Visualizing the blind brain: brain imaging of visual field defects from early recovery to rehabilitation techniques

Marika Urbanski, Olivier A Coubard, Clémence Bourlon, Marika Urbanski, Olivier A Coubard, Clémence Bourlon

Abstract

Visual field defects (VFDs) are one of the most common consequences observed after brain injury, especially after a stroke in the posterior cerebral artery territory. Less frequently, tumors, traumatic brain injury, brain surgery or demyelination can also determine various visual disabilities, from a decrease in visual acuity to cerebral blindness. Visual field defects is a factor of bad functional prognosis as it compromises many daily life activities (e.g., obstacle avoidance, driving, and reading) and therefore the patient's quality of life. Spontaneous recovery seems to be limited and restricted to the first 6 months, with the best chance of improvement at 1 month. The possible mechanisms at work could be partly due to cortical reorganization in the visual areas (plasticity) and/or partly to the use of intact alternative visual routes, first identified in animal studies and possibly underlying the phenomenon of blindsight. Despite processes of early recovery, which is rarely complete, and learning of compensatory strategies, the patient's autonomy may still be compromised at more chronic stages. Therefore, various rehabilitation therapies based on neuroanatomical knowledge have been developed to improve VFDs. These use eye-movement training techniques (e.g., visual search, saccadic eye movements), reading training, visual field restitution (the Vision Restoration Therapy, VRT), or perceptual learning. In this review, we will focus on studies of human adults with acquired VFDs, which have used different imaging techniques (Positron Emission Tomography, PET; Diffusion Tensor Imaging, DTI; functional Magnetic Resonance Imaging, fMRI; Magneto Encephalography, MEG) or neurostimulation techniques (Transcranial Magnetic Stimulation, TMS; transcranial Direct Current Stimulation, tDCS) to show brain activations in the course of spontaneous recovery or after specific rehabilitation techniques.

Keywords: cortical reorganization; neuroimaging studies; plasticity; rehabilitation; restoration; visual field defect.

Figures

Figure 1
Figure 1
Schematic diagram of the human visual system. The main connections originating in the retina are represented in thick arrows. They synapse in the lateral geniculate nucleus (LGN) and project to the primary visual cortex (V1). V1 sent information to the extrastriate areas (V2, V3, V4 and MT+/V5). Most of the corticocortical (in blue) and subcortico-cortical (in orange) connections are reciprocal but are not represented for clarity of the schema. Alternative pathways are represented in thin arrows. The extrageniculostriate pathway belonging to the dorsal visual stream, originates in the retina and synapses in the superior colliculus (SC) and in the pulvinar and projects directly to extrastriate areas (in particular area MT+/V5) bypassing both V1 and the LGN. This pathway has been accounted to mediate action blindsight. Another colliculo-pulvinar pathway, associated with the ventral visual stream, synapses in the LGN and projects to extrastriate areas (in particular area V4) bypassing V1. This pathway has been accounted to mediate color and shape residual discrimination. Other collicular pathways are represented: the colliculo-pulvinar pathway (between SC and pulvinar), the pulvino-amygdalar pathway (between the pulvinar and amygdala) and the colliculo-pulvino-amygdalar pathway (between the SC, the pulvinar and the amygdala). These pathways have been accounted to mediate affective blindsight.
Figure 2
Figure 2
Schematic diagram of the subcortico-cortical connections, subcortical connections intra-and interhemispheric connections mediating blindsight in the human left and right hemispheres. For the clarity of the display, not all subcortical connections are represented. The colliculo-pulvinar pathway is represented in green. It extends to several subcortical and cortical areas and is highly symmetrical in the two hemispheres. Fibers passing through the superior colliculus (SC) and pulvinar continue to V1 and extrastriate areas, temporal pole, posterior parietal cortex (PPC), primary motor cortex (M1), frontal eye-field (FEF), dorsolateral prefrontal cortex (DLPFC) and orbitofrontal cortex. A part of the bundle passes through the amygdala, the caudate and brainstem (not represented). The pulvino-amygdalar pathway is represented in pink and is also symmetrical in the two hemispheres. Fibers passing through the pulvinar and the amygdala extend to temporal pole, dorsal prefrontal cortex, orbitofrontal cortex. It also extends to caudate and SC (not represented). The colliculo-pulvino-amygdalar pathway is represented in maroon and is symmetrical in the two hemispheres. It does not extend to other cortical or subcortical areas (see Tamietto et al., 2012).The geniculo-extrastriate pathway is represented in orange and is symmetrical in the two hemispheres. Only fibers connecting the LGN to area MT+/V5 are represented for clarity of the schema. The geniculostriate pathway is represented in blue and is symmetrical in the two hemispheres. Only fibers connecting the LGN to area V1 are represented. The complexity of cortico-cortical and subcortico-cortical routes is partially represented in Figure 1. The interhemispheric connections are represented in red. Both SC are connected via the intercollicular commissure (n°1), both pulvinar via the massa intermedia (n°2; see Catani and Thiebaut De Schotten, 2012), both amygdala are connected by the anterior commissure (n°3). Cortical areas in the occipital cortex are connected by the splenium of the corpus callosum (n°4). Intra-hemispheric connections are labeled by letters in light blue. They are displayed only for the right hemisphere but are also present in the left hemisphere. The pathway linking V4 to temporal pole is the inferior longitudinal fasciculus (ILF: a). The pathway linking the PPC to FEF is the superior longitudinal fascisculus (SLF: b). The pathway linking M1 to FEF and the DLPFC is the superior frontal longitudinal fasciculus (SFL: c). The pathway linking M1 to the orbitofrontal cortex is the inferior frontal longitudinal fasciculus (FIL: d).

