A multicenter effectiveness trial of QEEG-informed neurofeedback in ADHD: Replication and treatment prediction

Noralie Krepel, Tommy Egtberts, Alexander T Sack, Hartmut Heinrich, Mark Ryan, Martijn Arns, Noralie Krepel, Tommy Egtberts, Alexander T Sack, Hartmut Heinrich, Mark Ryan, Martijn Arns

Abstract

Introduction: Quantitative Electroencephalogram-(QEEG-)informed neurofeedback is a method in which standard neurofeedback protocols are assigned, based on individual EEG characteristics in order to enhance effectiveness. Thus far clinical effectiveness data have only been published in a small sample of 21 ADHD patients. Therefore, this manuscript aims to replicate this effectiveness in a new sample of 114 patients treated with QEEG-informed neurofeedback, from a large multicentric dataset and to investigate potential predictors of neurofeedback response.

Methods: A sample of 114 patients were included as a replication sample. Patients were treated with standard neurofeedback protocols (Sensori-Motor-Rhythm (SMR), Theta-Beta (TBR), or Slow Cortical Potential (SCP) neurofeedback), in combination with coaching and sleep hygiene advice. The ADHD Rating Scale (ADHD-RS) and Pittsburgh Sleep Quality Index (PSQI) were assessed at baseline, every 10th session, and at outtake. Holland Sleep Disorder Questionnaire (HSDQ) was assessed at baseline and outtake. Response was defined as ≥25% reduction (R25), ≥50% reduction (R50), and remission. Predictive analyses were focused on predicting remission status.

Results: In the current sample, response rates were 85% (R25), 70% (R50), and remission was 55% and clinical effectiveness was not significantly different from the original 2012 sample. Non-remitters exhibited significantly higher baseline hyperactivity ratings. Women who remitted had significantly shorter P300 latencies and boys who remitted had significantly lower iAPF's.

Discussion: In the current sample, clinical effectiveness was replicated, suggesting it is possible to assign patients to a protocol based on their individual baseline QEEG to enhance signal-to-noise ratio. Furthermore, remitters had lower baseline hyperactivity scores. Likewise, female remitters had shorter P300 latencies, whereas boys who remitted have a lower iAPF. Our data suggests initial specificity in treatment allocation, yet further studies are needed to replicate the predictors of neurofeedback remission.

Conflict of interest statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.

Figures

Fig. 1
Fig. 1
A repeated measures ANOVA using Sample (2012 v. 2019), Sex (female v. male), Age group (children v. adults), and Protocol (SMR, TBR, other) as between-subject factors. Total ADHD-RS symptoms were used as a within-subject factor (pre-, halfway-, and post-measurements). The error bars represent 2SE. Analyses showed a significant effect of Time (F(2,114) = 48.171, p d = 1.97), but no other significant interactions or main effects were observed.
Fig. 2
Fig. 2
Bar graph of HYP scores, separated for remitters and non-remitters. A GLM Univariate analysis showed a significant main effect of Remission (F(1,114) = 5.095, p = 0.026; d = 0.56).
Fig. 3
Fig. 3
P300 latencies separated by remission. A repeated measures ANOVA showed that female remitters had a significantly shorter P300 latency (F(1,25) = 5.570, p = 0.026; dFz = 0.87, dCz = 0.85, dPz = 0.51).
Fig. 4
Fig. 4
A Loess-fit for iAPF and Age, separated for Remission and Non-remission, for male youngster only. A repeated measures ANOVA showed a significant main effect of Remission (F(1,37) = 4.534, p = 0.040; dFz = 0.78, dFCz = 0.68, dPz = 0.42, dOz = 0.66).

