Changes in Gene Expression Associated with Collagen Regeneration and Remodeling of Extracellular Matrix after Percutaneous Electrolysis on Collagenase-Induced Achilles Tendinopathy in an Experimental Animal Model: A Pilot Study

José Luis Sánchez-Sánchez, Laura Calderón-Díez, Javier Herrero-Turrión, Roberto Méndez-Sánchez, José L Arias-Buría, César Fernández-de-Las-Peñas, José Luis Sánchez-Sánchez, Laura Calderón-Díez, Javier Herrero-Turrión, Roberto Méndez-Sánchez, José L Arias-Buría, César Fernández-de-Las-Peñas

Abstract

Percutaneous electrolysis is an emerging intervention proposed for the management of tendinopathies. Tendon pathology is characterized by a significant cell response to injury and gene expression. No study investigating changes in expression of those genes associated with collagen regeneration and remodeling of extracellular matrix has been conducted. The aim of this pilot study was to investigate gene expression changes after the application of percutaneous electrolysis on experimentally induced Achilles tendinopathy with collagenase injection in an animal model. Fifteen Sprague Dawley male rats were randomly divided into three different groups (no treatment vs. percutaneous electrolysis vs. needling). Achilles tendinopathy was experimentally induced with a single bolus of collagenase injection. Interventions consisted of 3 sessions (one per week) of percutaneous electrolysis or just needling. The rats were euthanized, and molecular expression of genes involved in tendon repair and remodeling, e.g., Cox2, Mmp2, Mmp9, Col1a1, Col3a1, Vegf and Scx, was examined at 28 days after injury. Histological tissue changes were determined with hematoxylin-eosin and safranin O analyses. The images of hematoxylin-eosin and Safranin O tissue images revealed that collagenase injection induced histological changes compatible with a tendinopathy. No further histological changes were observed after the application of percutaneous electrolysis or needling. A significant increase in molecular expression of Cox2, Mmp9 and Vegf genes was observed in Achilles tendons treated with percutaneous electrolysis to a greater extent than after just needling. The expression of Mmp2, Col1a1, Col3a1, or Scx genes also increased, but did not reach statistical significance. This animal study demonstrated that percutaneous electrolysis applied on an experimentally induced Achilles tendinopathy model could increase the expression of some genes associated with collagen regeneration and remodeling of extracellular matrix. The observed gene overexpression was higher with percutaneous electrolysis than with just needling.

Keywords: Achilles; gene expression; percutaneous electrolysis; tendinopathy.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Application of Percutaneous Electrolysis (EPI© device) on the Achilles tendon of a rat. The positive electrode was placed on the tail of the rat with a cinch (figure on the left top corner).
Figure 2
Figure 2
Flow Diagram summarizing the Experiment Groups.
Figure 3
Figure 3
Stained longitudinal images with hematoxylin–eosin of a normal Achilles tendon (A) and of an injured Achilles tendon of rats euthanized after one week after injection of collagenase (B). The scale bar is at 50 μm.
Figure 4
Figure 4
Stained longitudinal images with Safranin O of a normal Achilles tendon (A) and of an injured Achilles tendon of rats euthanized after one week after injection of collagenase showing the presence of fibrocartilaginous tissue (B). The scale bar is at 50 μm.
Figure 5
Figure 5
Levels of expression of Cox2 (A), Mmp2 (B), Mmp9 (C), Col1a1 (D), Col3a1 (E), Vegf (F) and Scx (G) genes in an healthy control Achilles tendon (C) and experimentally induced tendinopathy tendon (T1). Data were quantified and normalized by using the RT-qPCR procedure. Each bar represents the fold change (FC) ± standard deviation (SD) of the normalized values. *** p < 0.001; ** p < 0.01; * p < 0.05.
Figure 6
Figure 6
Stained longitudinal images with hematoxylin–eosin of injured Achilles tendon with collagenase injection by group: no intervention (A), treated with percutaneous electrolysis (B,C), or treated needling (D). Arrows in C shows several leucocyte cells. The scale bar is at 50 μm (A,B,D) and 10 μm (C).
