Transcranial Direct Current Stimulation (tDCS) to Improve Gait in Multiple Sclerosis: A Timing Window Comparison

Craig D Workman, John Kamholz, Thorsten Rudroff, Craig D Workman, John Kamholz, Thorsten Rudroff

Abstract

Unilateral weakness of the lower limb is a hallmark of multiple sclerosis (MS) and a significant contributor to the progressive worsening of walking ability. There are currently no effective rehabilitation strategies targeting strength asymmetries and/or gait impairments in people with MS (PwMS). Transcranial direct current stimulation (tDCS) has improved motor outcomes in various populations, but the effect of tDCS on gait in PwMS and the ideal timing window of tDCS application are still unknown. This study investigated the effects of tDCS, either before or during a 6 min walk test (6MWT), on the distance walked and gait characteristics in PwMS. Twelve participants were recruited and randomly assigned into BEFORE or DURING groups (both n = 6). The BEFORE group received stimulation before performing a 6MWT (sham/2 mA, 13 min). The DURING group received stimulation only during a 6MWT (sham/2 mA, 6 min). Stimulation was over the more MS-affected primary motor cortex (M1). Distance walked and gait characteristics of the walk were the primary and secondary outcomes. The results indicated a significant decrease in distance walked in the DURING group (p = 0.026) and a significant increase in gait velocity in the BEFORE group (p = 0.04). These changes were accompanied by trends (p < 0.1) in distance walked, gait velocity, and stride length. Overall, the results of this study suggest that tDCS performed before a 6MWT might be more effective than tDCS during a 6MWT and that a single session of tDCS may not be sufficient to influence gait. Clinical Trial Registration: www.ClinicalTrials.gov, identifier #NCT03757819.

Keywords: 6-min walk test; gait; multiple sclerosis; neuromodulation; transcranial direct current stimulation (tDCS).

Copyright © 2019 Workman, Kamholz and Rudroff.

Figures

Figure 1
Figure 1
Distance walked in the 6-min walk test. Data are mean ± SEM. *Indicates significantly different from sham.
Figure 2
Figure 2
Gait velocity in the 6-min walk test. Data are mean ± SEM. *Indicates significantly different from sham.

