Association between smoking and latent tuberculosis in the U.S. population: an analysis of the National Health and Nutrition Examination Survey

David J Horne, Monica Campo, Justin R Ortiz, Eyal Oren, Matthew Arentz, Kristina Crothers, Masahiro Narita, David J Horne, Monica Campo, Justin R Ortiz, Eyal Oren, Matthew Arentz, Kristina Crothers, Masahiro Narita

Abstract

Background: Evidence of an association between cigarette smoking and latent tuberculosis infection (LTBI) is based on studies in special populations and/or from high prevalence settings. We sought to evaluate the association between LTBI and smoking in a low prevalence TB setting using population-based data from the National Health and Nutrition Examination Survey (NHANES).

Methods: In 1999-2000, NHANES assessed LTBI (defined as a tuberculin skin test measurement ≥10 mm) in participants, and those ≥20 years of age were queried regarding their tobacco use and serum cotinine was measured. We evaluated the association of LTBI with self-reported smoking history and smoking intensity in multivariable logistic regression models that adjusted for known confounders (gender, age, birthplace, race/ethnicity, poverty, education, history of BCG vaccination, and history of household exposure to tuberculosis disease).

Results: Estimated LTBI prevalence was 5.3% among those ≥20 years of age. The LTBI prevalence among never smokers, current smokers, and former smokers was 4.1%, 6.6%, and 6.2%, respectively. In a multivariable model, current smoking was associated with LTBI (OR 1.8; 95% CI, 1.1-2.9). The association between smoking and LTBI was strongest for Mexican-American and black individuals. In multivariate analysis stratified by race/ethnicity, cigarette packs per day among Mexican-American smokers and cotinine levels among black smokers, were significantly associated with LTBI.

Conclusions: In the large, representative, population-based NHANES sample, smoking was independently associated with significantly increased risks of LTBI. In certain populations, a greater risk of LTBI corresponded with increased smoking exposure.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