Figure 7
Figure 7
Levels of expression of Cox2 (A), Mmp2 (B), Mmp9 (C), Col1a1 (D), Col3a1 (E), Vegf (F) and Scx (G) genes in an injured Achilles tendon with collagenase injection by group: no intervention (T2), percutaneous electrolysis (T2 + PE) and needling (T2 + N). Data were quantified and normalized by using the RT-qPCR procedure. Each bar represents the fold change (FC) ± standard deviation (SD). *** p < 0.001; ** p < 0.01; * p < 0.05.

References

    1. Sobhani S., Dekker R., Postema K., Dijkstra P.U. Epidemiology of ankle and foot overuse injuries in sports: A systematic review. Scand. J. Med. Sci. Sports. 2013;23:669–686. doi: 10.1111/j.1600-0838.2012.01509.x.
    1. Waldecker U., Hofmann G., Drewitz S. Epidemiologic investigation of 1394 feet: Coincidence of hindfoot malalignment and Achilles tendon disorders. Foot Ankle Surg. 2012;18:119–123. doi: 10.1016/j.fas.2011.04.007.
    1. Cook J.L., Rio E., Purdam C.R., Docking S.I. Revisiting the continuum model of tendon pathology: What is its merit in clinical practice and research? Br. J. Sports Med. 2016;50:1187–1191. doi: 10.1136/bjsports-2015-095422.
    1. Xu Y., Murrell G.A. The Basic Science of Tendinopathy. Clin. Orthop. Relat. Res. 2008;466:1528–1538. doi: 10.1007/s11999-008-0286-4.
    1. Wu F., Nerlich M., Docheva D. Tendon injuries: Basic science and new repair proposals. EFORT. Open. Rev. 2017;2:332–342. doi: 10.1302/2058-5241.2.160075.
    1. Järvinen T.A. Neovascularisation in tendinopathy: From eradication to stabilisation? Br. J. Sports Med. 2020;54:1–2. doi: 10.1136/bjsports-2019-100608.
    1. Jacobsen E., Dart A.J., Mondori T., Horadogoda N., Jeffcott L.B., Little C., Smith M.M. Focal Experimental Injury Leads to Widespread Gene Expression and Histologic Changes in Equine Flexor Tendons. PLoS ONE. 2015;10:e122220. doi: 10.1371/journal.pone.0122220.
    1. Cadby J.A., David F., van de Lest C., Bosch G., van Weeren P.R., Snedeker J.G., van Shie H.T.M. Further characterization of an experimental model of tendinopathy in the horse. Equine. Vet. J. 2013;45:642–648. doi: 10.1111/evj.12035.
    1. Jones G.C., Corps A.N., Pennington C.J., Clark I.M., Edwards D.R., Bradley M.M., Hazleman B.L., Riley G.P. Expression profiling of metalloproteinases and tissue inhibitors of metalloproteinases in normal and degenerate human achilles tendon. Arthritis Rheum. 2006;54:832–842. doi: 10.1002/art.21672.
    1. Ireland D., Harrall R., Curry V., Holloway G., Hackney R., Hazleman B., Riley G. Multiple changes in gene expression in chronic human Achilles tendinopathy. Matrix Biol. 2001;20:159–169. doi: 10.1016/S0945-053X(01)00128-7.
    1. Van Leeuwen M.T., Zwerver J., Akker-Scheek I.V.D. Extracorporeal shockwave therapy for patellar tendinopathy: A review of the literature. Br. J. Sports Med. 2009;43:163–168. doi: 10.1136/bjsm.2008.050740.
    1. Kearney R., Parsons N., Metcalfe D., Costa M.L. Injection therapies for Achilles tendinopathy. Cochrane Database Syst. Rev. 2015;5:CD010960. doi: 10.1002/14651858.CD010960.pub2.