References

    1. Ajina S., Kennard C. (2012). Rehabilitation of damage to the visual brain. Rev. Neurol. (Paris) 168, 754–761 10.1016/j.neurol.2012.07.015
    1. Aldrich M. S., Alessi A. G., Beck R. W., Gilman S. (1987). Cortical blindness: etiology, diagnosis and prognosis. Ann. Neurol. 21, 149–158 10.1002/ana.410210207
    1. Balliet R., Blood K. M., Bach-Y-Rita P. (1985). Visual field rehabilitation in the cortically blind? J. Neurol. Neurosurg. Psychiatry 48, 1113–1124 10.1136/jnnp.48.11.1113
    1. Bao M., Yang L., Rios C., He B., Engel S. A. (2010). Perceptual learning increases the strength of the earliest signals in visual cortex. J. Neurosci. 30, 15080–15084 10.1523/jneurosci.5703-09.2010
    1. Barbur J. L., Ruddock K. H., Waterfield V. A. (1980). Human visual responses in the absence of the geniculo-calcarine projection. Brain 103, 905–928 10.1093/brain/103.4.905
    1. Barbur J. L., Sahraie A., Simmons A., Weiskrantz L., Williams S. C. (1998). Residual processing of chromatic signals in the absence of a geniculostriate projection. Vision Res. 38, 3447–3453 10.1016/s0042-6989(98)00147-3
    1. Barbur J. L., Watson J. D., Frackowiak R. S., Zeki S. (1993). Conscious visual perception without V1. Brain 116, 1293–1302 10.1093/brain/116.6.1293
    1. Barnes S. J., Finnerty G. T. (2010). Sensory experience and cortical rewiring. Neuroscientist 16, 186–198 10.1177/1073858409343961
    1. Baseler H. A., Morland A. B., Wandell B. A. (1999). Topographic organization of human visual areas in the absence of input from primary cortex. J. Neurosci. 19, 2619–2627
    1. Bisiach E., Geminiani G. (1991). “Anosognosia related to hemiplegia and hemianopia,” in Awareness of Deficit After Brain Injury, eds Prigatano G. P., Schacter D. L. (New York: Oxford University Press; ), 17–39
    1. Bittar R. G., Ptito M., Faubert J., Dumoulin S. O., Ptito A. (1999). Activation of the remaining hemisphere following stimulation of the blind hemifield in hemispherectomized subjects. Neuroimage 10, 339–346 10.1006/nimg.1999.0474
    1. Bolognini N., Rasi F., Coccia M., Làdavas E. (2005). Visual search improvement in hemianopic patients after audio-visual stimulation. Brain 128, 2830–2842 10.1093/brain/awh656
    1. Bosley T. M., Dann R., Silver F. L., Alavi A., Kushner M., Chawluk J. B., et al. (1987). Recovery of vision after ischemic lesions: positron emission tomography. Ann. Neurol. 21, 444–450 10.1002/ana.410210505
    1. Bowers A. R., Keeney K., Peli E. (2008). Community-based trial of a peripheral prism visual field expansion device for hemianopia. Arch. Ophthalmol. 126, 657–664 10.1001/archopht.126.5.657
    1. Brandt T., Steinke W., Thie A., Pessin M. S., Caplan L. R. (2000). Posterior cerebral artery territory infarcts: clinical features, infarct topography, causes and outcome. Multicenter results and a review of the literature. Cerebrovasc. Dis. 10, 170–182 10.1159/000016053
    1. Bridge H., Hicks S. L., Xie J., Okell T. W., Mannan S., Alexander I., et al. (2010). Visual activation of extra-striate cortex in the absence of V1 activation. Neuropsychologia 48, 4148–4154 10.1016/j.neuropsychologia.2010.10.022
    1. Bridge H., Thomas O., Jbabdi S., Cowey A. (2008). Changes in connectivity after visual cortical brain damage underlie altered visual function. Brain 131, 1433–1444 10.1093/brain/awn063
    1. Bruce B. B., Zhang X., Kedar S., Newman N. J., Biousse V. (2006). Traumatic homonymous hemianopia. J. Neurol. Neurosurg. Psychiatry 77, 986–988 10.1136/jnnp.2006.088799
    1. Burra N., Hervais-Adelman A., Kerzel D., Tamietto M., De Gelder B., Pegna A. J. (2013). Amygdala activation for eye contact despite complete cortical blindness. J. Neurosci. 33, 10483–10489 10.1523/jneurosci.3994-12.2013
    1. Catani M., Thiebaut De Schotten M. (2012). Atlas of Human Brain Connections. Oxford, UK: Oxford University Press
    1. Celebisoy M., Celebisoy N., Bayam E., Kose T. (2011). Recovery of visual-field defects after occipital lobe infarction: a perimetric study. J. Neurol. Neurosurg. Psychiatry 82, 695–702 10.1136/jnnp.2010.214387
    1. Celesia G. G., Bushnell D., Toleikis S. C., Brigell M. G. (1991). Cortical blindness and residual vision: is the “second” visual system in humans capable of more than rudimentary visual perception? Neurology 41, 862–869 10.1212/wnl.41.6.862