References

    1. Ammann C., Spampinato D., Marquez-Ruiz J. (2016). Modulating motor learning through transcranial direct-current stimulation: an integrative view. Front. Psychol. 7:1981. 10.3389/fpsyg.2016.01981
    1. Angius L., Mauger A. R., Hopker J., Pascual-Leone A., Santarnecchi E., Marcora S. M. (2018). Bilateral extracephalic transcranial direct current stimulation improves endurance performance in healthy individuals. Brain Stimul. 11, 108–117. 10.1016/j.brs.2017.09.017
    1. Au-Yeung S. S., Wang J., Chen Y., Chua E. (2014). Transcranial direct current stimulation to primary motor area improves hand dexterity and selective attention in chronic stroke. Am. J. Phys. Med. Rehabil. 93, 1057–1064. 10.1097/PHM.0000000000000127
    1. Bastani A., Jaberzadeh S. (2013). a-tDCS differential modulation of corticospinal excitability: the effects of electrode size. Brain Stimul. 6, 932–937. 10.1016/j.brs.2013.04.005
    1. Benninger D. H., Lomarev M., Lopez G., Wassermann E. M., Li X., Considine E., et al. . (2010). Transcranial direct current stimulation for the treatment of Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 81, 1105–1111. 10.1136/jnnp.2009.202556
    1. Bollens B., Crevecoeur F., Detrembleur C., Warlop T., Lejeune T. M. (2014). Variability of human gait: effect of backward walking and dual-tasking on the presence of long-range autocorrelations. Ann. Biomed. Eng. 42, 742–750. 10.1007/s10439-013-0961-9
    1. Broekmans T., Gijbels D., Eijnde B. O., Alders G., Lamers I., Roelants M., et al. . (2013). The relationship between upper leg muscle strength and walking capacity in persons with multiple sclerosis. Mult. Scler. 19, 112–119. 10.1177/1352458512444497
    1. Buch E. R., Santarnecchi E., Antal A., Born J., Celnik P. A., Classen J., et al. . (2017). Effects of tDCS on motor learning and memory formation: a consensus and critical position paper. Clin. Neurophysiol. 128, 589–603. 10.1016/j.clinph.2017.01.004
    1. Cancelli A., Cottone C., Giordani A., Migliore S., Lupoi D., Porcaro C., et al. . (2018). Personalized, bilateral whole-body somatosensory cortex stimulation to relieve fatigue in multiple sclerosis. Mult. Scler. 24, 1366–1374. 10.1177/1352458517720528
    1. Chai Z., Ma C., Jin X. (2019). Cortical stimulation for treatment of neurological disorders of hyperexcitability: a role of homeostatic plasticity. Neural Regen. Res. 14, 34–38. 10.4103/1673-5374.243696
    1. Chalah M. A., Riachi N., Ahdab R., Mhalla A., Abdellaoui M., Créange A., et al. . (2017). Effects of left DLPFC versus right PPC tDCS on multiple sclerosis fatigue. J. Neurol. Sci. 372, 131–137. 10.1016/j.jns.2016.11.015
    1. Cogiamanian F., Marceglia S., Ardolino G., Barbieri S., Priori A. (2007). Improved isometric force endurance after transcranial direct current stimulation over the human motor cortical areas. Eur. J. Neurosci. 26, 242–249. 10.1111/j.1460-9568.2007.05633.x
    1. Cuypers K., Leenus D. J., Van Wijmeersch B., Thijs H., Levin O., Swinnen S. P., et al. . (2013). Anodal tDCS increases corticospinal output and projection strength in multiple sclerosis. Neurosci. Lett. 554, 151–155. 10.1016/j.neulet.2013.09.004
    1. de Paz R. H., Serrano-Muñoz D., Perez-Nombela S., Bravo-Esteban E., Avendano-Coy J., Gomez-Soriano J. (2019). Combining transcranial direct-current stimulation with gait training in patients with neurological disorders: a systematic review. J. Neuroeng. Rehabil. 16:114. 10.1186/s12984-019-0591-z
    1. Dumel G., Bourassa M. E., Desjardins M., Voarino N., Charlebois-Plante C., Doyon J., et al. . (2016). Multisession anodal tDCS protocol improves motor system function in an aging population. Neural Plast. 2016:5961362. 10.1155/2016/5961362
    1. Ferrucci R., Vergari M., Cogiamanian F., Bocci T., Ciocca M., Tomasini E., et al. . (2014). Transcranial direct current stimulation (tDCS) for fatigue in multiple sclerosis. NeuroRehabilitation 34, 121–127. 10.3233/NRE-131019
    1. Fregni F., Boggio P. S., Santos M. C., Lima M., Vieira A. L., Rigonatti S. P., et al. . (2006). Noninvasive cortical stimulation with transcranial direct current stimulation in Parkinson’s disease. Mov. Disord. 21, 1693–1702. 10.1002/mds.21012
    1. Goldman M. D., Marrie R. A., Cohen J. A. (2008). Evaluation of the six-minute walk in multiple sclerosis subjects and healthy controls. Mult. Scler. 14, 383–390. 10.1177/1352458507082607
    1. Grüner U., Eggers C., Ameli M., Sarfeld A. S., Fink G. R., Nowak D. A. (2010). 1 Hz rTMS preconditioned by tDCS over the primary motor cortex in Parkinson’s disease: effects on bradykinesia of arm and hand. J. Neural Transm. 117, 207–216. 10.1007/s00702-009-0356-0
