Vitamin K supplementation increases vitamin K tissue levels but fails to counteract ectopic calcification in a mouse model for pseudoxanthoma elasticum

Theo G M F Gorgels, Jan H Waarsing, Marjolein Herfs, Daniëlle Versteeg, Frank Schoensiegel, Toshiro Sato, Reinier O Schlingemann, Boris Ivandic, Cees Vermeer, Leon J Schurgers, Arthur A B Bergen, Theo G M F Gorgels, Jan H Waarsing, Marjolein Herfs, Daniëlle Versteeg, Frank Schoensiegel, Toshiro Sato, Reinier O Schlingemann, Boris Ivandic, Cees Vermeer, Leon J Schurgers, Arthur A B Bergen

Abstract

Pseudoxanthoma elasticum (PXE) is an autosomal recessive disorder in which calcification of connective tissue leads to pathology in skin, eye and blood vessels. PXE is caused by mutations in ABCC6. High expression of this transporter in the basolateral hepatocyte membrane suggests that it secretes an as-yet elusive factor into the circulation which prevents ectopic calcification. Utilizing our Abcc6 (-/-) mouse model for PXE, we tested the hypothesis that this factor is vitamin K (precursor) (Borst et al. 2008, Cell Cycle). For 3 months, Abcc6 (-/-) and wild-type mice were put on diets containing either the minimum dose of vitamin K required for normal blood coagulation or a dose that was 100 times higher. Vitamin K was supplied as menaquinone-7 (MK-7). Ectopic calcification was monitored in vivo by monthly micro-CT scans of the snout, as the PXE mouse model develops a characteristic connective tissue mineralization at the base of the whiskers. In addition, calcification of kidney arteries was measured by histology. Results show that supplemental MK-7 had no effect on ectopic calcification in Abcc6 ( -/- ) mice. MK-7 supplementation increased vitamin K levels (in skin, heart and brain) in wild-type and in Abcc6 (-/-) mice. Vitamin K tissue levels did not depend on Abcc6 genotype. In conclusion, dietary MK-7 supplementation increased vitamin K tissue levels in the PXE mouse model but failed to counteract ectopic calcification. Hence, we obtained no support for the hypothesis that Abcc6 transports vitamin K and that PXE can be cured by increasing tissue levels of vitamin K.

Figures

Fig. 1
Fig. 1
In vivo micro-CT imaging of calcification in the muzzle. X-ray image and cross sections of the 3D reconstructed micro-CT image of the rostral part of the head of a wt (left) and Abcc6−/− (right) mouse. Skull and teeth are clearly visible, both in wt and Abcc6−/− mouse. In addition, the Abcc6−/− mouse has shell-shaped calcified profiles (arrows) in the muzzles as illustrated by the cross-sections. Coloured lines indicate positions of the cross-sectional planes
Fig. 2
Fig. 2
a Micro-CT scan of an Abcc6−/− mouse muzzle showing shell-shaped calcifications. b Paraffin section of the muzzle of an Abcc6−/− mouse (aged 9 months; 1×MK-7diet) stained with von Kossa localizes these calcifications (black) to the connective tissue capsule of the blood sinus of the whisker hair follicle. c Whisker follicle of a wt mouse (aged 8 months; 1×MK-7 diet) without calcification. Scale bar is 200 μm
Fig. 3
Fig. 3
Cross sections from micro-CT scans of an Abcc6−/− mouse (on 1×MK-7 diet) showing the in vivo progression in calcification of whisker sinuses, from the start of the diet (0 months) until the end (3 months). Arrows point at whisker sinuses that are calcified after 3 months, whereas they were not calcified at the start of the diet
Fig. 4
Fig. 4
Progression of calcification in the muzzles of Abcc6−/− mice from the start of the diet (time = 0) to the end, after 90 days. Coloured lines in the two graphs on the left depict the mineralization process in the individual mice. The graph on the right shows the averages per diet group (with missing values imputed). The 1×MK-7 diet group had, by chance, a slightly higher calcification at the start of the diet. Importantly, calcification progressed in all mice and no difference in the pace of calcification was noticed between the diets (for statistics, see Results)
Fig. 5
Fig. 5
Effect of vitamin K supplementation on calcification in arteries in the kidney cortex. ad Kidney sections of wt (a, c) and Abcc6−/− mice (b, d) on 1×MK-7 (a, b) or 100×MK-7 diet (c, d). Von Kossa staining shows calcification (black deposits) in walls of arteries in the cortex of Abcc6−/− mice on either diet. No calcifications were observed in wt mice. Cortex is on the right, medulla on the left. Bar is 200 μm. e Effect of diet on calcifications in arteries in the kidney cortex in Abcc6−/− mice, assessed by histology. Histograms represent mean number ± standard deviation (s.d.) of calcified profiles per sagittal kidney section. Diet did not cause a significant difference in calcification (p = 0.47, Student’s t test). f Effect of diet on calcifications in arteries in the kidney cortex in Abcc6−/− mice, assessed by micro-CT. Histograms represent average volume (±s.d.) of calcifications per kidney. Diet did not cause a significant difference in calcification (p = 0.31, Student’s t test)
Fig. 6
Fig. 6
Vitamin K levels (±s.d.) in the liver as function of diet and Abcc6 genotype. Please note that some data points (mainly in the 1×Mk-7 diet group) were missing (as indicated by an absence of an error bar) presumably because the levels were below detection threshold
Fig. 7
Fig. 7
MK-4 levels (±s.d.) in liver and extra-hepatic tissues as function of diet and genotype. The 100×MK-7 diet increased MK-4 tissue levels both in wt and Abcc6−/− mice (for statistics, see Table 1)
Fig. 8
Fig. 8
MK-7 levels (±s.d.) in liver and in extra-hepatic tissues as function of diet and genotype. MK-7 levels were highly variable. No differences were observed between the genotypes. A statistically significant effect of diet was found for skin and liver (for statistics, see Table 1)