    1. Chokron S., Perez C., Obadia M., Gaudry I., Laloum L., Gout O. (2008). From blindsight to sight: cognitive rehabilitation of visual field defects. Restor. Neurol. Neurosci. 26, 305–320
    1. Cowey A. (1967). Perimetric study of field defects in monkeys after cortical and retinal ablations. Q. J. Exp. Psychol. 19, 232–245 10.1080/14640746708400098
    1. Cowey A., Stoerig P. (1995). Blindsight in monkeys. Nature 373, 247–249 10.1038/373247a0
    1. Danckert J., Rossetti Y. (2005). Blindsight in action: what can the different sub-types of blindsight tell us about the control of visually guided actions? Neurosci. Biobehav. Rev. 29, 1035–1046 10.1016/j.neubiorev.2005.02.001
    1. Darian-Smith C., Gilbert C. D. (1994). Axonal sprouting accompanies functional reorganization in adult cat striate cortex. Nature 368, 737–740 10.1038/368737a0
    1. Darian-Smith C., Gilbert C. D. (1995). Topographic reorganization in the striate cortex of the adult cat and monkey is cortically mediated. J. Neurosci. 15, 1631–1647
    1. Das A., Gilbert C. D. (1995). Receptive field expansion in adult visual cortex is linked to dynamic changes in strength of cortical connections. J. Neurophysiol. 74, 779–792
    1. de Gelder B., Tamietto M., Van Boxtel G., Goebel R., Sahraie A., Van Den Stock J., et al. (2008). Intact navigation skills after bilateral loss of striate cortex. Curr. Biol. 18, R1128–R1129 10.1016/j.cub.2008.11.002
    1. de Gelder B., Vroomen J., Pourtois G., Weiskrantz L. (1999). Non-conscious recognition of affect in the absence of striate cortex. Neuroreport 10, 3759–3763 10.1097/00001756-199912160-00007
    1. Dilks D. D., Serences J. T., Rosenau B. J., Yantis S., Mccloskey M. (2007). Human adult cortical reorganization and consequent visual distortion. J. Neurosci. 27, 9585–9594 10.1523/jneurosci.2650-07.2007
    1. Ditye T., Kanai R., Bahrami B., Muggleton N. G., Rees G., Walsh V. (2013). Rapid changes in brain structure predict improvements induced by perceptual learning. Neuroimage 81, 205–212 10.1016/j.neuroimage.2013.05.058
    1. Duquette J., Baril F. (2009). Les interventions de réadaptation visuelle développées à l’intention des personnes ayant une déficience visuelle associée à une condition neurologique. Document Synthèse de Veille Informationnelle. Available online at:
    1. Engel A. K., Singer W. (2001). Temporal binding and the neural correlates of sensory awareness. Trends Cogn. Sci. 5, 16–25 10.1016/s1364-6613(00)01568-0
    1. Fendrich R., Wessinger C. M., Gazzaniga M. S. (1992). Residual vision in a scotoma: implications for blindsight. Science 258, 1489–1491 10.1126/science.1439839
    1. Fendrich R., Wessinger C. M., Gazzaniga M. S. (2001). Speculations on the neural basis of islands of blindsight. Prog. Brain Res. 134, 353–366 10.1016/s0079-6123(01)34023-2
    1. Ffytche D. H., Guy C. N., Zeki S. (1995). The parallel visual motion inputs into areas V1 and V5 of human cerebral cortex. Brain 118, 1375–1394 10.1093/brain/118.6.1375
    1. Ffytche D. H., Guy C. N., Zeki S. (1996). Motion specific responses from a blind hemifield. Brain 119, 1971–1982 10.1093/brain/119.6.1971
    1. Ffytche D. H., Howseman A., Edwards R., Sandeman D. R., Zeki S. (2000). Human area V5 and motion in the ipsilateral visual field. Eur. J. Neurosci. 12, 3015–3025 10.1046/j.1460-9568.2000.00177.x
    1. Ffytche D. H., Zeki S. (2011). The primary visual cortex and feedback to it, are not necessary for conscious vision. Brain 134, 247–257 10.1093/brain/awQ405
    1. Frank S. M., Reavis E. A., Tse P. U., Greenlee M. W. (2014). Neural mechanisms of feature conjunction learning: enduring changes in occipital cortex after a week of training. Hum. Brain Mapp. 35, 1201–1211 10.1002/hbm.22245
    1. Gilbert C. D., Li W. (2012). Adult visual cortical plasticity. Neuron 75, 250–264 10.1016/j.neuron.2012.06.030
    1. Gilhotra J. S., Mitchell P., Healey P. R., Cumming R. G., Currie J. (2002). Homonymous visual field defects and stroke in an older population. Stroke 33, 2417–2420 10.1161/01.str.0000037647.10414.d2
    1. Goebel R., Muckli L., Zanella F. E., Singer W., Stoerig P. (2001). Sustained extrastriate cortical activation without visual awareness revealed by fMRI studies of hemianopic patients. Vision Res. 41, 1459–1474 10.1016/s0042-6989(01)00069-4
