Respiratory symptoms of Swiss people with primary ciliary dyskinesia

Myrofora Goutaki, Leonie Hüsler, Yin Ting Lam, Helena M Koppe, Andreas Jung, Romain Lazor, Loretta Müller, Swiss PCD Research Group, Eva S L Pedersen, Claudia E Kuehni, Myrofora Goutaki, Leonie Hüsler, Yin Ting Lam, Helena M Koppe, Andreas Jung, Romain Lazor, Loretta Müller, Swiss PCD Research Group, Eva S L Pedersen, Claudia E Kuehni

Abstract

Background: Mostly derived from chart reviews, where symptoms are recorded in a nonstandardised manner, clinical data about primary ciliary dyskinesia (PCD) are inconsistent, which leads to missing and unreliable information. We assessed the prevalence and frequency of respiratory and ear symptoms and studied differences by age and sex among an unselected population of Swiss people with PCD.

Methods: We sent a questionnaire that included items from the FOLLOW-PCD standardised questionnaire to all Swiss PCD registry participants.

Results: We received questionnaires from 74 (86%) out of 86 invited persons or their caregivers (median age 23 years, range 3-73 years), including 68% adults (≥18 years) and 51% females. Among participants, 70 (94%) reported chronic nasal symptoms; most frequently runny nose (65%), blocked nose (55%) or anosmia (38%). Ear pain and hearing problems were reported by 58% of the participants. Almost all (99%) reported cough and sputum production. The most common chronic cough complications were gastro-oesophageal reflux (n=11; 15%), vomiting (n=8; 11%) and urinary incontinence (n=6; 8%). Only nine (12%) participants reported frequent wheeze, which occurred mainly during infection or exercise, while 49 (66%) reported shortness of breath, and 9% even at rest or during daily activities. Older patients reported more frequent nasal symptoms and shortness of breath. We found no difference by sex or ultrastructural ciliary defect.

Conclusion: This is the first study to describe patient-reported PCD symptoms. The consistent collection of standardised clinical data will allow us to better characterise the phenotypic variability of the disease and study disease course and prognosis.

Conflict of interest statement

Conflict of interest: M. Goutaki reports support for the present manuscript received from the Swiss National Science Foundation, and is co-chair of the BEAT-PCD ERS clinical research collaboration and chair of the ERS paediatric epidemiology group, outside the submitted work. The remaining authors have nothing to disclose.

Copyright ©The authors 2022.

Figures

FIGURE 1
FIGURE 1
Prevalence and frequency of upper respiratory and ear symptoms by age group among Swiss participants with primary ciliary dyskinesia (n=74).
FIGURE 2
FIGURE 2
Prevalence and frequency of lower respiratory symptoms by age group among Swiss participants with primary ciliary dyskinesia (n=74).
FIGURE 3
FIGURE 3
Frequency of upper respiratory and ear symptoms by age (in years) among Swiss participants with primary ciliary dyskinesia. Each dot represents one patient. The density of dots corresponds to how many people within the same age range reported a symptom of equal frequency (daily, often, sometimes, rarely or never).
FIGURE 4
FIGURE 4
Frequency of lower respiratory symptoms by age (in years) among Swiss participants with primary ciliary dyskinesia. Each dot represents one patient. The density of dots corresponds to how many people within the same age range reported a symptom of equal frequency (daily, often, sometimes, rarely or never).