    1. Hanken K., Bosse M., Mohrke K., Eling P., Kastrup A., Antal A., et al. . (2016). Counteracting fatigue in multiple sclerosis with right parietal anodal transcranial direct current stimulation. Front. Neurol. 7:154. 10.3389/fneur.2016.00154
    1. Hardwick R. M., Celnik P. A. (2014). Cerebellar direct current stimulation enhances motor learning in older adults. Neurobiol. Aging 35, 2217–2221. 10.1016/j.neurobiolaging.2014.03.030
    1. Ho K. A., Taylor J. L., Chew T., Galvez V., Alonzo A., Bai S., et al. . (2016). The effect of transcranial direct current stimulation (tDCS) electrode size and current intensity on motor cortical excitability: evidence from single and repeated sessions. Brain Stimul. 9, 1–7. 10.1016/j.brs.2015.08.003
    1. Hummel F. C., Heise K., Celnik P., Floel A., Gerloff C., Cohen L. G. (2010). Facilitating skilled right hand motor function in older subjects by anodal polarization over the left primary motor cortex. Neurobiol. Aging 31, 2160–2168. 10.1016/j.neurobiolaging.2008.12.008
    1. Jayaram G., Stinear J. W. (2009). The effects of transcranial stimulation on paretic lower limb motor excitability during walking. J. Clin. Neurophysiol. 26, 272–279. 10.1097/WNP.0b013e3181af1d41
    1. Jeffery D. T., Norton J. A., Roy F. D., Gorassini M. A. (2007). Effects of transcranial direct current stimulation on the excitability of the leg motor cortex. Exp. Brain Res. 182, 281–287. 10.1007/s00221-007-1093-y
    1. Kalron A., Achiron A., Dvir Z. (2011). Muscular and gait abnormalities in persons with early onset multiple sclerosis. J. Neurol. Phys. Ther. 35, 164–169. 10.1097/NPT.0b013e31823801f4
    1. Kaminski E., Steele C. J., Hoff M., Gundlach C., Rjosk V., Sehm B., et al. . (2016). Transcranial direct current stimulation (tDCS) over primary motor cortex leg area promotes dynamic balance task performance. Clin. Neurophysiol. 127, 2455–2462. 10.1016/j.clinph.2016.03.018
    1. Kan B., Dundas J. E., Nosaka K. (2013). Effect of transcranial direct current stimulation on elbow flexor maximal voluntary isometric strength and endurance. Appl. Physiol. Nutr. Metab. 38, 734–739. 10.1139/apnm-2012-0412
    1. Kent-Braun J. A., Ng A. V., Castro M., Weiner M. W., Gelinas D., Dudley G. A., et al. . (1997). Strength, skeletal muscle composition and enzyme activity in multiple sclerosis. J. Appl. Physiol. 83, 1998–2004. 10.1152/jappl.1997.83.6.1998
    1. Lima De Albuquerque L. (2015). The Influence Of Transcranial Random Noise Stimulation on Motor Skill Acquisition and Learning in a Modified Golf Putting Task. Las Vegas: University of Nevada. UNLV Theses, Dissertations, Professional Papers and Capstones.
    1. Machado S., Jansen P., Almeida V., Veldema J. (2019). Is tDCS an adjunct ergogenic resource for improving muscular strength and endurance performance? A systematic review. Front. Psychol. 10:1127. 10.3389/fpsyg.2019.01127
    1. McLoughlin J. V., Barr C. J., Patritti B., Crotty M., Lord S. R., Sturnieks D. L. (2016). Fatigue induced changes to kinematic and kinetic gait parameters following six minutes of walking in people with multiple sclerosis. Disabil. Rehabil. 38, 535–543. 10.3109/09638288.2015.1047969
    1. Meesen R. L., Thijs H., Leenus D. J., Cuypers K. (2014). A single session of 1 mA anodal tDCS-supported motor training does not improve motor performance in patients with multiple sclerosis. Restor. Neurol. Neurosci. 32, 293–300. 10.3233/RNN-130348
    1. Mevellec E., Lamotte D., Cantalloube S., Amarenco G., Thoumie P. (2003). Relationship between gait speed and strength parameters in multiple sclerosis. Ann. Readapt. Med. Phys. 46, 85–90. 10.1016/s0168-6054(03)00004-7
    1. Naros G., Geyer M., Koch S., Mayr L., Ellinger T., Grimm F., et al. . (2016). Enhanced motor learning with bilateral transcranial direct current stimulation: impact of polarity or current flow direction? Clin. Neurophysiol. 127, 2119–2126. 10.1016/j.clinph.2015.12.020
    1. Ng A. V., Miller R. G., Gelinas D., Kent-Braun J. A. (2004). Functional relationships of central and peripheral muscle alterations in multiple sclerosis. Muscle Nerve 29, 843–852. 10.1002/mus.20038
    1. Nitsche M. A., Cohen L. G., Wassermann E. M., Priori A., Lang N., Antal A., et al. . (2008). Transcranial direct current stimulation: state of the art 2008. Brain Stimul. 1, 206–223. 10.1016/j.brs.2008.06.004
    1. Nitsche M. A., Paulus W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J. Physiol. 527, 633–639. 10.1111/j.1469-7793.2000.t01-1-00633.x
    1. Nitsche M. A., Paulus W. (2001). Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology 57, 1899–1901. 10.1212/wnl.57.10.1899
    1. Oveisgharan S., Karimi Z., Abdi S., Sikaroodi H. (2019). The use of brain stimulation in the rehabilitation of walking disability in patients with multiple sclerosis: a randomized double-blind clinical trial study. Iran. J. Neurol. 18, 57–63.