    1. Goodale M. A., Milner A. D. (1992). Separate visual pathways for perception and action. Trends Neurosci. 15, 20–25 10.1016/0166-2236(92)90344-8
    1. Gray C. S., French J. M., Bates D., Cartlidge N. E., Venables G. S., James O. F. (1989). Recovery of visual fields in acute stroke: homonymous hemianopia associated with adverse prognosis. Age Ageing 18, 419–421 10.1093/ageing/18.6.419
    1. Haak K. V., Cornelissen F. W., Morland A. B. (2012). Population receptive field dynamics in human visual cortex. PLoS One 7:e37686 10.1371/journal.pone.0037686
    1. Haak K. V., Langers D. R., Renken R., van Dijk P., Borgstein J., Cornelissen F. W. (2014). Abnormal visual field maps in human cortex: a mini-review and a case report. Cortex 56, 14–25 10.1016/j.cortex.2012.12.005
    1. Haerer A. F. (1973). Visual field defects and the prognosis of stroke patients. Stroke 4, 163–168 10.1161/01.str.4.2.163
    1. Halko M. A., Datta A., Plow E. B., Scaturro J., Bikson M., Merabet L. B. (2011). Neuroplastic changes following rehabilitative training correlate with regional electrical field induced with tDCS. Neuroimage 57, 885–891 10.1016/j.neuroimage.2011.05.026
    1. Henriksson L., Raninen A., Näsänen R., Hyvärinen L., Vanni S. (2007). Training-induced cortical representation of a hemianopic hemifield. J. Neurol. Neurosurg. Psychiatry 78, 74–81 10.1136/jnnp.2006.099374
    1. Ho Y. C., Cheze A., Sitoh Y. Y., Petersen E. T., Goh K. Y., Gjedde A., et al. (2009). Residual neurovascular function and retinotopy in a case of hemianopia. Ann. Acad. Med. Singapore 38, 827–831
    1. Horton J. C. (2005a). Disappointing results from Nova Vision’s visual restoration therapy. Br. J. Ophthalmol. 89, 1–2 10.1136/bjo.2004.058214
    1. Horton J. C. (2005b). Vision restoration therapy: confounded by eye movements. Br. J. Ophthalmol. 89, 792–794 10.1136/bjo.2005.072967
    1. Hupe J. M., James A. C., Payne B. R., Lomber S. G., Girard P., Bullier J. (1998). Cortical feedback improves discrimination between figure and background by V1, V2 and V3 neurons. Nature 394, 784–787
    1. Huxlin K. R. (2008). Perceptual plasticity in damaged adult visual systems. Vision Res. 48, 2154–2166 10.1016/j.visres.2008.05.022
    1. Huxlin K. R., Martin T., Kelly K., Riley M., Friedman D. I., Burgin W. S., et al. (2009). Perceptual relearning of complex visual motion after V1 damage in humans. J. Neurosci. 29, 3981–3991 10.1523/jneurosci.4882-08.2009
    1. Ioannides A. A., Poghosyan V., Liu L., Saridis G. A., Tamietto M., Op De Beeck M., et al. (2012). Spatiotemporal profiles of visual processing with and without primary visual cortex. Neuroimage 63, 1464–1477 10.1016/j.neuroimage.2012.07.058
    1. Johansen-Berg H., Baptista C. S., Thomas A. G. (2012). Human structural plasticity at record speed. Neuron 73, 1058–1060 10.1016/j.neuron.2012.03.001
    1. Julkunen L., Tenovuo O., Jääskeläinen S., Hämäläinen H. (2003). Rehabilitation of chronic post-stroke visual field defect with computer-assisted training: a clinical and neurophysiological study. Restor. Neurol. Neurosci. 21, 19–28
    1. Kasten E., Sabel B. A. (1995). Visual field enlargement after computer training in brain-damaged patients with homonymous deficits: an open pilot trial. Restor. Neurol. Neurosci. 8, 113–127 10.3233/RNN-1995-8302
    1. Kasten E., Wuest S., Sabel B. A. (1998a). Residual vision in transition zones in patients with cerebral blindness. J. Clin. Exp. Neuropsychol. 20, 581–598 10.1076/jcen.20.5.581.1129
    1. Kasten E., Wüst S., Behrens-Baumann W., Sabel B. A. (1998b). Computer-based training for the treatment of partial blindness. Nat. Med. 4, 1083–1087 10.1038/2079
    1. Kentridge R. W., Heywood C. A., Weiskrantz L. (1997). Residual vision in multiple retinal locations within a scotoma: implications for blindsight. J. Cogn. Neurosci. 9, 191–202 10.1162/jocn.1997.9.2.191
    1. Kerkhoff G., Münssinger U., Haaf E., Eberle-Strauss G., Stögerer E. (1992). Rehabilitation of homonymous scotomata in patients with postgeniculate damage of the visual system: saccadic compensation training. Restor. Neurol. Neurosci. 4, 245–254 10.3233/RNN-1992-4402
    1. Kerkhoff G., Münssinger U., Meier E. K. (1994). Neurovisual rehabilitation in cerebral blindness. Arch. Neurol. 51, 474–481 10.1001/archneur.1994.00540170050016