References

    1. Arns M. EEG-based personalized medicine in ADHD: individual alpha peak frequency as an endophenotype associated with nonresponse. J. Neurotherapy. 2012;16(2):123–141. doi: 10.1080/10874208.2012.677664.
    1. Arns M., Bruder G., Hegerl U., Spooner C., Palmer D.M., Etkin A., Gordon E. EEG alpha asymmetry as a gender-specific predictor of outcome to acute treatment with different antidepressant medications in the randomized iSPOT-D study. Clin. Neurophysiol. 2016;127(1):509–519. doi: 10.1016/j.clinph.2015.05.032.
    1. Arns M., Conners C.K., Kraemer H.C. A decade of EEG theta/beta ratio research in ADHD: a meta-analysis. J. Attention Disorders. 2013;17(5):374–383. doi: 10.1177/1087054712460087.
    1. Arns M., de Ridder S., Strehl U., Breteler M., Coenen A. Efficacy of neurofeedback treatment in ADHD: the effects on inattention, impulsivity and hyperactivity: a meta-analysis. Clinical EEG Neurosci. 2009;40(3):180–189.
    1. Arns M., Drinkenburg W., Leon Kenemans J. The effects of QEEG-informed neurofeedback in ADHD: an open-label pilot study. Appl. Psychophysiol. Biofeedback. 2012;37(3):171–180. doi: 10.1007/s10484-012-9191-4.
    1. Arns M., Feddema I., Kenemans J.L. Differential effects of theta/beta and SMR neurofeedback in ADHD on sleep onset latency. Front. Hum. Neurosci. 2014;8:1019. doi: 10.3389/fnhum.2014.01019.
    1. Arns M., Gunkelman J., Breteler M., Spronk D. EEG phenotypes predict treatment outcome to stimulants in children with ADHD. J. Integrative Neurosci. 2008;7(3):421–438. doi: 10.1142/S0219635208001897.
    1. Arns M., Heinrich H., Strehl U. Evaluation of neurofeedback in ADHD: the long and winding road. Biol. Psychol. 2014;95:108–115. doi: 10.1016/j.biopsycho.2013.11.013.
    1. Arns M., Kenemans J.L. Neurofeedback in ADHD and insomnia: vigilance stabilization through sleep spindles and circadian networks. Neurosci. Biobehav. Rev. 2014;44:183–194. doi: 10.1016/j.neubiorev.2012.10.006.
    1. Arns M., Swatzyna R.J., Gunkelman J., Olbrich S. Sleep maintenance, spindling excessive beta and impulse control: an RDoC arousal and regulatory systems approach? Neuropsychiatric Electrophysiol. 2015;1(5):1–11. doi: 10.1186/s40810-015-0005-9.
    1. Arns M., Vollebregt M.A., Palmer D., Spooner C., Gordon E., Kohn M., Buitelaar J.K. Electroencephalographic biomarkers as predictors of methylphenidate response in attention-deficit/hyperactivity disorder. Eur. Neuropsychopharmacol. 2018;28(8):881–891. doi: 10.1016/j.euroneuro.2018.06.002.
    1. Association A.P. Criteria for evaluating treatment guidelines. Am. Psychol. 2002;57(12):1052–1059. doi: 10.1037//0003-066X.57.12.1052.
    1. Bahramali H., Gordon E., Lagopoulos J., Lim C.L., Li W., Leslie J., Wright J. The effects of age on late components of the ERP and reaction time. Exp. Aging Res. 1999;25:69–80. doi: 10.1080/036107399244147.
    1. Bakos S., Töllner T., Trinkl M., Landes I., Bartling J., Grossheinrich N., Greimel E. Neurophysiological mechanisms of auditory information processing in adolescence: a study on sex differences. Devel. Neuropsychol. 2016;41(3):201–214. doi: 10.1080/87565641.2016.1194840.
    1. Baron R.M., Kenny D.A. The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. J. Pers. Soc. Psychol. 1986;51(6):1173–1182.
    1. Bussalb A., Collin S., Barthélemy Q., Ojeda D., Bioulac S., Blasco-Fontecilla H., Mayaud L. Is there a cluster of high theta-beta ratio patients in attention deficit hyperactivity disorder? Clin. Neurophysiol. 2019 doi: 10.1016/j.clinph.2019.02.021.
    1. Buysse D.J., Reynolds C.F., III, Monk T.H., Berman S.R., Kupfer D.J. The Pittsburgh sleep quality index: a new instrument for psychiatric practice and research. Psychiatry Res. 1989;28:193–213.
    1. Chervin R.D., Archbold K.H. Hyperactivity and polysomnographic findings in children evaluated for sleep-disordered breathing. Sleep. 2001;24(3):313–320.