References

    1. Brennan SK, Ferkol TW, Davis SD. Emerging genotype–phenotype relationships in primary ciliary dyskinesia. Int J Mol Sci 2021; 22: 8272. doi:10.3390/ijms22158272
    1. Goutaki M, Pedersen ESL. Phenotype–genotype associations in primary ciliary dyskinesia: where do we stand? Eur Respir J 2021; 58: 2100392. doi:10.1183/13993003.00392-2021
    1. Höben IM, Hjeij R, Olbrich H, et al. . Mutations in C11orf70 cause primary ciliary dyskinesia with randomization of left/right body asymmetry due to defects of outer and inner dynein arms. Am J Hum Genet 2018; 102: 973–984. doi:10.1016/j.ajhg.2018.03.025
    1. Horani A, Ferkol TW, Dutcher SK, et al. . Genetics and biology of primary ciliary dyskinesia. Paediatr Respir Rev 2016; 18: 18–24. doi:10.1016/j.prrv.2015.09.001
    1. Lucas JS, Davis SD, Omran H, et al. . Primary ciliary dyskinesia in the genomics age. Lancet Respir Med 2020; 8: 202–216. doi:10.1016/S2213-2600(19)30374-1
    1. Olcese C, Patel MP, Shoemark A, et al. . X-linked primary ciliary dyskinesia due to mutations in the cytoplasmic axonemal dynein assembly factor PIH1D3. Nat Commun 2017; 8: 14279. doi:10.1038/ncomms14279
    1. Shoemark A, Rubbo B, Legendre M, et al. . Topological data analysis reveals genotype–phenotype relationships in primary ciliary dyskinesia. Eur Respir J 2021; 58: 2002359. doi:10.1183/13993003.02359-2020
    1. Davis SD, Ferkol TW, Rosenfeld M, et al. . Clinical features of childhood primary ciliary dyskinesia by genotype and ultrastructural phenotype. Am J Respir Crit Care Med 2015; 191: 316–324. doi:10.1164/rccm.201409-1672OC
    1. Goutaki M, Meier AB, Halbeisen FS, et al. . Clinical manifestations in primary ciliary dyskinesia: systematic review and meta-analysis. Eur Respir J 2016; 48: 1081–1095. doi:10.1183/13993003.00736-2016
    1. Behan L, Dimitrov BD, Kuehni CE, et al. . PICADAR: a diagnostic predictive tool for primary ciliary dyskinesia. Eur Respir J 2016; 47: 1103–1112. doi:10.1183/13993003.01551-2015
    1. Leigh MW, Ferkol TW, Davis SD, et al. . Clinical features and associated likelihood of primary ciliary dyskinesia in children and adolescents. Ann Am Thorac Soc 2016; 13: 1305–1313. doi:10.1513/AnnalsATS.201511-748OC
    1. Mullowney T, Manson D, Kim R, et al. . Primary ciliary dyskinesia and neonatal respiratory distress. Pediatrics 2014; 134: 1160–1166. doi:10.1542/peds.2014-0808
    1. Bequignon E, Dupuy L, Zerah-Lancner F, et al. . Critical evaluation of sinonasal disease in 64 adults with primary ciliary dyskinesia. J Clin Med 2019; 8: 619. doi:10.3390/jcm8050619
    1. Prulière-Escabasse V, Coste A, Chauvin P, et al. . Otologic features in children with primary ciliary dyskinesia. Arch Otolaryngol Head Neck Surg 2010; 136: 1121–1126. doi:10.1001/archoto.2010.183
    1. Shah A, Shoemark A, MacNeill SJ, et al. . A longitudinal study characterising a large adult primary ciliary dyskinesia population. Eur Respir J 2016; 48: 441–450. doi:10.1183/13993003.00209-2016
    1. Zawawi F, Shapiro AJ, Dell S, et al. . Otolaryngology manifestations of primary ciliary dyskinesia: a multicenter study. Otolaryngol Head Neck Surg 2021: 166; 540–547. doi:10.1177/1945998211019320
    1. Kreicher KL, Schopper HK, Naik AN, et al. . Hearing loss in children with primary ciliary dyskinesia. Int J Pediatr Otorhinolaryngol 2018; 104: 161–165. doi:10.1016/j.ijporl.2017.11.005
    1. Frija-Masson J, Bassinet L, Honore I, et al. . Clinical characteristics, functional respiratory decline and follow-up in adult patients with primary ciliary dyskinesia. Thorax 2017; 72: 154–160. doi:10.1136/thoraxjnl-2015-207891
    1. Goutaki M, Eich MO, Halbeisen FS, et al. . The Swiss Primary Ciliary Dyskinesia registry: objectives, methods and first results. Swiss Med Wkly 2019; 149: w20004. doi:10.4414/smw.2019.20004
    1. Ardura-Garcia C, Goutaki M, Carr SB, et al. . Registries and collaborative studies for primary ciliary dyskinesia in Europe. ERJ Open Res 2020; 6: 00005-2020. doi:10.1183/23120541.00005-2020
    1. Goutaki M, Maurer E, Halbeisen FS, et al. . The international primary ciliary dyskinesia cohort (iPCD Cohort): methods and first results. Eur Respir J 2017; 49: 1601181. doi:10.1183/13993003.01181-2016