References

    1. Goodman RM, Smith EW, Paton D, Bergman RA, Siegel CL, Ottesen OE, Shelley WM, Push AL, McKusick VA. Pseudoxanthoma elasticum: a clinical and histopathological study. Medicine (Baltimore) 1963;42:297–334.
    1. Hu X, Plomp AS, van Soest S, Wijnholds J, de Jong PT, Bergen AA. Pseudoxanthoma elasticum: a clinical, histopathological, and molecular update. Surv Ophthalmol. 2003;48:424–438. doi: 10.1016/S0039-6257(03)00053-5.
    1. Plomp AS, Hu X, de Jong PT, Bergen AA. Does autosomal dominant pseudoxanthoma elasticum exist? Am J Med Genet A. 2004;126A:403–412. doi: 10.1002/ajmg.a.20632.
    1. Finger RP, Charbel IP, Ladewig MS, Gotting C, Szliska C, Scholl HP, Holz FG. Pseudoxanthoma elasticum: genetics, clinical manifestations and therapeutic approaches. Surv Ophthalmol. 2009;54:272–285. doi: 10.1016/j.survophthal.2008.12.006.
    1. Bergen AA, Plomp AS, Schuurman EJ, Terry S, Breuning M, Dauwerse H, Swart J, Kool M, van Soest S, Baas F, ten Brink JB, de Jong PT. Mutations in ABCC6 cause pseudoxanthoma elasticum. Nat Genet. 2000;25:228–231. doi: 10.1038/76109.
    1. Le Saux O, Urban Z, Tschuch C, Csiszar K, Bacchelli B, Quaglino D, Pasquali-Ronchetti I, Pope FM, Richards A, Terry S, Bercovitch L, De Paepe A, Boyd CD. Mutations in a gene encoding an ABC transporter cause pseudoxanthoma elasticum. Nat Genet. 2000;25:223–227. doi: 10.1038/76102.
    1. Gorgels TG, Hu X, Scheffer GL, van der Wal AC, Toonstra J, de Jong PT, van Kuppevelt TH, Levelt CN, de Wolf A, Loves WJ, Scheper RJ, Peek R, Bergen AA. Disruption of Abcc6 in the mouse: novel insight in the pathogenesis of pseudoxanthoma elasticum. Hum Mol Genet. 2005;14:1763–1773. doi: 10.1093/hmg/ddi183.
    1. Klement JF, Matsuzaki Y, Jiang QJ, Terlizzi J, Choi HY, Fujimoto N, Li K, Pulkkinen L, Birk DE, Sundberg JP, Uitto J. Targeted ablation of the abcc6 gene results in ectopic mineralization of connective tissues. Mol Cell Biol. 2005;25:8299–8310. doi: 10.1128/MCB.25.18.8299-8310.2005.
    1. Borst P, Elferink RO. Mammalian ABC transporters in health and disease. Annu Rev Biochem. 2002;71:537–592. doi: 10.1146/annurev.biochem.71.102301.093055.
    1. Bergen AA, Plomp AS, Hu X, de Jong PT, Gorgels TG. ABCC6 and pseudoxanthoma elasticum. Pflugers Arch. 2007;453:685–691. doi: 10.1007/s00424-005-0039-0.
    1. Hu X, Peek R, Plomp A, ten Brink J, Scheffer G, van Soest S, Leys A, de Jong PT, Bergen AA. Analysis of the frequent R1141X mutation in the ABCC6 gene in pseudoxanthoma elasticum. Invest Ophthalmol Vis Sci. 2003;44:1824–1829. doi: 10.1167/iovs.02-0981.
    1. Hendig D, Langmann T, Kocken S, Zarbock R, Szliska C, Schmitz G, Kleesiek K, Gotting C. Gene expression profiling of ABC transporters in dermal fibroblasts of pseudoxanthoma elasticum patients identifies new candidates involved in PXE pathogenesis. Lab Invest. 2008;88:1303–1315. doi: 10.1038/labinvest.2008.96.
    1. Scheffer GL, Hu X, Pijnenborg AC, Wijnholds J, Bergen AA, Scheper RJ. MRP6 (ABCC6) detection in normal human tissues and tumors. Lab Invest. 2002;82:515–518. doi: 10.1038/labinvest.3780444.
