Gait parameters of Parkinson's disease compared with healthy controls: a systematic review and meta-analysis

Ana Paula Janner Zanardi, Edson Soares da Silva, Rochelle Rocha Costa, Elren Passos-Monteiro, Ivan Oliveira Dos Santos, Luiz Fernando Martins Kruel, Leonardo Alexandre Peyré-Tartaruga, Ana Paula Janner Zanardi, Edson Soares da Silva, Rochelle Rocha Costa, Elren Passos-Monteiro, Ivan Oliveira Dos Santos, Luiz Fernando Martins Kruel, Leonardo Alexandre Peyré-Tartaruga

Abstract

We systematically reviewed observational and clinical trials (baseline) studies examining differences in gait parameters between Parkinson's disease (PD) in on-medication state and healthy control. Four electronic databases were searched (November-2018 and updated in October-2020). Independent researchers identified studies that evaluated gait parameters measured quantitatively during self-selected walking speed. Risk of bias was assessed using an instrument proposed by Downs and Black (1998). Pooled effects were reported as standardized mean differences and 95% confidence intervals using a random-effects model. A total of 72 studies involving 3027 participants (1510 with PD and 1517 health control) met the inclusion criteria. The self-selected walking speed, stride length, swing time and hip excursion were reduced in people with PD compared with healthy control. Additionally, PD subjects presented higher cadence and double support time. Although with a smaller difference for treadmill, walking speed is reduced both on treadmill (.13 m s-1) and on overground (.17 m s-1) in PD. The self-select walking speed, stride length, cadence, double support, swing time and sagittal hip angle were altered in people with PD compared with healthy control. The precise determination of these modifications will be beneficial in determining which intervention elements are most critical in bringing about positive, clinically meaningful changes in individuals with PD (PROSPERO protocol CRD42018113042).

Conflict of interest statement

The authors declare no competing interests.

Figures

Figure 1
Figure 1
Flowchart of number of articles retrieved during the literature search and study selection.
Figure 2
Figure 2
Standardized mean differences on gait speed between Parkinson and healthy individuals. CI confidence interval, Std diff standardized difference.
Figure 3
Figure 3
Standardized mean differences on stride length between Parkinson and healthy individuals. CI confidence interval, Std diff standardized difference.
Figure 4
Figure 4
Standardized mean differences on gait cadence between Parkinson and healthy individuals. CI confidence interval, Std diff standardized difference.

