Fluid administration and monitoring in ARDS: which management?

Philippe Vignon, Bruno Evrard, Pierre Asfar, Mattia Busana, Carolyn S Calfee, Silvia Coppola, Julien Demiselle, Guillaume Geri, Mathieu Jozwiak, Greg S Martin, Luciano Gattinoni, Davide Chiumello, Philippe Vignon, Bruno Evrard, Pierre Asfar, Mattia Busana, Carolyn S Calfee, Silvia Coppola, Julien Demiselle, Guillaume Geri, Mathieu Jozwiak, Greg S Martin, Luciano Gattinoni, Davide Chiumello

Abstract

Modalities of fluid management in patients sustaining the acute respiratory distress syndrome (ARDS) are challenging and controversial. Optimal fluid management should provide adequate oxygen delivery to the body, while avoiding inadvertent increase in lung edema which further impairs gas exchange. In ARDS patients, positive fluid balance has been associated with prolonged mechanical ventilation, longer ICU and hospital stay, and higher mortality. Accordingly, a restrictive strategy has been compared to a more liberal approach in randomized controlled trials conducted in various clinical settings. Restrictive strategies included fluid restriction guided by the monitoring of extravascular lung water, pulmonary capillary wedge or central venous pressure, and furosemide targeted to diuresis and/or albumin replacement in hypoproteinemic patients. Overall, restrictive strategies improved oxygenation significantly and reduced duration of mechanical ventilation, but had no significant effect on mortality. Fluid management may require different approaches depending on the time course of ARDS (i.e., early vs. late period). The effects of fluid strategy management according to ARDS phenotypes remain to be evaluated. Since ARDS is frequently associated with sepsis-induced acute circulatory failure, the prediction of fluid responsiveness is crucial in these patients to avoid hemodynamically inefficient-hence respiratory detrimental-fluid administration. Specific hemodynamic indices of fluid responsiveness or mini-fluid challenges should be preferably used. Since the positive airway pressure contributes to positive fluid balance in ventilated ARDS patients, it should be kept as low as possible. As soon as the hemodynamic status is stabilized, correction of cumulated fluid retention may rely on diuretics administration or renal replacement therapy.

Keywords: Acute respiratory distress syndrome; Fluid therapies; Prognosis; Pulmonary edema; Water–electrolyte balance.

Conflict of interest statement

PV, BE, PA, MB, SC, JD, GG, MJ, GSM, LG and DC: no conflict of interest. CSC: research funding from the National Institutes of Health and Roche/Genentech (present), Bayer (past); consultancies for Quark, Vasomune, and Gen1e Life Sciences.

Figures

Fig. 1
Fig. 1
Schematic representation of summarized effects of positive-pressure ventilation on fluid balance and of the potential benefit–risk ratio of fluid administration in patients with the acute respiratory distress syndrome. H2O water, Na+ sodium, Paw airway pressure, Ppl pleural pressure
Fig. 2
Fig. 2
Summary of hemodynamic parameters available to predict fluid responsiveness in ventilated patients with the acute respiratory distress syndrome. The color code reflects the advantages (green) and drawbacks (red) of each test, with the orange color for neutrality. ARDS acute respiratory distress syndrome, CCE critical care echocardiography, CO cardiac output, IVC inferior vena cava, RV right ventricle, SVC superior vena cava, TEE transesophageal echocardiography, TPTD transpulmonary thermodilution. *End-expiratory occlusion with TPTD or combined end-expiratory and end-inspiratory occlusions with CCE
Fig. 3
Fig. 3
Proposed diagnostic algorithm in ventilated ARDS patients presenting with shock based on a hemodynamic assessment using critical care echocardiography during the resuscitation and optimization periods [24]. Fluid responsiveness should be assessed to avoid hemodynamically inefficient and potentially respiratory detrimental fluids administration. In patients with sinus rhythm, pulse pressure variation can be used as a warning sign for identifying the mechanism of left ventricular load dependency revealed by heart–lung interactions (i.e., right ventricular failure vs hypovolemia responsible for Δ-down; rarely severe left ventricular failure responsible for Δ-up). In patients with other cardiac rhythms, respiratory variations of the superior vena cava diameter are the most specific parameter to predict fluid responsiveness which requires transesophageal echocardiography. Alternatively, a passive leg raising may be used to assess fluid responsiveness. When values of hemodynamic indices are within the “grey zone” or in the presence of increased intra-abdominal pressure (risk of false-negative result), mini-fluid challenges may be considered. 1The diagnostic workup must include the precise clinical setting, ongoing therapy, clinical hemodynamic assessment and biological markers of tissue hypoperfusion. In ARDS patients, specific parameters of fluid responsiveness should be preferred.2When pulse pressure variation is in the “grey zone”, a passive leg raising may be performed to seek for fluid responsiveness. 3Right ventricular failure typically associates an acute dilatation of the right ventricular cavity and increased central venous pressure secondary to systemic venous congestion [36]. 4In ARDS patients, a ΔSVC cut-off of 31% predicts fluid responsiveness with a 90% specificity, at the expense of a low sensitivity of 43% [42]. Associated echocardiography findings consistent with decreased cardiac preload are frequently associated (e.g., hyperkinetic right ventricle with small cavity size, decreased diameter of the inferior vena cava with marked respiratory variation, significant respiratory variation of maximal left ventricular outflow tract Doppler velocity [41]. 5Repeated small aliquots (e.g., 250 mL) are preferable; both efficacy (percentage of increase of left ventricular stroke volume when compared to baseline) and tolerance (absence of significant increase in left ventricular filling pressure) of fluid challenge should be assessed using serial hemodynamic assessment. 6To increase the sensitivity of superior vena cava respiratory variation, lower threshold value can be used (e.g. a 4% cut-off has a sensitivity of 89%) [42], or a mini-fluid challenge can be considered. 7: mini-fluid challenges consist in administrating intravenously a small volume of fluids over a very short period of time (e.g., 50–100 mL within 1 min) [–48]. 8Intra-abdominal pressure should best be measured in patients at high risk of intra- abdominal hypertension [44] since elevated values may result in falsely negative passive leg raising [37]. ARDS acute respiratory distress syndrome, ΔSVC respiratory variation of the superior vena cava diameter, IAP intra-abdominal pressure, PPV pulse pressure variation, RV right ventricle
Fig. 4
Fig. 4
Proposed practical management of fluid balance according to the cause and timing of ARDS according to the four-hit theory/ROSE concept [24]. CVP central venous pressure, PAC pulmonary artery catheter, CCE critical care echocardiography, ScVO2 central venous oxygen saturation, P[v-a]CO2 veno-arterial carbon dioxide tension difference, TPTD transpulmonary thermodilution