    1. Werner C, Lablans M, Ataian M, et al. . An international registry for primary ciliary dyskinesia. Eur Respir J 2016; 47: 849–859. doi:10.1183/13993003.00776-2015
    1. STROBE statement – checklist of items that should be included in reports of observational studies (STROBE initiative). Int J Public Health 2008; 53: 3–4. doi:10.1007/s00038-007-0239-9
    1. Goutaki M, Papon JF, Boon M, et al. . Standardised clinical data from patients with primary ciliary dyskinesia: FOLLOW-PCD. ERJ Open Res 2020; 6: 00237-2019. doi:10.1183/23120541.00237-2019
    1. Kennedy MP, Omran H, Leigh MW, et al. . Congenital heart disease and other heterotaxic defects in a large cohort of patients with primary ciliary dyskinesia. Circulation 2007; 115: 2814–2821. doi:10.1161/CIRCULATIONAHA.106.649038
    1. Shapiro AJ, Davis SD, Ferkol T, et al. . Laterality defects other than situs inversus totalis in primary ciliary dyskinesia: insights into situs ambiguus and heterotaxy. Chest 2014; 146: 1176–1186. doi:10.1378/chest.13-1704
    1. Schofield LM, Duff A, Brennan C. Airway clearance techniques for primary ciliary dyskinesia; is the cystic fibrosis literature portable? Paediatr Respir Rev 2018; 25: 73–77. doi:10.1016/j.prrv.2017.03.011
    1. Goutaki M, Halbeisen FS, Spycher BD, et al. . Growth and nutritional status, and their association with lung function: a study from the international Primary Ciliary Dyskinesia Cohort. Eur Respir J 2017; 50: 1701659. doi:10.1183/13993003.01659-2017
    1. Marino LV, Harris A, Johnstone C, et al. . Characterising the nutritional status of children with primary ciliary dyskinesia. Clin Nutr 2019; 38: 2127–2135. doi:10.1016/j.clnu.2018.08.034
    1. Halbeisen F, Goutaki M, Maurer E, et al. . Evolution of primary ciliary dyskinesia (PCD) diagnostic testing in Europe. Eur Respir J 2017; 50: Suppl. 61, PA1846. doi:10.1183/1393003.congress-2017.PA1846
    1. Lucas JS, Barbato A, Collins SA, et al. . European Respiratory Society guidelines for the diagnosis of primary ciliary dyskinesia. Eur Respir J 2017; 49: 1601090. doi:10.1183/13993003.01090-2016
    1. Shoemark A, Boon M, Brochhausen C, et al. . International consensus guideline for reporting transmission electron microscopy results in the diagnosis of primary ciliary dyskinesia (BEAT PCD TEM criteria). Eur Respir J 2020; 55: 1900725. doi:10.1183/13993003.00725-2019
    1. Pedersen ESL, Goutaki M, Harris AL, et al. . SARS-CoV-2 infections in people with primary ciliary dyskinesia: neither frequent, nor particularly severe. Eur Respir J 2021; 58: 2004548. doi:10.1183/13993003.04548-2020
    1. Pedersen ESL, Collaud ENR, Mozun R, et al. . COVID-PCD: a participatory research study on the impact of COVID-19 in people with primary ciliary dyskinesia. ERJ Open Res 2021; 7: 00843-2020. doi:10.1183/23120541.00843-2020
    1. Behan L, Leigh MW, Dell SD, et al. . Validation of pediatric health-related quality of life instruments for primary ciliary dyskinesia (QOL-PCD). Pediatr Pulmonol 2019; 54: 2011–2020. doi:10.1002/ppul.24507
    1. McManus IC, Mitchison HM, Chung EM, et al. . Primary ciliary dyskinesia (Siewert's/Kartagener's syndrome): respiratory symptoms and psycho-social impact. BMC Pulm Med 2003; 3: 4. doi:10.1186/1471-2466-3-4
    1. Jones PW, Quirk FH, Baveystock CM. The St George's Respiratory Questionnaire. Respir Med 1991; 85: Suppl. B, 25–31. doi:10.1016/S0954-6111(06)80166-6
    1. Achtermann W, Gmel G, Kuendig H. Suchtmonitoring Schweiz Continuous Rolling Survey of Addictive Behaviours and Related Risks (CoRolAR) (Dataset). Addiction Suisse, IBSF Schweiz Institut für Begleit und Sozialforschung. Lausanne, Distributed by FORS, 2019.
    1. Mc Ewan FA, Hodson ME, Simmonds NJ. The prevalence of “risky behaviour” in adults with cystic fibrosis. J Cyst Fibros 2012; 11: 56–58. doi:10.1016/j.jcf.2011.09.002
    1. Goutaki M, Crowley S, Dehlink E, et al. . The BEAT-PCD (Better Experimental Approaches to Treat Primary Ciliary Dyskinesia) clinical research collaboration. Eur Respir J 2021; 57: 2004601. doi:10.1183/13993003.04601-2020
    1. Goutaki M, Lam YT, Alexandru M, et al. . Study protocol: the ear-nose-throat (ENT) prospective international cohort of patients with primary ciliary dyskinesia (EPIC-PCD). BMJ Open 2021; 11: e051433. doi:10.1136/bmjopen-2021-051433

Source: PubMed

3
Iratkozz fel