    1. Kleiser R., Wittsack J., Niedeggen M., Goebel R., Stoerig P. (2001). Is V1 necessary for conscious vision in areas of relative cortical blindness? Neuroimage 13, 654–661 10.1006/nimg.2000.0720
    1. Levin H. S. (2006). Neuroplasticity and brain imaging research: implications for rehabilitation. Arch. Phys. Med. Rehabil. 87, S1 10.1016/j.apmr.2006.09.010
    1. Lövdén M., Wenger E., Mårtensson J., Lindenberger U., Bäckman L. (2013). Structural brain plasticity in adult learning and development. Neurosci. Biobehav. Rev. 37, 2296–2310 10.1016/j.neubiorev.2013.02.014
    1. Luria A. R. (1963). Restoration of Function After Brain Injury. Oxford, UK: Pergamon Press
    1. Marshall R. S., Ferrera J. J., Barnes A., Xian Z., O’brien K. A., Chmayssani M., et al. (2008). Brain activity associated with stimulation therapy of the visual borderzone in hemianopic stroke patients. Neurorehabil. Neural Repair 22, 136–144 10.1177/1545968307305522
    1. May A. (2011). Experience-dependent structural plasticity in the adult human brain. Trends Cogn. Sci. 15, 475–482 10.1016/j.tics.2011.08.002
    1. Mohler C. W., Wurtz R. H. (1977). Role of striate cortex and superior colliculus in visual guidance of saccadic eye movements in monkeys. J. Neurophysiol. 40, 74–94
    1. Morland A. B., Jones S. R., Finlay A. L., Deyzac E., Lê S., Kemp S. (1999). Visual perception of motion, luminance and colour in a human hemianope. Brain 122, 1183–1198 10.1093/brain/122.6.1183
    1. Morland A. B., Lê S., Carroll E., Hoffmann M. B., Pambakian A. (2004). The role of spared calcarine cortex and lateral occipital cortex in the responses of human hemianopes to visual motion. J. Cogn. Neurosci. 16, 204–218 10.1162/089892904322984517
    1. Morris J. S., DeGelder B., Weiskrantz L., Dolan R. J. (2001). Differential extrageniculostriate and amygdala responses to presentation of emotional faces in a cortically blind field. Brain 124, 1241–1252 10.1093/brain/124.6.1241
    1. Nelles G., Widman G., de Greiff A., Meistrowitz A., Dimitrova A., Weber J., et al. (2002). Brain representation of hemifield stimulation in poststroke visual field defects. Stroke 33, 1286–1293 10.1161/01.str.0000013685.76973.67
    1. Niimi Y., Kupersmith M. J., Ahmad S., Song J., Berenstein A. (2008). Cortical blindness, transient and otherwise, associated with detachable coil embolization of intracranial aneurysms. AJNR Am. J. Neuroradiol. 29, 603–607 10.3174/ajnr.a0858
    1. Pambakian A. L., Kennard C. (1997). Can visual function be restored in patients with homonymous hemianopia? Br. J. Ophthalmol. 81, 324–328 10.1136/bjo.81.4.324
    1. Papanikolaou A., Keliris G. A., Papageorgiou T. D., Shao Y., Krapp E., Papageorgiou E., et al. (2014). Population receptive field analysis of the primary visual cortex complements perimetry in patients with homonymous visual field defects. Proc. Natl. Acad. Sci. U S A 111, E1656–E1665 10.1073/pnas.1317074111
    1. Pegna A. J., Khateb A., Lazeyras F., Seghier M. L. (2005). Discriminating emotional faces without primary visual cortices involves the right amygdala. Nat. Neurosci. 8, 24–25 10.1038/nn1364
    1. Peli E. (2000). Field expansion for homonymous hemianopia by optically induced peripheral exotropia. Optom. Vis. Sci. 77, 453–464 10.1097/00006324-200009000-00006
    1. Perez C., Cavézian C., Peyrin C., Coubard O., Doucet G., Andersson F., et al. (2009). Plasticité des aires visuelles corticales après une lésion rétrochiasmatique: approche en neuro-imagerie. Rev. Neuropsychol. 1, 1–7 10.3917/rne.013.0254
    1. Perez C., Peyrin C., Cavézian C., Coubard O., Caetta F., Raz N., et al. (2013). An FMRI investigation of the cortical network underlying detection and categorization abilities in hemianopic patients. Brain Topogr. 26, 264–277 10.1007/s10548-012-0244-z
    1. Pleger B., Foerster A. F., Widdig W., Henschel M., Nicolas V., Jansen A., et al. (2003). Functional magnetic resonance imaging mirrors recovery of visual perception after repetitive tachistoscopic stimulation in patients with partial cortical blindness. Neurosci. Lett. 335, 192–196 10.1016/s0304-3940(02)01153-9
    1. Plow E. B., Obretenova S. N., Halko M. A., Kenkel S., Jackson M. L., Pascual-Leone A., et al. (2011). Combining visual rehabilitative training and noninvasive brain stimulation to enhance visual function in patients with hemianopia: a comparative case study. PM R 3, 825–835 10.1016/j.pmrj.2011.05.026