References

    1. Vieillard-Baron A, Matthay M, Teboul JL, Bein T, Schultz M, Magder S, Marini JJ. Experts' opinion on management of hemodynamics in ARDS patients: focus on the effects of mechanical ventilation. Intensive Care Med. 2016;42:739–749.
    1. Jia X, Malhotra A, Saeed M, Mark RG, Talmor D. Risk factors for ARDS in patients receiving mechanical ventilation for > 48 h. Chest. 2008;133:853–861.
    1. Simmons RS, Berdine GG, Seidenfeld JJ, Prihoda TJ, Harris GD, Smith JD, Gilbert TJ, Mota E, Johanson WG., Jr Fluid balance and the adult respiratory distress syndrome. Am Rev Respir Dis. 1987;135:924–929.
    1. Matthay MA, Zemans RL, Zimmerman GA, Arabi YM, Beitler JR, Mercat A, Herridge M, Randolph AG, Calfee CS. Acute respiratory distress syndrome. Nat Rev Dis Primers. 2019;5:18.
    1. Mangialardi RJ, Martin GS, Bernard GR, Wheeler AP, Christman BW, Dupont WD, Higgins SB, Swindell BB. Hypoproteinemia predicts acute respiratory distress syndrome development, weight gain, and death in patients with sepsis. Ibuprofen in Sepsis Study Group. Crit Care Med. 2000;28:3137–3145.
    1. Wiedemann HP, Wheeler AP, Bernard GR, Thompson BT, Hayden D, deBoisblanc B, Connors AF, Jr, Hite RD, Harabin AL, National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome Clinical Trials Network Comparison of two fluid-management strategies in acute lung injury. New Engl J Med. 2006;354:2564–2575.
    1. Staub NC. Pulmonary edema: physiologic approaches to management. Chest. 1978;74:559–564.
    1. Kuebler WM, Ying X, Singh B, Issekutz AC, Bhattacharya J. Pressure is proinflammatory in lung venular capillaries. J Clin Invest. 1999;104:495–502.
    1. Sakr Y, Vincent JL, Reinhart K, Groeneveld J, Michalopoulos A, Sprung CL, Artigas A, Ranieri VM, Occurence S, in Acutely Ill Patients Investigators, High tidal volume and positive fluid balance are associated with worse outcome in acute lung injury. Chest. 2005;128:3098–3108.
    1. Van Mourik N, Metske HA, Hofstra JJ, Binnekade JM, Geerts BF, Schultz MJ, Vlaar APJ. Cumulative fluid balance predicts mortality and increases time on mechanical ventilation in ARDS patients. An observational cohort study. PLoS ONE. 2019;14:e0224563.
    1. Rosenberg AL, Dechert RE, Park PK, Bartlett RH, Network NIHNHLBIARDS. Review of a large clinical series: association of cumulative fluid balance on outcome in acute lung injury: a retrospective review of the ARDSnet tidal volume cohort. J Intensive Care Med. 2009;24:35–46.
    1. Ferguson ND, Meade MO, Hallett DC, Stewart TE. High values of the pulmonary artery wedge pressure in patients with acute lung injury and acute respiratory distress syndrome. Intensive Care Med. 2002;28:1073–1077.
    1. Murphy CV, Schramm GE, Doherty JA, Reichley RM, Gajic O, Afessa B, Micek ST, Kollef MH. The importance of fluid management in acute lung injury secondary to septic shock. Chest. 2009;136:102–109.
    1. Neamu RF, Martin GS. Fluid management in acute respiratory distress syndrome. Curr Opin Crit Care. 2013;19:24–30.
    1. Humphrey H, Hall J, Sznajder I, Silverstein M, Wood L. Improved survival in ARDS patients associated with a reduction in pulmonary capillary wedge pressure. Chest. 1990;97:1176–1180.