    1. Chi M.H., Chu C.L., Lee I.H., Hsieh Y.T., Chen K.C., Chen P.S., Yang Y.K. Altered auditory P300 performance in parents with attention deficit hyperactivity disorder offspring. Clin. Psychopharmacol. Neurosci. 2019;17(4):509–516. doi: 10.9758/cpn.2019.17.4.509.
    1. Clark C.R., Paul R.H., Williams L.M., Arns M., Fallahpour K., Handmer C., Gordon E. Standardized assessment of cognitive functioning during development and aging using an automated touchscreen battery. Arch. Clin. Neuropsychol. 2006;21(5):449–467. doi: 10.1016/j.acn.2006.06.005.
    1. Clarke A.R., Barry R.J., Dupuy F.E., Heckel L.D., McCarthy R., Selikowitz M., Johnstone S.J. Behavioural differences between EEG-defined subgroups of children with Attention-Deficit/Hyperactivity Disorder. Clin. Neurophysiol. 2011;122(7):1333–1341. doi: 10.1016/j.clinph.2010.12.038.
    1. Clarke A.R., Barry R.J., McCarthy R., Selikowitz M. EEG-defined subtypes of children with attention-deficit/hyperactivity disorder. Clin. Neurophysiol. 2001;112:2098–2105.
    1. Clarke A.R., Barry R.J., McCarthy R., Selikowitz M., Clarke D.C., Croft R.J. EEG activity in girls with attention-deficit/hyperactivity disorder. Clin. Neurophysiol. 2003;114(2):319–328. doi: 10.1016/s1388-2457(02)00364-4.
    1. Cortese, S., Ferrin, M., Brandeis, D., Holtmann, M., Aggensteiner, P., Daley, D., . . . (EAGG), o. b. o. t. E. A. G. G., 2016. Neurofeedback for attention-deficit/hyperactivity disorder: meta-analysis of clinical and neuropsychological outcomes from randomized controlled trials. J. Am. Acad. Child Adolescent Psychiatry, 55(6), 444–455.
    1. Degabriele R., Lagopoulos J. A review of EEG and ERP studies in bipolar disorder. Acta Neuropsychiatrica. 2009;21:58–66. doi: 10.1111/j.1601-5215.2009.00359.x.
    1. Gao Y., Raine A. P3 event-related potential impairments in antisocial and psychopathic individuals: a meta-analysis. Biol. Psychiatry. 2009;82:199–210. doi: 10.1016/j.biopsycho.2009.06.006.
    1. Geladé K., Janssen T.W.P., Bink M., Twisk J.W.R., van Mourik R., Maras A., Oosterlaan J. A 6-month follow-up of an RCT on behavioral and neurocognitive effects of neurofeedback in children with ADHD. Eur. Child Adolesc. Psychiatry. 2018;27(5):581–593. doi: 10.1007/s00787-017-1072-1.
    1. Gevensleben H., Albrecht B., Lutcke H., Auer T., Dewiputri W.I., Schweizer R., Rothenberger A. Neurofeedback of slow cortical potentials: neural mechanisms and feasibility of a placebo-controlled design in healthy adults. Front. Hum Neurosci. 2014;8:990. doi: 10.3389/fnhum.2014.00990.
    1. Gevensleben H., Holl B., Albrecht B., Schlamp D., Kratz O., Studer P., Heinrich H. Distinct EEG effects related to neurofeedback training in children with ADHD: a randomized controlled trial. Int. J. Psychophysiol. 2009;74:149–157. doi: 10.1016/j.ijpsycho.2009.08.005.
    1. Group, T.M.C., 1999. A 14-month randomized clinical trial of treatment strategies for attention-deficit/ hyperactivity disorder, Arch. General Psychiatry, 56, 1073–1086.
    1. Heinrich H., Gevensleben H., Freisleder F.J., Moll G.H., Rothenberger A. Training of slow cortical potentials in attention-deficit/hyperactivity disorder: evidence for positive behavioral and neurophysiological effects. Biol. Psychiatry. 2004;55(7):772–775. doi: 10.1016/j.biopsych.2003.11.013.
    1. Hinshaw, S.P., Arnold, L.E., Group, F. t. M. C., 2015. ADHD, Multimodal Treatment, and Longitudinal Outcome: Evidence, Paradox, and Challenge. Wiley Interdisciplinary Reviews: Cognitive Science, 6(1), 39–52. doi:10.1002/wcs.1324.
    1. Holtmann M., Sonuga-Barke E., Cortese S., Brandeis D. Neurofeedback for ADHD: a review of current evidence. Child Adolesc. Psychiatr. Clin. N Am. 2014;23(4):789–806. doi: 10.1016/j.chc.2014.05.006.
    1. Kooij J.J.S., Boonstra A.M., Swinkels S.H.N., Bekker E.M., de Noord I., Buitelaar J.K. Reliability, validity, and utility of instruments for self-report and informant report concerning symptoms of ADHD in adult patients. J. Attention Disorders. 2008;11(4):445–458. doi: 10.1177/1087054707299367.