    1. Dupley L., Charalambous A.C.P. Platelet-Rich Plasma Injections as a Treatment for Refractory Patellar Tendinosis: A Meta-Analysis of Randomised Trials. Knee Surg. Relat. Res. 2017;29:165–171. doi: 10.5792/ksrr.16.055.
    1. Murphy M.C., Travers M.J., Chivers P., Debenham J.R., Docking S.I., Rio E., Gibson W. Efficacy of heavy eccentric calf training for treating mid-portion Achilles tendinopathy: A systematic review and meta-analysis. Br. J. Sports Med. 2019;53:1070–1077. doi: 10.1136/bjsports-2018-099934.
    1. Sanchez-Ibáñez J.M. Clinical Course in the Treatment of Chronic Patellar Tendinopathy through Ultrasound Guided Percutaneous Electrolysis Intratissue (EPI®): Study of a Population Series of Cases in Sport. Atlantic International University; Honolulu, HI, USA: 2009.
    1. Abat F., Sánchez-Sánchez J.L., Martín-Nogueras A., Calvo-Arenillas J.I., Yajeya J., Méndez-Sánchez R., Monllau J.C., Gelber P.E. Randomized controlled trial comparing the effectiveness of the ultrasound-guided galvanic electrolysis technique (USGET) versus conventional electro-physiotherapeutic treatment on patellar tendinopathy. J. Exp. Orthop. 2016;3:34. doi: 10.1186/s40634-016-0070-4.
    1. Iborra-Marcos Á., Ramos-Álvarez J.J., Rodriguez-Fabián G., Del Castillo-González F., López-Román A., Polo-Portes C., Villanueva-Martínez M. Intratissue Percutaneous Electrolysis vs Corticosteroid Infiltration for the Treatment of Plantar Fasciosis. Foot Ankle Int. 2018;39:704–711. doi: 10.1177/1071100718754421.
    1. Almeida M.D.L.C., Góngora-Rodríguez J., Lomas-Vega R., Martín-Valero R., Díaz-Fernández Á., Obrero-Gaitán E., Ibáñez-Vera A.J., Rodríguez-Almagro D. Percutaneous Electrolysis in the Treatment of Lateral Epicondylalgia: A Single-Blind Randomized Controlled Trial. J. Clin. Med. 2020;9:2068. doi: 10.3390/jcm9072068.
    1. Valtierra L.D.M., Moreno J.S., Fernández-Muñoz J.J., Cleland J.A., Arias-Buría J.L. Ultrasound-Guided Application of Percutaneous Electrolysis as an Adjunct to Exercise and Manual Therapy for Subacromial Pain Syndrome: A Randomized Clinical Trial. J. Pain. 2018;19:1201–1210. doi: 10.1016/j.jpain.2018.04.017.
    1. Almeida M.D.L.C., Góngora-Rodríguez J., Rodríguez-Huguet P., Ibáñez-Vera A.J., Rodríguez-Almagro D., Martín-Valero R., Díaz-Fernández Á., Lomas-Vega R. Effectiveness of Percutaneous Electrolysis in Supraspinatus Tendinopathy: A Single-Blinded Randomized Controlled Trial. J. Clin. Med. 2020;9:1837. doi: 10.3390/jcm9061837.
    1. Medina-Mirapeix F., García-Vidal J.A., Escolar Reina P., Martínez Cáceres C.M. Histopathological analysis of the inflammatory response of two invasive techniques in the calcaneal tendon of a mouse (Abstract) Rev. Fisioter. Invasiva. 2019;2:91.
    1. García-Vidal J.A., Pelegrín Vivancos P., Escolar Reina P., Medina-Mirapeix F. Inflammatory response of two invasive techniques in the mouse with collagenase induced tendinopathy. Rev. Fisioter. Invasiva. 2019;2:80.
    1. Margalef R., Minaya Muñoz F., Valera Garrido F., Santafe M.M. Vasodilation secondary to exposure to galvanic currents. Rev. Fisioter. Invasiva. 2019;2:107. doi: 10.1055/s-0039-3401880.