    1. Plow E. B., Obretenova S. N., Jackson M. L., Merabet L. B. (2012). Temporal profile of functional visual rehabilitative outcomes modulated by transcranial direct current stimulation. Neuromodulation 15, 367–373 10.1111/j.1525-1403.2012.00440.x
    1. Polonara G., Salvolini S., Fabri M., Mascioli G., Cavola G. L., Neri P., et al. (2011). Unilateral visual loss due to ischaemic injury in the right calcarine region: a functional magnetic resonance imaging and diffusion tension imaging follow-up study. Int. Ophthalmol. 31, 129–134 10.1007/s10792-011-9420-5
    1. Pommerenke K., Markowitsch H. J. (1989). Rehabilitation training of homonymous visual field defects in patients with postgeniculate damage of the visual system. Restor. Neurol. Neurosci. 1, 47–63 10.3233/RNN-1989-1106
    1. Popelreuter W. (1917). “Band I: die störungen der niederen und höheren sehleistungen durch Verletzungen des okzipitalhirns,” in Die Psychischen Schädigungen Durch Kopfschub Im Kriege 1914/16, (Leipzig: L. Voss; ), 25–72
    1. Pöppel E., Brinkmann R., von Cramon D., Singer W. (1978). Association and dissociation of visual functions in a case of bilateral occipital lobe infarction. Arch. Psychiatr. Nervenkr. 225, 1–21 10.1007/bf00367348
    1. Pouget M. C., Lévy-Bencheton D., Prost M., Tilikete C., Husain M., Jacquin-Courtois S. (2012). Acquired visual field defects rehabilitation: critical review and perspectives. Ann. Phys. Rehabil. Med. 55, 53–74 10.1016/j.rehab.2011.05.006
    1. Ptito M., Johannsen P., Faubert J., Gjedde A. (1999). Activation of human extrageniculostriate pathways after damage to area V1. Neuroimage 9, 97–107 10.1006/nimg.1998.0390
    1. Raemaekers M., Bergsma D. P., van Wezel R. J., van der Wildt G. J., van den Berg A. V. (2011). Effects of vision restoration training on early visual cortex in patients with cerebral blindness investigated with functional magnetic resonance imaging. J. Neurophysiol. 105, 872–882 10.1152/jn.00308.2010
    1. Rafal R. D., Posner M. I., Friedman J. H., Inhoff A. W., Bernstein E. (1988). Orienting of visual attention in progressive supranuclear palsy. Brain 111, 267–280 10.1093/brain/111.2.267
    1. Raninen A., Vanni S., Hyvärinen L., Näsänen R. (2007). Temporal sensitivity in a hemianopic visual field can be improved by long-term training using flicker stimulation. J. Neurol. Neurosurg. Psychiatry 78, 66–73 10.1136/jnnp.2006.099366
    1. Raposo N., Cauquil A. S., Albucher J. F., Acket B., Celebrini S., Pariente J., et al. (2011). Poststroke conscious visual deficit: clinical course and changes in cerebral activations. Neurorehabil. Neural Repair 25, 703–710 10.1177/1545968311407520
    1. Reinhard J., Schreiber A., Schiefer U., Kasten E., Sabel B. A., Kenkel S., et al. (2005). Does visual restitution training change absolute homonymous visual field defects? A fundus controlled study. Br. J. Ophthalmol. 89, 30–35 10.1136/bjo.2003.040543
    1. Reitsma D. C., Mathis J., Ulmer J. L., Mueller W., Maciejewski M. J., DeYoe E. A. (2013). Atypical retinotopic organization of visual cortex in patients with central brain damage: congenital and adult onset. J. Neurosci. 33, 13010–13024 10.1523/JNEUROSCI.0240-13.2013
    1. Ro T., Rafal R. (2006). Visual restoration in cortical blindness: insights from natural and TMS-induced blindsight. Neuropsychol. Rehabil. 16, 377–396 10.1080/09602010500435989
    1. Ross N. C., Bowers A. R., Peli E. (2012). Peripheral prism glasses: effects of dominance, suppression and background. Optom. Vis. Sci. 89, 1343–1352 10.1097/OPX.0b013e3182678d99
    1. Roth T., Sokolov A. N., Messias A., Roth P., Weller M., Trauzettel-Klosinski S. (2009). Comparing explorative saccade and flicker training in hemianopia: a randomized controlled study. Neurology 72, 324–331 10.1212/01.wnl.0000341276.65721.f2
    1. Rowe F. J., Wright D., Brand D., Jackson C., Harrison S., Maan T., et al. (2013). A prospective profile of visual field loss following stroke: prevalence, type, rehabilitation and outcome. Biomed. Res. Int. 2013:719096 10.1155/2013/719096
    1. Sabel B. A., Henrich-Noack P., Fedorov A., Gall C. (2011). Vision restoration after brain and retina damage: the “residual vision activation theory”. Prog. Brain Res. 192, 199–262 10.1016/b978-0-444-53355-5.00013-0