References

    1. Schneider SA, Alcalay RN. Neuropathology of genetic synucleinopathies with parkinsonism: review of the literature. Mov. Disord. 2017;32:1504–1523. doi: 10.1002/mds.27193.
    1. Peterson DS, Horak FB. Neural control of walking in people with parkinsonism. Physiology. 2016;31:95–107. doi: 10.1152/physiol.00034.2015.
    1. Dorsey ER, et al. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology. 2007;68:84–86. doi: 10.1212/01.wnl.0000247740.47667.03.
    1. Pringsheim T, Jette N, Frolkis A, Steeves TD. The prevalence of Parkinson's disease: a systematic review and meta-analysis. Mov. Disord. 2014;29:1583–1590. doi: 10.1002/mds.25945.
    1. Ascherio A, Schwarzschild AMD. The epidemiology of Parkinson's disease: risk factors and prevention. Lancet Neurol. 2016;15:1257–1272. doi: 10.1016/S1474-4422(16)30230-7.
    1. Elbaz A, Carcaillon L, Kab S, Moisan F. Epidemiology of Parkinson's disease. Rev. Neurol. 2016;172:14–26. doi: 10.1016/j.neurol.2015.09.012.
    1. Sveinbjornsdottir S. The clinical symptoms of Parkinson's disease. J. Neurochem. 2016;139:318–324. doi: 10.1111/jnc.13691.
    1. Morris ME, Iansek R, Matyas TA, Summers JJ. Ability to modulate walking cadence remains intact in Parkinson's disease. J. Neurol. Neurosurg. 1994;57:1532–1534. doi: 10.1136/jnnp.57.12.1532.
    1. Van Emmerik REA, Wagenaar RC, Winogrodzka A, Wolters EC. Identification of axial rigidity during locomotion in Parkinson disease. Arch. Phys. Med. Rehabil. 1999;2:186–191. doi: 10.1016/S0003-9993(99)90119-3.
    1. Dipaola M, et al. Mechanical energy recovery during walking in patients with Parkinson disease. PLoS ONE. 2016;11:e0156420. doi: 10.1371/journal.pone.0156420.
    1. Carpinella I, et al. Locomotor function in the early stage of Parkinson's disease. IEEE Trans. Rehabil. Eng. 2007;15:543–551. doi: 10.1109/TNSRE.2007.908933.
    1. Monteiro EP, Wind LB, Martinez FG, Pagnussat AS, Peyré-Tartaruga LA. Aspectos biomecânicos da locomoção de pessoas com doença de Parkinson: revisão narrativa. RBCE. 2017;39:450–457. doi: 10.1016/j.rbce.2016.07.003.
    1. Mirelman A, et al. Gait impairments in Parkinson's disease. Lancet Neurol. 2019;18:697–708. doi: 10.1016/S1474-4422(19)30044-4.
    1. Creaby MW, Cole MH. Gait characteristics and falls in Parkinson's disease: a systematic review and meta-analysis. Parkinsonism Relat. Disord. 2018;57:1–8. doi: 10.1016/j.parkreldis.2018.07.008.
    1. Stroup DF, et al. Meta-analysis of observational studies in epidemiology a proposal for reporting. JAMA Netw. Open. 2000;283:2008–2012. doi: 10.1001/jama.283.15.2008.
    1. Higgins, J., Deeks, J., & Altman, D. Cochrane handbook for systematic reviews of interventions, version 5.1. The Cochrane Collaboration (2011).
    1. Downs SH, Black N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J. Epidemiol. Community Health. 1998;52:377–384. doi: 10.1136/jech.52.6.377.
    1. Bates AV, Alexander CM. Kinematics and kinetics of people who are hypermobile. A systematic review. Gait Posture. 2015;41:361–369. doi: 10.1016/j.gaitpost.2015.01.009.
    1. Dixon CJ, Knight T, Binns E, Ihaka B, O’brien D. Clinical measures of balance in people with type two diabetes: a systematic literature review. Gait Posture. 2017;58:325–332. doi: 10.1016/j.gaitpost.2017.08.022.
    1. Mousavi SH, et al. Kinematic risk factors for lower limb tendinopathy in distance runners: a systematic review and meta-analysis. Gait Posture. 2019;69:13–24. doi: 10.1016/j.gaitpost.2019.01.011.
    1. Ratcliffe E, Pickering S, McLean S, Lewis J. Is there a relationship between subacromial impingement syndrome and scapular orientation? A systematic review. Br. J. Sports Med. 2014;48:1251–1256. doi: 10.1136/bjsports-2013-092389.
    1. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–634. doi: 10.1136/bmj.315.7109.629.
    1. Duval S, Tweedie R. Trim and fill: a simple Funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics. 2000;56:455–463. doi: 10.1111/j.0006-341x.2000.00455.x.