    1. Ilias A, Urban Z, Seidl TL, Le Saux O, Sinko E, Boyd CD, Sarkadi B, Varadi A. Loss of ATP-dependent transport activity in pseudoxanthoma elasticum-associated mutants of human ABCC6 (MRP6) J Biol Chem. 2002;277:16860–16867. doi: 10.1074/jbc.M110918200.
    1. Uitto J, Pulkkinen L, Ringpfeil F. Molecular genetics of pseudoxanthoma elasticum: a metabolic disorder at the environment-genome interface? Trends Mol Med. 2001;7:13–17. doi: 10.1016/S1471-4914(00)01869-4.
    1. Le Saux O, Bunda S, VanWart CM, Douet V, Got L, Martin L, Hinek A. Serum factors from pseudoxanthoma elasticum patients alter elastic fiber formation in vitro. J Invest Dermatol. 2006;126:1497–1505. doi: 10.1038/sj.jid.5700201.
    1. Jiang Q, Endo M, Dibra F, Wang K, Uitto J. Pseudoxanthoma elasticum is a metabolic disease. J Invest Dermatol. 2009;129:348–354. doi: 10.1038/jid.2008.212.
    1. Vanakker OM, Martin L, Gheduzzi D, Leroy BP, Loeys BL, Guerci VI, Matthys D, Terry SF, Coucke PJ, Pasquali-Ronchetti I, De PA. Pseudoxanthoma elasticum-like phenotype with cutis laxa and multiple coagulation factor deficiency represents a separate genetic entity. J Invest Dermatol. 2007;127:581–587. doi: 10.1038/sj.jid.5700610.
    1. Luo G, Ducy P, McKee MD, Pinero GJ, Loyer E, Behringer RR, Karsenty G. Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature. 1997;386:78–81. doi: 10.1038/386078a0.
    1. Gheduzzi D, Boraldi F, Annovi G, DeVincenzi CP, Schurgers LJ, Vermeer C, Quaglino D, Ronchetti IP. Matrix Gla protein is involved in elastic fiber calcification in the dermis of pseudoxanthoma elasticum patients. Lab Invest. 2007;87:998–1008. doi: 10.1038/labinvest.3700667.
    1. Vanakker OM, Martin L, Schurgers LJ, Quaglino D, Costrop L, Vermeer C, Pasquali-Ronchetti I, Coucke PJ, De PA (2010) Low serum vitamin K in PXE results in defective carboxylation of mineralization inhibitors similar to the GGCX mutations in the PXE-like syndrome. Lab Invest. doi:10.1038/labinvest.2010.68
    1. Li Q, Jiang Q, Schurgers LJ, Uitto J. Pseudoxanthoma elasticum: reduced gamma-glutamyl carboxylation of matrix gla protein in a mouse model (Abcc6−/−) Biochem Biophys Res Commun. 2007;364:208–213. doi: 10.1016/j.bbrc.2007.09.122.
    1. Borst P, van de Wetering K, Schlingemann R. Does the absence of ABCC6 (multidrug resistance protein 6) in patients with Pseudoxanthoma elasticum prevent the liver from providing sufficient vitamin K to the periphery? Cell Cycle. 2008;7:1575–1579. doi: 10.4161/cc.7.11.6005.
    1. Shearer MJ, Newman P. Metabolism and cell biology of vitamin K. Thromb Haemost. 2008;100:530–547.
    1. Schurgers LJ, Teunissen KJ, Hamulyak K, Knapen MH, Vik H, Vermeer C. Vitamin K-containing dietary supplements: comparison of synthetic vitamin K1 and natto-derived menaquinone-7. Blood. 2007;109:3279–3283. doi: 10.1182/blood-2006-08-040709.
    1. Schurgers LJ, Vermeer C. Determination of phylloquinone and menaquinones in food. Effect of food matrix on circulating vitamin K concentrations. Haemostasis. 2000;30:298–307.
    1. Jiang Q, Li Q, Uitto J. Aberrant mineralization of connective tissues in a mouse model of pseudoxanthoma elasticum: systemic and local regulatory factors. J Invest Dermatol. 2007;127:1392–1402. doi: 10.1038/sj.jid.5700729.