    1. Margalef R., Minaya-Muñoz F., Valera-Garrido F., Bosque M., Santafé M.M. Changes in pH as a result of galvanic currents used in percutaneous needle electrolysis. Rev. Fisioter. Invasiva J. Invasive Tech. Phys. Ther. 2020;3:2–6. doi: 10.1055/s-0040-1712511.
    1. De Cesar Netto C., Godoy-Santos A.L., Augusto Pontin P., Mendonca Natalino R.J., Martins Pereira C.A., de Oliveira Lima F.D., Da Fonseca L.F., Staggers J.R., Cavinatto L.M., Schon L.C., et al. Novel animal model for Achilles tendinopathy: Controlled experimental study of serial injections of collagenase in rabbits. PLoS ONE. 2018;13:e192769. doi: 10.1371/journal.pone.0192769.
    1. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 1987;162:156–159. doi: 10.1016/0003-2697(87)90021-2.
    1. Herrero-Turrión M.J., Rodríguez-Martín I., López-Bellido R., Rodríguez R. Whole-genome expression profile in zebrafish embryos after chronic exposure to morphine: Identification of new genes associated with neuronal function and mu opioid receptor expression. BMC Genom. 2014;15:874. doi: 10.1186/1471-2164-15-874.
    1. Schmittgen T.D., Livak K.J. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 2008;3:1101–1108. doi: 10.1038/nprot.2008.73.
    1. Lee S.Y., Chieh H.F., Lin C.J., Jou I.M., Sun Y.N., Kuo L.C., Wu P.T., Su F.C. Characteristics of Sonography in a Rat Achilles Tendinopathy Model: Possible Non-invasive Predictors of Biomechanics. Sci. Rep. 2017;7:5100. doi: 10.1038/s41598-017-05466-y.
    1. Orfei C.P., Lovati A.B., Viganò M., Stanco D., Bottagisio M., Di Giancamillo A., Setti S., De Girolamo L. Dose-Related and Time-Dependent Development of Collagenase-Induced Tendinopathy in Rats. PLoS ONE. 2016;11:e161590. doi: 10.1371/journal.pone.0161590.
    1. Biasutti S., Dart A., Smith M., Blaker C., Clarke E., Jeffcott L., Little C. Spatiotemporal variations in gene expression, histology and biomechanics in an ovine model of tendinopathy. PLoS ONE. 2017;12:e185282. doi: 10.1371/journal.pone.0185282.
    1. Eriksen H.A., Pajala A., Leppilahti J., Risteli J. Increased content of type III collagen at the rupture site of human Achilles tendon. J. Orthop. Res. 2002;20:1352–1357. doi: 10.1016/S0736-0266(02)00064-5.
    1. Maffulli N., Ewen S.W.B., Waterston S.W., Reaper J., Barrass V. Tenocytes from Ruptured and Tendinopathic Achilles Tendons Produce Greater Quantities of Type III Collagen than Tenocytes from Normal Achilles Tendons: An in Vitro Model of Human Tendon Healing. Am. J. Sports Med. 2000;28:499–505. doi: 10.1177/03635465000280040901.
    1. Riley G. The pathogenesis of tendinopathy. A molecular perspective. Rheumatology. 2004;43:131–142. doi: 10.1093/rheumatology/keg448.
    1. Jelinsky S., Rodeo S.A., Li J., Gulotta L.V., Archambault J.M., Seeherman H.J. Regulation of gene expression in human tendinopathy. BMC Musculoskelet. Disord. 2011;12:86. doi: 10.1186/1471-2474-12-86.
    1. Karousou E., Ronga M., Vigetti D., Passi A., Maffulli N. Collagens, Proteoglycans, MMP-2, MMP-9 and TIMPs in Human Achilles Tendon Rupture. Clin. Orthop. Relat. Res. 2008;466:1577–1582. doi: 10.1007/s11999-008-0255-y.