    1. Sahraie A. (2007). Induced visual sensitivity changes in chronic hemianopia. Curr. Opin. Neurol. 20, 661–666 10.1097/wco.0b013e3282f1c70f
    1. Sahraie A., Hibbard P. B., Trevethan C. T., Ritchie K. L., Weiskrantz L. (2010). Consciousness of the first order in blindsight. Proc. Natl. Acad. Sci. U S A 107, 21217–21222 10.1073/pnas.1015652107
    1. Sahraie A., Weiskrantz L., Barbur J. L., Simmons A., Williams S. C., Brammer M. J. (1997). Pattern of neuronal activity associated with conscious and unconscious processing of visual signals. Proc. Natl. Acad. Sci. U S A 94, 9406–9411 10.1073/pnas.94.17.9406
    1. Schoenfeld M. A., Noesselt T., Poggel D., Tempelmann C., Hopf J. M., Woldorff M. G., et al. (2002). Analysis of pathways mediating preserved vision after striate cortex lesions. Ann. Neurol. 52, 814–824 10.1002/ana.10394
    1. Schuett S., Kentridge R. W., Zihl J., Heywood C. A. (2009). Adaptation of eye-movements to simulated hemianopia in reading and visual exploration: transfer or specificity? Neuropsychologia 47, 1712–1720 10.1016/j.neuropsychologia.2009.02.010
    1. Silvanto J., Cowey A., Lavie N., Walsh V. (2007). Making the blindsighted see. Neuropsychologia 45, 3346–3350 10.1016/j.neuropsychologia.2007.06.008
    1. Silvanto J., Lavie N., Walsh V. (2005). Double dissociation of V1 and V5/MT activity in visual awareness. Cereb. Cortex 15, 1736–1741 10.1093/cercor/bhi050
    1. Silvanto J., Walsh V., Cowey A. (2009). Abnormal functional connectivity between ipsilesional V5/MT+ and contralesional striate cortex (V1) in blindsight. Exp. Brain Res. 193, 645–650 10.1007/s00221-009-1712-x
    1. Sincich L. C., Park K. F., Wohlgemuth M. J., Horton J. C. (2004). Bypassing V1: a direct geniculate input to area MT. Nat. Neurosci. 7, 1123–1128 10.1038/nn1318
    1. Slotnick S. D., Moo L. R. (2003). Retinotopic mapping reveals extrastriate cortical basis of homonymous quadrantanopia. Neuroreport 14, 1209–1213 10.1097/00001756-200307010-00004
    1. Stoerig P. (1987). Chromaticity and achromaticity. Evidence for a functional differentiation in visual field defects. Brain 110, 869–886 10.1093/brain/110.4.869
    1. Stoerig P. (2006). Blindsight, conscious vision and the role of primary visual cortex. Prog. Brain Res. 155, 217–234 10.1016/s0079-6123(06)55012-5
    1. Stoerig P., Cowey A. (1989). Wavelength sensitivity in blindsight. Nature 342, 916–918 10.1038/342916a0
    1. Stoerig P., Cowey A. (1991). Increment-threshold spectral sensitivity in blindsight. Evidence for colour opponency. Brain 114, 1487–1512 10.1093/brain/114.3.1487
    1. Stoerig P., Cowey A. (1995). Visual perception and phenomenal consciousness. Behav. Brain Res. 71, 147–156 10.1016/0166-4328(95)00050-x
    1. Stoerig P., Cowey A. (1997). Blindsight in man and monkey. Brain 120, 535–559 10.1093/brain/120.3.535
    1. Stoerig P., Kleinschmidt A., Frahm J. (1998). No visual responses in denervated V1: high-resolution functional magnetic resonance imaging of a blindsight patient. Neuroreport 9, 21–25 10.1097/00001756-199801050-00005
    1. Tamietto M., Cauda F., Corazzini L. L., Savazzi S., Marzi C. A., Goebel R., et al. (2010). Collicular vision guides nonconscious behavior. J. Cogn. Neurosci. 22, 888–902 10.1162/jocn.2009.21225
    1. Tamietto M., de Gelder B. (2008). Affective blindsight in the intact brain: neural interhemispheric summation for unseen fearful expressions. Neuropsychologia 46, 820–828 10.1016/j.neuropsychologia.2007.11.002
    1. Tamietto M., de Gelder B. (2010). Neural bases of the non-conscious perception of emotional signals. Nat. Rev. Neurosci. 11, 697–709 10.1038/nrn2889
    1. Tamietto M., Pullens P., de Gelder B., Weiskrantz L., Goebel R. (2012). Subcortical connections to human amygdala and changes following destruction of the visual cortex. Curr. Biol. 22, 1449–1455 10.1016/j.cub.2012.06.006
    1. Tononi G., Edelman G. M. (1998). Consciousness and complexity. Science 282, 1846–1851
    1. Trauzettel-Klosinski S. (2011). Rehabilitative techniques. Handb. Clin. Neurol. 102, 263–278 10.1016/B978-0-444-52903-9.00016-9
    1. Trevethan C. T., Sahraie A. (2003). Spatial and temporal processing in a subject with cortical blindness following occipital surgery. Neuropsychologia 41, 1296–1306 10.1016/s0028-3932(03)00049-6