    1. Lindemann U. Spatiotemporal gait analysis of older persons in clinical practice and research: Which parameters are relevant? Z. Gerontol. Geriatr. 2019;53:1–7. doi: 10.1007/s00391-019-01520-8.
    1. Peppe A, Chiavalon C, Pasqualetti P, Crovato D, Caltagirone C. Does gait analysis quantify motor rehabilitation efficacy in Parkinson's disease patients? Gait Posture. 2007;26:452–462. doi: 10.1016/j.gaitpost.2006.11.207.
    1. Morris M, Iansek R, Matyas T, Summers J. Abnormalities in the stride length-cadence relation in parkinsonian gait. Mov. Disord. 1998;13:61–69. doi: 10.1002/mds.870130115.
    1. Bloem BR, et al. Measurement instruments to assess posture, gait, and balance in Parkinson's disease: critique and recommendations. Mov. Disord. 2016;31:1342–1355. doi: 10.1002/mds.26572.
    1. Owings M, Grabiner D. Variability of step kinematics in young and older adults. Gait Posture. 2004;20:26–29. doi: 10.1016/S0966-6362(03)00088-2.
    1. Malatesta D, Canepa M, Fernandez A. The effect of treadmill and overground walking on preferred walking speed and gait kinematics in healthy, physically active older adults. Eur. J. Appl. Physiol. 2017;117:1833–1843. doi: 10.1007/s00421-017-3672-3.
    1. Saunders JBDM, Inman VT, Eberhart HD. The major determinants in normal and pathological gait. J. Bone Joint Surg. Am. 1953;35:543–558. doi: 10.2106/00004623-195335030-00003.
    1. Shu HF, et al. Aerobic exercise for Parkinson's disease: a systematic review and meta-analysis of randomized controlled trials. PLoS ONE. 2014;9:e100503. doi: 10.1371/journal.pone.0100503.
    1. LaHue SC, Comella CL, Tanner CM. The best medicine? The influence of physical activity and inactivity on Parkinson's disease. Mov. Disord. 2016;31:444–454. doi: 10.1002/mds.26728.
    1. Sharp K, Hewitt J. Dance as an intervention for people with Parkinson's disease: a systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2014;47:445–456. doi: 10.1016/j.neubiorev.2014.09.009.
    1. Gougeon MA, Zhou L, Nantel J. Nordic walking improves trunk stability and gait spatial-temporal characteristics in people with Parkinson disease. NeuroRehabilitation. 2017;41:205–210. doi: 10.3233/NRE-171472.
    1. Arias P, Cudeiro J. Effects of rhythmic sensory stimulation (auditory, visual) on gait in Parkinson's disease patients. Exp. Brain. Res. 2008;186:589–601. doi: 10.1007/s00221-007-1263-y.
    1. Azulay JP, et al. Visual control of locomotion in Parkinson's disease. Brain. 1999;122:111–120. doi: 10.1093/brain/122.1.111.
    1. Azulay JP, Mesure S, Amblard B, Pouget J. Increased visual dependence in Parkinson's disease. Percept. Mot. Skills. 2002;95:1106–1114. doi: 10.2466/pms.2002.95.3f.1106.
    1. Bhatt H, Pieruccini-Faria F, Almeida QJ. Dynamics of turning sharpness influences freezing of gait in Parkinson's disease. Parkinsonism Relat. Disord. 2013 doi: 10.1016/j.parkreldis.2012.09.006.
    1. Blin O, Ferrandez AM, Serratrice G. Quantitative analysis of gait in Parkinson patients: increased variability of stride length. J. Neurol. Sci. 1990;98:91–97. doi: 10.1016/0022-510X(90)90184-O.
    1. Bond JM, Morn's M. Goal-directed secondary motor tasks: their effects on gait in subjects with Parkinson disease. Arch. Phys. Med. Rehabil. 2000;81:110–116. doi: 10.1016/S0003-9993(00)90230-2.
    1. Brown LA, Bruin N, Doan JB, Suchowersky O, Hu B. Novel challenges to gait in Parkinson's disease: the effect of concurrent music in single- and dual-task contexts. Arch. Phys. Med. Rehabil. 2009;90:1578–1583. doi: 10.1016/j.apmr.2009.03.009.
    1. Bugalho P, Alves L, Miguel R. Gait dysfunction in Parkinson's disease and normal pressure hydrocephalus: a comparative study. J. Neural. Transm. 2013;120:1201–1207. doi: 10.1007/s00702-013-0975-3.
    1. Caetano MJ, Gobbi LT, Sanchez-Arias MDER, Stella F, Gobbi S. Effects of postural threat on walking features of Parkinson's disease patients. Neurosci. Lett. 2009;52:136–140. doi: 10.1007/978-3-319-48980-3_12.