    1. Kraemer H.C., Wilson G.T., Fairburn C.G., Agras W.S. Mediators and moderators of treatment effects in randomized clinical trials. Arch. Gen. Psychiatry. 2002;59:877–883. doi: 10.1001/archpsyc.59.10.877.
    1. Lim C.L., Gordon E., Rennie C., Wright J.J., Bahramali H., Li W.M., Morris J.G.L. Dynamics of SCR, EEG, and ERP activity in an oddball paradigm with short interstimulus intervals. Psychophysiology. 1999;36:543–551.
    1. Logemann H.N., Lansbergen M.M., Van Os T.W., Bocker K.B., Kenemans J.L. The effectiveness of EEG-feedback on attention, impulsivity and EEG: a sham feedback controlled study. Neurosci. Lett. 2010;479(1):49–53. doi: 10.1016/j.neulet.2010.05.026.
    1. Mayer K., Blume F., Wyckoff S.N., Brokmeier L.L., Strehl U. Neurofeedback of slow cortical potentials as a treatment for adults with Attention Deficit-/Hyperactivity Disorder. Clin. Neurophysiol. 2015;127(2):1374–1386. doi: 10.1016/j.clinph.2015.11.013.
    1. Mayer K., Blume F., Wyckoff S.N., Brokmeier L.L., Strehl U. Neurofeedback of slow cortical potentials as a treatment for adults with Attention Deficit-/Hyperactivity Disorder. Clin. Neurophysiol. 2016;127(2):1374–1386. doi: 10.1016/j.clinph.2015.11.013.
    1. Melynyte S., Wang G.Y., Griskova-Bulanova I. Gender effects on auditory P300: a systematic review. Int. J. Psychophysiol. 2018;133:55–65. doi: 10.1016/j.ijpsycho.2018.08.009.
    1. Monastra, V.J., Monastra, D.M., George, S., 2002. The Effects of Stimulant Therapy, EEG Biofeedback, and Parenting Style on the Primary Symptoms of Attention-Deficit/Hyperactivity Disorder. Appl. Psychophysiol. Biofeedback, 27(4), 231–249.
    1. Nall A. Alpha training and the hyperkinetic child -is it effective? Intervention School Clinic. 1973;9(1):5–19. doi: 10.1177/105345127300900101.
    1. Nanova P., Lyamova L., Hadjigeorgieva M., Kolev V., Yordanova J. Gender-specific development of auditory information processing in children: an ERP study. Clin. Neurophysiol. 2008;119:1992–2003. doi: 10.1016/j.clinph.2008.05.002.
    1. Nussbaum N.L. ADHD and female specific concerns: a review of the literature and clinical implications. J. Attention Disorders. 2012;16(2):87–100. doi: 10.1177/1087054711416909.
    1. Ozdag M.F., Yorbik O., Ulas U.H., Hamamcioglu K., Vural O. Effect of methylphenidate on auditory event related potential in boys with attention deficit hyperactivity disorder. Int. J. Pediatric Otorhinolarygol. 2004;68:1267–1272. doi: 10.1016/j.ijporl.2004.04.023.
    1. Paul R.H., Gunstad J., Cooper N., Williams L.M., Clark C.R., Cohen R.A., Gordon E. Cross-cultural assessment of neuropsychological performance and electrical brain function measures: additional validation of an international brain database. Int. J. Neurosci. 2007;117(4):549–568. doi: 10.1080/00207450600773665.
    1. Qiu, Y.-q., Tang, Y.-x., Chan, R. C. K., sun, X.-y., He, J., 2014. P300 Aberration in First-Episode Schizophrenia Patients: A Meta-Analysis. PLoS One, 9(6).
    1. Rockstroh B., Elbert T., Birbaumer N., Wolf P., Düchting-Röth A., Reker M., Dichgans J. Cortical self-regulation in patients with epilepsies. Epilepsy Res. 1993;14:63–72.
    1. Sander C., Arns M., Olbrich S., Hegerl U. EEG-vigilance and response to stimulants in paediatric patients with attention deficit/hyperactivity disorder. Clin. Neurophysiol. 2010;121:1511–1518. doi: 10.1016/j.clinph.2010.03.021.
    1. Sanfins M.D., Hatzopoulos S., Torre O.H.D., Donadon C., Skarzynski P.H., Colella-Santos M.F. Methylphenidate effects on P300 responses from children and adolescents. Int. J. Pediatric Otorhinolarygol. 2017;96:152–155. doi: 10.1016/j.ijporl.2017.01.034.
    1. Schönenberg M., Wiedemann E., Schneidt A., Scheeff J., Logemann A., Keune P.M., Hautzinger M. Neurofeedback, sham neurofeedback, and cognitive-behavioural group therapy in adults with attention-deficit hyperactivity disorder: a triple-blind, randomised, controlled trial. The Lancet Psychiatry. 2017;4(9):673–684. doi: 10.1016/s2215-0366(17)30291-2.
