesis. PLOS One. 2016;11:e0158388.
    1. Buerger C, Garbade SF, Dietrich AF, et al. Impairment of cognitive function in ornithine transcarbamylase deficiency is global rather than domain‐specific and is associated with disease onset, sex, maximum ammonium, and number of hyperammonemic events. J Inherited Metab Dis. 2019;42:243‐253.

Source: PubMed

3
Iratkozz fel