    1. Castagna A, et al. Quantitative gait analysis in Parkinson’s disease: Possible role of dystonia. Mov. Disord. 2016;31:1720–1728. doi: 10.1002/mds.26672.
    1. Chen SW, et al. Quantification and recognition of parkinsonian gait from monocular video imaging using kernel-based principal component analysis. Biomed. Eng. Online. 2011 doi: 10.1186/1475-925X-10-99.
    1. Cole MH, Silburn PA, Wood JM, Worringham CJ, Kerr GK. Falls in Parkinson's disease: kinematic evidence for impaired head and trunk control. Mov. Disord. 2010;25:2369–2378. doi: 10.1002/mds.23292.
    1. Cole MH, Naughton GA, Silburn PA. Neuromuscular impairments are associated with impaired head and trunk stability during gait in Parkinson fallers. Neurorehabil. Neural Repair. 2017;31:34–47. doi: 10.1177/1545968316656057.
    1. Danoudis M, Iansek R. Gait in Huntington's disease and the stride length-cadence relationship. BMC Neurol. 2014 doi: 10.1186/s12883-014-0161-8.
    1. De Nunzio AM, Grasso M, Nardone A, Godi M, Schieppati M. Alternate rhythmic vibratory stimulation of trunk muscles affects walking cadence and velocity in Parkinson's disease. Clin. Neurophysiol. 2010;121:240–247. doi: 10.1016/j.clinph.2009.10.018.
    1. Del Din S, Godfrey A, Galna B, Lord S, Rochester L. Free-living gait characteristics in ageing and Parkinson's disease: impact of environment and ambulatory bout length. J. Neuroeng. Rehabil. 2016 doi: 10.1186/s12984-016-0154-5.
    1. Demonceau M, et al. Contribution of a trunk accelerometer system to the characterization of gait in patients with mild-to-moderate Parkinson's disease. IEEE J. Biomed. Health. 2015;19:1803–1808. doi: 10.1109/jbhi.2015.2469540.
    1. Dillmann U, et al. Principal component analysis of gait in Parkinson's disease: relevance of gait velocity. Gait Posture. 2014;39:882–887. doi: 10.1016/j.gaitpost.2013.11.021.
    1. Ebersbach G, et al. Comparative analysis of gait in Parkinson's disease, cerebellar ataxia and subcortical arteriosclerotic encephalopathy. Brain. 1999;122:1349–1355. doi: 10.1093/brain/122.7.1349.
    1. Egerton T, Williams DR, Iansek R. Comparison of gait in progressive supranuclear palsy, Parkinson's disease and healthy older adults. BMC Neurol. 2012 doi: 10.1186/1471-2377-12-116.
    1. Eltoukhy M, et al. Microsoft Kinect can distinguish differences in over-ground gait between older persons with and without Parkinson's disease. Med. Eng. Phys. 2017;44:1–7. doi: 10.1016/j.medengphy.2017.03.007.
    1. Esser P, Dawes H, Collett J, Howells K. Insights into gait disorders: walking variability using phase plot analysis, Parkinson's disease. Gait Posture. 2012;38:648–652. doi: 10.1016/j.gaitpost.2013.02.016.
    1. Esser P, Dawes H, Collett J, Feltham MG, Howells K. Assessment of spatio-temporal gait parameters using inertial measurement units in neurological populations. Gait Posture. 2011;34:558–560. doi: 10.3791/51878.
    1. Frenkel-Toledo S, et al. Effect of gait speed on gait rhythmicity in Parkinson's disease: variability of stride time and swing time respond differently. J. Neuroeng. Rehabil. 2005 doi: 10.1186/1743-0003-2-23.
    1. Frenkel-Toledo S, et al. Treadmill walking as an external pacemaker to improve gait rhythm and stability in Parkinson's disease. Mov. Disord. 2005;20:1109–1114. doi: 10.1002/mds.20507.
    1. Galletly R, Brauer SG. Does the type of concurrent task affect preferred and cued gait in people with Parkinson's disease? Aust. J. Physiother. 2005;51:175–180. doi: 10.1016/S0004-9514(05)70024-6.
    1. Hackney ME, Earhart GM. The effects of a secondary task on forward and backward walking in Parkinson's disease. Neurorehabil. Neural Repair. 2010;24:97–106. doi: 10.1177/1545968309341061.
    1. Hackney ME, Earhart GM. Backward walking in Parkinson's disease. Mov. Disord. 2009;24:218–223. doi: 10.1002/mds.22330.
    1. Hausdorff JM, et al. Rhythmic auditory stimulation modulates gait variability in Parkinson's disease. Eur. J. Neurosci. 2007;26:2369–2375. doi: 10.1111/j.1460-9568.2007.05810.x.