    1. Sedky K., Bennett D.S., Carvalho K.S. Attention deficit hyperactivity disorder and sleep disordered breathing in pediatric populations: a meta-analysis. Sleep Med. Rev. 2014;18:349–356. doi: 10.1016/j.smrv.2013.12.003.
    1. Simons C.J.P., Sambeth A., Krabbendam L., Pfeifer S., van Os J., Riedel W.J. Auditory P300 and N100 components as intermediate phenotypes for psychotic disorder: familial liability and reliability. Clin. Neurophysiol. 2011;122:1984–1990. doi: 10.1016/j.clinph.2011.02.033.
    1. Steele M., Jensen P.S., Quinn D.M.P. Remission versus response as the goal of therapy in ADHD: a new standard for the field? Clin. Ther. 2006;28(11):1892–1908. doi: 10.1016/j.clinthera.2006.11.006.
    1. Strehl U., Aggensteiner P., Wachtlin D., Brandeis D., Albrecht B., Arana M., Holtmann M. Neurofeedback of slow cortical potentials in children with attention-deficit/hyperactivity disorder: a multicenter randomized trial controlling for unspecific effects. Front. Hum. Neurosci. 2017;11 doi: 10.3389/fnhum.2017.00135.
    1. Sunohara G.A., Voros J.G., Malone M.A., Taylor M.J. Effects of methylphenidate in children with attention deficit hyperactivity disorder: a comparison of event-related potentials between medication responders and non-responders. Int. J. Psychophysiol. 1997;27:9–14.
    1. Swanson J.M., Kraemer H.C., Hinshaw S.P., Arnold L.E., Conners C.K., Abikoff H.B., Wu M. Clinical relevance of the primary findings of the MTA: success rates based on severity of ADHD and ODD symptoms at the end of treatment. J. Am. Acad. Child Adolesc. Psychiatry. 2001;40(2):168–179.
    1. Szuromi B., Czobor P., Komlósi S., Bitter I. P300 deficits in adults with attention deficit hyperactivity disorder: a meta-analysis. Psychol. Med. 2011;41:1529–1538. doi: 10.1017/S0033291710001996.
    1. Tsai M.-L., Hung K.-L., Lu H.-H. Auditory event-related potentials in children with attention deficit hyperactivity disorder. Pediatrics Neonatol. 2012;53:118–124. doi: 10.1016/j.pedneo.2012.01.009.
    1. van Dinteren R., Arns M., Jongsma M.L., Kessels R.P. P300 development across the lifespan: a systematic review and meta-analysis. PLoS ONE. 2014;9(2) doi: 10.1371/journal.pone.0087347.
    1. Van Doren J., Arns M., Heinrich H., Vollebregt M.A., Strehl U., Loo S.K. Sustained effects of neurofeedback in ADHD: a systematic review and meta-analysis. Eur. Child Adolesc. Psychiatry. 2019;28:293–305. doi: 10.1007/s00787-018-1121-4.
    1. Vollebregt, M.A., Arns, M., Monastra, V., Roley-Roberts, M.E., Arnold, L.E., Hollway, J.A., 2019. Shedding light on the etiology of ADHD: The influence of disturbed sleep on symptomatology. doi: 10.31234/.
    1. Weiss M.D., Gibbins C., Goodman D.W., Hodgkins P.S., Landgraf J.M., Faraone S.V. Moderators and mediators of symptoms and quality of life outcomes in an open-label study of adults treated for attention-deficit/hyperactivity disorder. J. Clin. Psychiatry. 2010;71(4):381–390. doi: 10.4088/JCP.08m04709pur.
    1. Williams L.M., Simms E., Clark C.R., Paul R.H., Rowe D., Gordon E. The test-retest reliability of a standardized neurocognitive and neurophysiological test battery: “neuromarker”. Int. J. Neurosci. 2005;115(12):1605–1630. doi: 10.1080/00207450590958475.
    1. Yamamuro K., Ota T., Iida J., Nakanishi Y., Matsuura H., Uratani M., Kishimoto T. Event-related potentials reflect the efficacy of pharmaceutical treatments in children and adolescents with attention deficit/hyperactivity disorder. Psychiatry Res. 2016;242:288–294.
    1. Yamamuro K., Ota T., Iida J., Nakanishi Y., Suehiro Y., Matsuura H., Kishimoto T. Event-related potentials correlate with the severity of child and adolescent patients with attention deficit/hyperactivity disorder. Neuropsychobiology. 2016;73:131–138. doi: 10.1159/000444490.

Source: PubMed

3
Iratkozz fel