    1. Fu B.S.C., Wang W., Pau H.M., Wong Y.P., Chan K.M., Rolf C.G. Increased Expression of Transforming Growth Factor-beta1 in Patellar Tendinosis. Clin. Orthop. Relat. Res. 2002;400:174–183. doi: 10.1097/00003086-200207000-00022.
    1. Alfredson H., Ohberg L., Forsgren S. Is vasculo-neural ingrowth the cause of pain in chronic Achilles tendinosis? An investigation using ultrasonography and colour Doppler, immunohistochemistry, and diagnostic injections. Knee Surg. Sports. Traumatol. Arthrosc. 2003;11:334–338. doi: 10.1007/s00167-003-0391-6.
    1. Juneja S.C., Schwarz E.M., O’Keefe R.J., Awad H.A. Cellular and Molecular Factors in Flexor Tendon Repair and Adhesions: A Histological and Gene Expression Analysis. Connect. Tissue Res. 2013;54:218–226. doi: 10.3109/03008207.2013.787418.
    1. Manning C.N., Havlioglu N., Knutsen E., Sakiyama-Elbert S.E., Silva M.J., Thomopoulos S., Gelberman R.H. The early inflammatory response after flexor tendon healing: A gene expression and histological analysis. J. Orthop. Res. 2014;32:645–652. doi: 10.1002/jor.22575.
    1. Eliasson P., Andersson T., Aspenberg P. Rat Achilles tendon healing: Mechanical loading and gene expression. J. Appl. Physiol. 2009;107:399–407. doi: 10.1152/japplphysiol.91563.2008.
    1. Liu H., Zhu S., Zhang C., Lu P., Hu J., Yin Z., Ma Y., Chen X., Ouyang H. Crucial transcription factors in tendon development and differentiation: Their potential for tendon regeneration. Cell Tissue Res. 2014;356:287–298. doi: 10.1007/s00441-014-1834-8.
    1. Sharma P., Maffulli N. Biology of tendon injury: Healing, modeling and remodeling. J. Musculoskelet. Neuronal Interact. 2006;6:181–190.
    1. Sugg K.B., Lubardic J., Gumucio J.P., Mendias C.L. Changes in macrophage phenotype and induction of epithelial-to-mesenchymal transition genes following acute Achilles tenotomy and repair. J. Orthop. Res. 2014;32:944–951. doi: 10.1002/jor.22624.
    1. Oshiro W., Lou J., Xing X., Tu Y., Manske P.R. Flexor tendon healing in the rat: A histologic and gene expression study. J. Hand Surg. 2003;28:814–823. doi: 10.1016/S0363-5023(03)00366-6.
    1. Loiselle A.E., Bragdon G.A., Jacobson J.A., Hasslund S., Cortes Z.E., Schwarz E.M., Mitten D.J., Awad H.A., O’Keefe R.J. Remodeling of murine intrasynovial tendon adhesions following injury: MMP and neotendon gene expression. J. Orthop. Res. 2009;27:833–840. doi: 10.1002/jor.20769.
    1. Voleti P.B., Buckley M.R., Soslowsky L.J. Tendon Healing: Repair and Regeneration. Annu. Rev. Biomed. Eng. 2012;14:47–71. doi: 10.1146/annurev-bioeng-071811-150122.
    1. Chen C.H., Cao Y., Wu Y.F., Bais A.J., Gao J.S., Tang J.B. Tendon Healing In Vivo: Gene Expression and Production of Multiple Growth Factors in Early Tendon Healing Period. J. Hand Surg. 2008;33:1834–1842. doi: 10.1016/j.jhsa.2008.07.003.
    1. Tan C., Lui P.P.Y., Lee Y.W., Wong Y.M. Scx-Transduced Tendon-Derived Stem Cells (TDSCs) Promoted Better Tendon Repair Compared to Mock-Transduced Cells in a Rat Patellar Tendon Window Injury Model. PLoS ONE. 2014;9:e97453. doi: 10.1371/journal.pone.0097453.

Source: PubMed

3
Iratkozz fel