    1. Jaywant A, Shiffrar M, Roy S, Cronin-Golomb A. Impaired perception of biological motion in Parkinson's disease. Neuropsychology. 2016;30:720–730. doi: 10.1037/neu0000276.
    1. Kimmeskamp S, Hennig EM. Heel to toe motion characteristics in Parkinson patients during free walking. Clin. Biomech. 2001;16:806–812. doi: 10.1016/s0268-0033(01)00069-9.
    1. Kincses P, et al. Association of gait characteristics and depression in patients with Parkinson's disease assessed in goal-directed locomotion task. Parkinsons Dis. 2017 doi: 10.1155/2017/6434689.
    1. Latt MD, Menz HB, Fung VS, Lord SR. Acceleration patterns of the head and pelvis during gait in older people with Parkinson's disease: a comparison of fallers and nonfallers. J. Gerontol. A Biol. Sci. Med. Sci. 2009;64:700–706. doi: 10.1093/gerona/glp009.
    1. Lewis GN, Byblow WD, Walt SE. Stride length regulation in Parkinson's disease: the use of extrinsic, visual cues. Brain. 2000;123:2077–2090. doi: 10.1093/brain/123.10.2077.
    1. Lin H, et al. Quantitative measurement of Parkinsonian gait from walking in monocular image sequences using a centroid tracking algorithm. Med. Biol. Eng. Comput. 2016;54:485–496. doi: 10.1007/s11517-015-1335-2.
    1. Lohnes CA, Earhart GM. The impact of attentional, auditory, and combined cues on walking during single and cognitive dual tasks in Parkinson disease. Gait Posture. 2011;33:478–483. doi: 10.1016/j.gaitpost.2010.12.029.
    1. Lowry KA, Smiley-Oyen AL, Carrel AJ, Kerr JP. Walking stability using harmonic ratios in Parkinson's disease. Mov. Disord. 2009;24:261–267. doi: 10.1002/mds.22352.
    1. Maggioni MA, et al. Energy cost of spontaneous walking in Parkinson's disease patients. Neurol. Sci. 2012;33:779–784. doi: 10.1007/s10072-011-0827-6.
    1. Mak MK. Reduced step length, not step length variability is central to gait hypokinesia in people with Parkinson's disease. Clin. Neurol. Neurosurg. 2013;115:587–590. doi: 10.1016/j.clineuro.2012.07.014.
    1. Mak MK, Yu L, Hui-Chan CW. The immediate effect of a novel audio-visual cueing strategy (simulated traffic lights) on dual-task walking in people with Parkinson's disease. Eur. J. Phys. Rehabil. Med. 2013;49:153–159.
    1. McNeely ME, Duncan RP, Earhart GM. Medication improves balance and complex gait performance in Parkinson disease. Gait Posture. 2012;36:144–148. doi: 10.1016/j.gaitpost.2012.02.009.
    1. Morris ME, Iansek R, Matyas TA, Summers JJ. The pathogenesis of gait hypokinesia in Parkinson's disease. Brain. 1994;117:1169–1181. doi: 10.1093/brain/117.5.1169.
    1. Morris M, Iansek R, McGinley J, Matyas T, Huxham F. Three-dimensional gait biomechanics in Parkinson's disease: evidence for a centrally mediated amplitude regulation disorder. Mov. Disord. 2005;20:40–50. doi: 10.1002/mds.20278.
    1. O'Shea S, Morris ME, Iansek R. Dual task interference during gait in people with Parkinson disease: effects of motor versus cognitive secondary tasks. Phys. Ther. 2002;82:888–897. doi: 10.1093/ptj/82.9.888.
    1. Pieruccini-Faria F, et al. Evaluating the acute contributions of dopaminergic replacement to gait with obstacles in Parkinson's disease. J. Mot. Behav. 2013;45:369–380. doi: 10.1080/00222895.2013.810139.
    1. Rabin E, et al. Parkinsonian gait ameliorated with a moving handrail, not with a banister. Arch. Phys. Med. Rehabil. 2015;96:735–741. doi: 10.1016/j.apmr.2014.07.427.
    1. Rafferty MR, et al. Effects of 2 years of exercise on gait impairment in people with parkinson disease: the PRET-PD randomized trial. J. Neurol. Phys. Ther. 2017;41:21–30. doi: 10.1097/NPT.0000000000000163.
    1. Rochester L, et al. Cholinergic dysfunction contributes to gait disturbance in early Parkinson's disease. Brain. 2012;135:2779–2788. doi: 10.1093/brain/aws2079.
    1. Roiz RM, et al. Gait analysis comparing Parkinson's disease with healthy elderly subjects. Arq. Neuropsiquiatr. 2010;68:81–86. doi: 10.1590/S0004-282X2010000100018.
    1. Salazar RD, et al. Dual tasking in Parkinson's disease: cognitive consequences while walking. Neuropsychology. 2017;31:613–623. doi: 10.1037/neu0000331.