    1. Ronden JE, Thijssen HH, Vermeer C. Tissue distribution of K-vitamers under different nutritional regimens in the rat. Biochim Biophys Acta. 1998;1379:16–22.
    1. Gorgels TG, Waarsing JH, De WA, ten Brink JB, Loves WJ, Bergen AA (2010) Dietary magnesium, not calcium, prevents vascular calcification in a mouse model for pseudoxanthoma elasticum. J Mol Med. doi:10.1007/s00109-010-0596-3
    1. Spronk HM, Soute BA, Schurgers LJ, Thijssen HH, De Mey JG, Vermeer C. Tissue-specific utilization of menaquinone-4 results in the prevention of arterial calcification in warfarin-treated rats. J Vasc Res. 2003;40:531–537. doi: 10.1159/000075344.
    1. Rice FL, Mance A, Munger BL. A comparative light microscopic analysis of the sensory innervation of the mystacial pad. I. Innervation of vibrissal follicle-sinus complexes. J Comp Neurol. 1986;252:154–174. doi: 10.1002/cne.902520203.
    1. Schurgers LJ, Spronk HM, Soute BA, Schiffers PM, DeMey JG, Vermeer C. Regression of warfarin-induced medial elastocalcinosis by high intake of vitamin K in rats. Blood. 2007;109:2823–2831. doi: 10.1182/blood-2006-08-040709.
    1. Thijssen HH, Vervoort LM, Schurgers LJ, Shearer MJ. Menadione is a metabolite of oral vitamin K. Br J Nutr. 2006;95:260–266. doi: 10.1079/BJN20051630.
    1. Vermeer C. Gamma-carboxyglutamate-containing proteins and the vitamin K-dependent carboxylase. Biochem J. 1990;266:625–636.
    1. Jiang Q, Li Q, Grand-Pierre AE, Schurgers LJ, Uitto J. Administration of vitamin K does not counteract the ectopic mineralization of connective tissues in Abcc6 (−/−) mice, a model for pseudoxanthoma elasticum. Cell Cycle. 2011;10:701–707. doi: 10.4161/cc.10.4.14862.
    1. Brampton C, Yamaguchi Y, Vanakker O, Van LL, Chen LH, Thakore M, De PA, Pomozi V, Szabo PT, Martin L, Varadi A, Le Saux O (2011) Vitamin K does not prevent soft tissue mineralization in a mouse model of pseudoxanthoma elasticum. Cell Cycle 10:1810–1820
    1. Pasquali-Ronchetti I, Garcia-Fernandez MI, Boraldi F, Quaglino D, Gheduzzi D, De Vincenzi PC, Tiozzo R, Bergamini S, Ceccarelli D, Muscatello U. Oxidative stress in fibroblasts from patients with pseudoxanthoma elasticum: possible role in the pathogenesis of clinical manifestations. J Pathol. 2006;208:54–61. doi: 10.1002/path.1867.
    1. Garcia-Fernandez MI, Gheduzzi D, Boraldi F, Paolinelli CD, Sanchez P, Valdivielso P, Morilla MJ, Quaglino D, Guerra D, Casolari S, Bercovitch L, Pasquali-Ronchetti I. Parameters of oxidative stress are present in the circulation of PXE patients. Biochim Biophys Acta. 2008;1782:474–481.
    1. Li Q, Jiang Q, Uitto J. Pseudoxanthoma elasticum: oxidative stress and antioxidant diet in a mouse model (Abcc6−/−) J Invest Dermatol. 2008;128:1160–1164. doi: 10.1038/sj.jid.5701145.
    1. Zarbock R, Hendig D, Szliska C, Kleesiek K, Gotting C. Pseudoxanthoma elasticum: genetic variations in antioxidant genes are risk factors for early disease onset. Clin Chem. 2007;53:1734–1740. doi: 10.1373/clinchem.2007.088211.

Source: PubMed

3
Iratkozz fel