    1. Trevethan C. T., Sahraie A., Weiskrantz L. (2007). Form discrimination in a case of blindsight. Neuropsychologia 45, 2092–2103 10.1016/j.neuropsychologia.2007.01.022
    1. Vaina L. M., Cowey A., Eskew R. T., Jr., LeMay M., Kemper T. (2001). Regional cerebral correlates of global motion perception: evidence from unilateral cerebral brain damage. Brain 124, 310–321 10.1093/brain/124.2.310
    1. Valero-Cabré A., Pascual-Leone A., Coubard O. A. (2011). Transcranial magnetic stimulation (TMS) in basic and clinical neuroscience research. Rev. Neurol. (Paris) 167, 291–316 10.1016/j.neurol.2010.10.013
    1. Van den Stock J., Tamietto M., Hervais-Adelman A., Pegna A. J., de Gelder B. (2013). Body recognition in a patient with bilateral primary visual cortex lesionscorrespondence. Biol. Psychiatry [Epub ahead of print]. 10.1016/j.biopsych.2013.06.023
    1. Van den Stock J., Tamietto M., Sorger B., Pichon S., Grézes J., de Gelder B. (2011). Cortico-subcortical visual, somatosensory and motor activations for perceiving dynamic whole-body emotional expressions with and without striate cortex (V1). Proc. Natl. Acad. Sci. U S A 108, 16188–16193 10.1073/pnas.1107214108
    1. Van den Stock J., Tamietto M., Zhan M., Heinecke A., Hervais-Adelman A., Legrand L. B., et al. (2014). Neural correlates of body and face perception following bilateral destruction of the primary visual cortices. Front. Behav. Neurosci. 8:30 10.3389/fnbeh.2014.00030
    1. Vanni S., Raninen A., Näsänen R., Tanskanen T., Hyvärinen L. (2001). Dynamics of cortical activation in a hemianopic patient. Neuroreport 12, 861–865 10.1097/00001756-200103260-00047
    1. Wandell B. A., Smirnakis S. M. (2009). Plasticity and stability of visual field maps in adult primary visual cortex. Nat. Rev. Neurosci. 10, 873–884 10.1038/nrn2741
    1. Weiskrantz L. (1986). Blindsight: A Case Study and Implications. Oxford, UK: Clarendon Press
    1. Weiskrantz L. (1996). Blindsight revisited. Curr. Opin. Neurobiol. 6, 215–220 10.1016/s0959-4388(96)80075-4
    1. Weiskrantz L. (2004). Roots of blindsight. Prog. Brain Res. 144, 229–241 10.1016/S0079-6123(03)14416-0
    1. Weiskrantz L., Warrington E. K., Sanders M. D., Marshall J. (1974). Visual capacity in the hemianopic field following a restricted occipital ablation. Brain 97, 709–728 10.1093/brain/97.1.709
    1. Yoshida M., Ida M., Nguyen T. H., Iba-Zizen M. T., Bellinger L., Stievenart J. L., et al. (2006). Resolution of homonymous visual field loss documented with functional magnetic resonance and diffusion tensor imaging. J. Neuroophthalmol. 26, 11–17 10.1097/01.wno.0000205620.60510.01
    1. Zeki S. (1991). Cerebral akinetopsia (visual motion blindness). A review. Brain 114, 811–824 10.1093/brain/114.2.811
    1. Zeki S., Ffytche D. H. (1998). The Riddoch syndrome: insights into the neurobiology of conscious vision. Brain 121, 25–45 10.1093/brain/121.1.25
    1. Zhang X., Kedar S., Lynn M. J., Newman N. J., Biousse V. (2006a). Homonymous hemianopias: clinical-anatomic correlations in 904 cases. Neurology 66, 906–910 10.1212/01.wnl.0000203913.12088.93
    1. Zhang X., Kedar S., Lynn M. J., Newman N. J., Biousse V. (2006b). Natural history of homonymous hemianopia. Neurology 66, 901–905 10.1212/01.wnl.0000203338.54323.22
    1. Zihl J. (1981). Recovery of visual functions in patients with cerebral blindness. Effect of specific practice with saccadic localization. Exp. Brain Res. 44, 159–169 10.1007/bf00237337
    1. Zihl J. (2000). Rehabilitation of Visual Disorders after Brain Injury. Hove, UK: Psychology Press
    1. Zihl J., von Cramon D. (1979). Restitution of visual function in patients with cerebral blindness. J. Neurol. Neurosurg. Psychiatry 42, 312–322 10.1136/jnnp.42.4.312
    1. Zihl J., von Cramon D. (1982). Restitution of visual field in patients with damage to the geniculostriate visual pathway. Hum. Neurobiol. 1, 5–8
    1. Zihl J., von Cramon D. (1985). Visual field recovery from scotoma in patients with postgeniculate damage. A review of 55 cases. Brain 108, 335–365 10.1093/brain/108.2.335
    1. Zihl J., von Cramon D., Mai N., Schmid C. (1991). Disturbance of movement vision after bilateral posterior brain damage. Further evidence and follow up observations. Brain 114, 2235–2252 10.1093/brain/114.5.2235

Source: PubMed

3
Iratkozz fel