    1. Santos PC, et al. Effects of leg muscle fatigue on gait in patients with Parkinson's disease and controls with high and low levels of daily physical activity. Gait Posture. 2016;47:86–91. doi: 10.1016/j.gaitpost.2016.04.002.
    1. Sofuwa O, et al. Quantitative gait analysis in Parkinson's disease: comparison with a healthy control group. Arch. Phys. Med. Rehabil. 2005;86:1007–1013. doi: 10.1016/j.apmr.2004.08.012.
    1. Stolze H, et al. Comparative analysis of the gait disorder of normal pressure hydrocephalus and Parkinson's disease. J. Neurol. Neurosurg. Psychiatry. 2001;70:289–297. doi: 10.1136/jnnp.70.3.289.
    1. Tramonti C, et al. Gait dynamics in Pisa syndrome and camptocormia: the role of stride length and hip kinematics. Gait Posture. 2017;57:130–135. doi: 10.1016/j.gaitpost.2017.05.029.
    1. Trojaniello D, et al. Estimation of step-by-step spatio-temporal parameters of normal and impaired gait using shank-mounted magneto-inertial sensors: application to elderly, hemiparetic, parkinsonian and choreic gait. J. Neuroeng. Rehabil. 2014 doi: 10.1186/1743-0003-11-152.
    1. Turcato AM, et al. Abnormal gait pattern emerges during curved trajectories in high-functioning Parkinsonian patients walking in line at normal speed. PLoS ONE. 2018;13:e0197264. doi: 10.1371/journal.pone.0197264.
    1. Van Wegen E, et al. The effects of visual rhythms and optic flow on stride patterns of patients with Parkinson's disease. Parkinsonism Relat. Disord. 2006;12:21–27. doi: 10.1016/j.parkreldis.2005.06.009.
    1. Vaugoyeau M, Viallet F, Mesure S, Massion J. Coordination of axial rotation and step execution: deficits in Parkinson's disease. Gait Posture. 2003;18:150–157. doi: 10.1016/S0966-6362(03)00034-1.
    1. Vieregge P, Stolze H, Klein C, Heberlein L. Gait quantitation in Parkinson's disease-locomotor disability and correlation to clinical rating scales. J. Neural. Transm. (Vienna) 1997;104:237–248. doi: 10.1007/BF01273184.
    1. Vitorio R, et al. Visual cues and gait improvement in Parkinson's disease: Which piece of information is really important? Neuroscience. 2014;277:273–280. doi: 10.1016/j.neuroscience.2014.07.024.
    1. Vitório R, et al. The role of vision in Parkinson's disease locomotion control: free walking task. Gait Posture. 2012;35:175–179. doi: 10.1016/j.gaitpost.2011.09.002.
    1. Wahid FA. Multiple regression approach to normalization of spatiotemporal gait Features. J. Appl. Biomech. 2016;32:128–139. doi: 10.1123/jab.2015-0035.
    1. Willems AM, et al. The use of rhythmic auditory cues to influence gait in patients with Parkinson's disease, the differential effect for freezers and non-freezers, an explorative study. Disabil. Rehabil. 2006;28:721–728. doi: 10.1080/09638280500386569.
    1. Xu H, Merryweather A, Foreman KB, Zhao J, Hunt M. Dual-task interference during gait on irregular terrain in people with Parkinson's disease. Gait Posture. 2018 doi: 10.1016/j.gaitpost.2018.04.027.
    1. Yang YR, Lee YY, Cheng SJ, Lin PY, Wang RY. Relationships between gait and dynamic balance in early Parkinson's disease. Gait Posture. 2008;27:611–615. doi: 10.1016/j.gaitpost.2007.08.003.
    1. Zhou L, Gougeon MA, Nantel J. Nordic walking improves gait power profiles at the knee joint in Parkinson's disease. J. Aging Phys. Act. 2018;26:84–88. doi: 10.1123/japa.2017-0031.
    1. Zijlstra W, Rutgers AW, Van Weerden TW. Voluntary and involuntary adaptation of gait in Parkinson's disease. Gait Posture. 1998;7:53–63. doi: 10.1016/s0966-6362(97)00037-4.
    1. Vitorio R, Pieruccini-Faria F, Stella F, Gobbi S, Gobbi LT. Effects of obstacle height on obstacle crossing in mild Parkinson's disease. Gait Posture. 2010;31:143–146. doi: 10.1016/j.gaitpost.2009.09.011.
    1. Zhang S, et al. Age- and Parkinson's disease-related evaluation of gait by General Tau theory. Exp. Brain Res. 2016;234:2829–2840. doi: 10.1007/s00221-016-4685-6.

Source: PubMed

3
Iratkozz fel