References

    1. Tho DQ, Lan NT, Chau NV, Farrar J, Caws M (2011) Multiplex allele-specific polymerase chain reaction for detection of isoniazid resistance in Mycobacterium tuberculosis. Int J Tuberc Lung Dis 15: 799–803.
    1. Pontino MV, Di Giulio B, Fernandez C, Imperiale B, Bodon A, et al. (2006) [Evaluation of a colorimetric micromethod for determining the minimal inhibitory concentration of antibiotics against Mycobacterium tuberculosis]. Rev Argent Microbiol 38: 145–151.
    1. World Health Organization., International Union against Tuberculosis and Lung Disease. (2007) A WHO/the Union monograph on TB and tobacco control : joining efforts to control two related global epidemics. Geneva: World Health Organization. 96 p.
    1. Bates MN, Khalakdina A, Pai M, Chang L, Lessa F, et al. (2007) Risk of tuberculosis from exposure to tobacco smoke: a systematic review and meta-analysis. Arch Intern Med 167: 335–342.
    1. Lin HH, Ezzati M, Murray M (2007) Tobacco smoke, indoor air pollution and tuberculosis: a systematic review and meta-analysis. PLoS Med 4: e20.
    1. Slama K, Chiang CY, Enarson DA, Hassmiller K, Fanning A, et al. (2007) Tobacco and tuberculosis: a qualitative systematic review and meta-analysis. Int J Tuberc Lung Dis 11: 1049–1061.
    1. Lonnroth K, Raviglione M (2008) Global epidemiology of tuberculosis: prospects for control. Semin Respir Crit Care Med 29: 481–491.
    1. Horsburgh CR Jr, Rubin EJ (2011) Clinical practice. Latent tuberculosis infection in the United States. N Engl J Med 364: 1441–1448.
    1. Anderson RH, Sy FS, Thompson S, Addy C (1997) Cigarette smoking and tuberculin skin test conversion among incarcerated adults. Am J Prev Med 13: 175–181.
    1. Hussain H, Akhtar S, Nanan D (2003) Prevalence of and risk factors associated with Mycobacterium tuberculosis infection in prisoners, North West Frontier Province, Pakistan. Int J Epidemiol 32: 794–799.
    1. McCurdy SA, Arretz DS, Bates RO (1997) Tuberculin reactivity among California Hispanic migrant farm workers. Am J Ind Med 32: 600–605.
    1. Plant AJ, Watkins RE, Gushulak B, O'Rourke T, Jones W, et al. (2002) Predictors of tuberculin reactivity among prospective Vietnamese migrants: the effect of smoking. Epidemiol Infect 128: 37–45.
    1. Solsona J, Cayla JA, Nadal J, Bedia M, Mata C, et al. (2001) Screening for tuberculosis upon admission to shelters and free-meal services. Eur J Epidemiol 17: 123–128.
    1. den Boon S, van Lill SW, Borgdorff MW, Verver S, Bateman ED, et al. (2005) Association between smoking and tuberculosis infection: a population survey in a high tuberculosis incidence area. Thorax 60: 555–557.
    1. van Zyl-Smit RN, Brunet L, Pai M, Yew WW (2010) The convergence of the global smoking, COPD, tuberculosis, HIV, and respiratory infection epidemics. Infect Dis Clin North Am 24: 693–703.
    1. Brunet L, Pai M, Davids V, Ling D, Paradis G, et al. (2011) High prevalence of smoking among patients with suspected tuberculosis in South Africa. Eur Respir J 38: 139–146.
    1. Bennett DE, Courval JM, Onorato I, Agerton T, Gibson JD, et al. (2008) Prevalence of tuberculosis infection in the United States population: the national health and nutrition examination survey, 1999–2000. Am J Respir Crit Care Med 177: 348–355.
    1. Khan K, Wang J, Hu W, Bierman A, Li Y, et al. (2008) Tuberculosis infection in the United States: national trends over three decades. Am J Respir Crit Care Med 177: 455–460.
    1. Shiferaw G, Woldeamanuel Y, Gebeyehu M, Girmachew F, Demessie D, et al. (2007) Evaluation of microscopic observation drug susceptibility assay for detection of multidrug-resistant Mycobacterium tuberculosis. J Clin Microbiol 45: 1093–1097.
    1. Mohammadzadeh A, Farnia P, Ghazvini K, Behdani M, Rashed T, et al. (2006) Rapid and low-cost colorimetric method using 2,3,5-triphenyltetrazolium chloride for detection of multidrug-resistant Mycobacterium tuberculosis. J Med Microbiol 55: 1657–1659.
    1. Moore DA, Evans CA, Gilman RH, Caviedes L, Coronel J, et al. (2006) Microscopic-observation drug-susceptibility assay for the diagnosis of TB. N Engl J Med 355: 1539–1550.
    1. Mengatto L, Chiani Y, Imaz MS (2006) Evaluation of rapid alternative methods for drug susceptibility testing in clinical isolates of Mycobacterium tuberculosis. Mem Inst Oswaldo Cruz 101: 535–542.
    1. Jason J, Archibald LK, Nwanyanwu OC, Kazembe PN, Chatt JA, et al. (2002) Clinical and immune impact of Mycobacterium bovis BCG vaccination scarring. Infect Immun 70: 6188–6195.
    1. Singh P, Wesley C, Jadaun GP, Malonia SK, Das R, et al. (2007) Comparative evaluation of Lowenstein-Jensen proportion method, BacT/ALERT 3D system, and enzymatic pyrazinamidase assay for pyrazinamide susceptibility testing of Mycobacterium tuberculosis. J Clin Microbiol 45: 76–80.
    1. Benowitz NL, Bernert JT, Caraballo RS, Holiday DB, Wang J (2009) Optimal serum cotinine levels for distinguishing cigarette smokers and nonsmokers within different racial/ethnic groups in the United States between 1999 and 2004. Am J Epidemiol 169: 236–248.
    1. Brick JM, Kalton G (1996) Handling missing data in survey research. Stat Methods Med Res 5: 215–238.
    1. Perez-Stable EJ, Herrera B, Jacob P 3rd, Benowitz NL (1998) Nicotine metabolism and intake in black and white smokers. JAMA 280: 152–156.
    1. Shang S, Ordway D, Henao-Tamayo M, Bai X, Oberley-Deegan R, et al. (2011) Cigarette smoke increases susceptibility to tuberculosis–evidence from in vivo and in vitro models. J Infect Dis 203: 1240–1248.
    1. Feng Y, Kong Y, Barnes PF, Huang FF, Klucar P, et al. (2011) Exposure to cigarette smoke inhibits the pulmonary T-cell response to influenza virus and Mycobacterium tuberculosis. Infect Immun 79: 229–237.
    1. van Crevel R, Ottenhoff TH, van der Meer JW (2002) Innate immunity to Mycobacterium tuberculosis. Clin Microbiol Rev 15: 294–309.
    1. Oursler KK, Moore RD, Bishai WR, Harrington SM, Pope DS, et al. (2002) Survival of patients with pulmonary tuberculosis: clinical and molecular epidemiologic factors. Clin Infect Dis 34: 752–759.

Source: PubMed

3
Iratkozz fel