    1. Poston B., Walsh R., Heisler E., Alberts J. (2013). “Intensity-dependent modulation of motor skill acquisition in Parkinson’s disease by transcranial direct current stimulation,” in Annual Meeting of the Society for Neuroscience, San Diego, CA.
    1. Poston B., Walsh R., Jackson A., Heisler E., Alberts J. (2015). “The influence of transcranial direct stimulation intensity on motor skill acquisition in older adults,” in Annual Meeting of the Society for Neuroscience, Chicago, IL.
    1. Proessl F., Poston B., Rudroff T. (2018). Does a single application of anodal tDCS improve knee extensor fatigability in people with multiple sclerosis? Brain Stimul. 11, 1388–1390. 10.1016/j.brs.2018.08.005
    1. Reckow J., Rahman-Filipiak A., Garcia S., Schlaefflin S., Calhoun O., DaSilva A. F., et al. . (2018). Tolerability and blinding of 4x1 high-definition transcranial direct current stimulation (HD-tDCS) at two and three milliamps. Brain Stimul. 11, 991–997. 10.1016/j.brs.2018.04.022
    1. Sadnicka A., Hamada M., Bhatia K. P., Rothwell J. C., Edwards M. J. (2014). Cerebellar stimulation fails to modulate motor cortex plasticity in writing dystonia. Mov. Disord. 29, 1304–1307. 10.1002/mds.25881
    1. Saiote C., Goldschmidt T., Timäus C., Steenwijk M. D., Opitz A., Antal A., et al. . (2014). Impact of transcranial direct current stimulation on fatigue in multiple sclerosis. Restor. Neurol. Neurosci. 32, 423–436. 10.3233/RNN-130372
    1. Santarnecchi E., Feurra M., Barneschi F., Acampa M., Bianco G., Cioncoloni D., et al. . (2014). Time course of corticospinal excitability and autonomic function interplay during and following monopolar tDCS. Front. Psychiatry 5:86. 10.3389/fpsyt.2014.00086
    1. Sapega A. A. (1990). Muscle performance evaluation in orthopaedic practice. J. Bone Joint Surg. Am. 72, 1562–1574. 10.2106/00004623-199072100-00023
    1. Socie M. J., Motl R. W., Sosnoff J. J. (2014). Examination of spatiotemporal gait parameters during the 6-min walk in individuals with multiple sclerosis. Int. J. Rehabil. Res. 37, 311–316. 10.1097/MRR.0000000000000074
    1. Sohn M. K., Jee S. J., Kim Y. W. (2013). Effect of transcranial direct current stimulation on postural stability and lower extremity strength in hemiplegic stroke patients. Ann. Rehabil. Med. 37, 759–765. 10.5535/arm.2013.37.6.759
    1. Tecchio F., Cancelli A., Cottone C., Ferrucci R., Vergari M., Zito G., et al. . (2015). Brain plasticity effects of neuromodulation against multiple sclerosis fatigue. Front. Neurol. 6:141. 10.3389/fneur.2015.00141
    1. Thach W. T., Bastian A. J. (2004). Role of the cerebellum in the control and adaptation of gait in health and disease. Prog. Brain Res. 143, 353–366. 10.1016/s0079-6123(03)43034-3
    1. Thoumie P., Mevellec E. (2002). Relation between walking speed and muscle strength is affected by somatosensory loss in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 73, 313–315. 10.1136/jnnp.73.3.313
    1. van Asseldonk E. H., Boonstra T. A. (2016). Transcranial direct current stimulation of the leg motor cortex enhances coordinated motor output during walking with a large inter-individual variability. Brain Stimul. 9, 182–190. 10.1016/j.brs.2015.10.001
    1. Washabaugh E. P., Kalyanaraman T., Adamczyk P. G., Claflin E. S., Krishnan C. (2017). Validity and repeatability of inertial measurement units for measuring gait parameters. Gait Posture 55, 87–93. 10.1016/j.gaitpost.2017.04.013
    1. Williams P. S., Hoffman R. L., Clark B. C. (2013). Preliminary evidence that anodal transcranial direct current stimulation enhances time to task failure of a sustained submaximal contraction. PLoS One 8:e81418. 10.1371/journal.pone.0081418
    1. Workman C. D., Kamholz J., Rudroff T. (2019). Transcranial direct current stimulation (tdcs) for the treatment of a multiple sclerosis symptom cluster. Brain Stimul. [Epub ahead of print]. 10.1016/j.brs.2019.09.012
    1. Yosephi M. H., Ehsani F., Zoghi M., Jaberzadeh S. (2018). Multi-session anodal tDCS enhances the effects of postural training on balance and postural stability in older adults with high fall risk: primary motor cortex versus cerebellar stimulation. Brain Stimul. 11, 1239–1250. 10.1016/j.brs.2018.07.044
    1. Zimerman M., Nitsch M., Giraux P., Gerloff C., Cohen L. G., Hummel F. C. (2013). Neuroenhancement of the aging brain: restoring skill acquisition in old subjects. Ann. Neurol. 73, 10–15. 10.1002/ana.23761
    1. Zipser C. M., Premoli I., Belardinelli P., Castellanos N., Rivolta D., Heidegger T., et al. . (2018). Cortical excitability and interhemispheric connectivity in early relapsing-remitting multiple sclerosis studied with TMS-EEG. Front. Neurosci. 12:393. 10.3389/fnins.2018.00393

Source: PubMed

3
Iratkozz fel