    1. Sakka SG, Klein M, Reinhart K, Meier-Hellmann A. Prognostic value of extravascular lung water in critically ill patients. Chest. 2002;122:2080–2086.
    1. Liu KD, Thompson BT, Ancukiewicz M, et al. Acute kidney injury in patients with acute lung injury: impact of fluid accumulation on classification of acute kidney injury and associated outcomes. Crit Care Med. 2011;39:2665–2671.
    1. Mitchell JP, Schuller D, Calandrino FS, Schuster DP. Improved outcome based on fluid management in critically ill patients requiring pulmonary artery catheterization. Am Rev Respir Dis. 1992;145:990–998.
    1. Stewart RM, Park PK, Hunt JP, McIntyre RC, Jr, McCarthy J, Zarzabal LA, Michalek JE, National Institutes of Health/National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome Clinical Trials Network Less is more: improved outcomes in surgical patients with conservative fluid administration and central venous catheter monitoring. J Am Coll Surg. 2009;208:725–737.
    1. Famous KR, Delucchi K, Ware LB, Kangelaris KN, Liu KD, Thompson BT, Calfee CS, Network ARDS. Acute respiratory distress syndrome subphenotypes respond differently to randomized fluid management strategy. Am J Respir Crit Care Med. 2017;195:331–338.
    1. Martin GS, Mangialardi RJ, Wheeler AP, Dupont WD, Morris JA, Bernard GR. Albumin and furosemide therapy in hypoproteinemic patients with acute lung injury. Crit Care Med. 2002;30:2175–2182.
    1. Martin GS, Moss M, Wheeler AP, Mealer M, Morris JA, Bernard GR. A randomized, controlled trial of furosemide with or without albumin in hypoproteinemic patients with acute lung injury. Crit Care Med. 2005;33:1681–1687.
    1. Silversides JA, Major E, Ferguson AJ, Mann EE, McAuley DF, Marshall JC, Blackwood B, Fan E. Conservative fluid management or deresuscitation for patients with sepsis or acute respiratory distress syndrome following the resuscitation phase of critical illness: a systematic review and meta-analysis. Intensive Care Med. 2017;43:155–170.
    1. Malbrain MLNG, Van Regenmortel N, Saugel B, De Tavernier B, Van Gaal PJ, Joannes-Boyau O, Teboul JL, Rice TW, Mythen M, Monnet X. Principles of fluid management and stewardship in septic shock: it is time to consider the four D's and the four phases of fluid therapy. Ann Intensive Care. 2018;8:66.
    1. Malbrain MLNG, Langer T, Annane D, Gattinoni L, Elbers P, Hahn RG, De Laet I, Minini A, Wong A, Ince C, Muckart D, Mythen M, Caironi P, Van Regenmortel N. Intravenous fluid therapy in the perioperative and critical care setting: Executive summary of the International Fluid Academy (IFA) Ann Intensive Care. 2020;10:64.
    1. Rhodes A, Evans LE, Alhazzani W, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med. 2017;43:304–377.
    1. Hernández G, Ospina-Tascón GA, Damiani LP, Estenssoro E, Dubin A, Hurtado J, Friedman G, Castro R, Alegría L, Teboul JL, Cecconi M, Ferri G, Jibaja M, Pairumani R, Fernández P, Barahona D, Granda-Luna V, Cavalcanti AB, Bakker J, The ANDROMEDA SHOCK Investigators and the Latin America Intensive Care Network (LIVEN) Effect of a resuscitation strategy targeting peripheral perfusion status vs serum lactate levels on 28-day mortality among patients with septic shock: The ANDROMEDA-SHOCK randomized clinical trial. JAMA. 2019;321:654–664.
    1. Vignon P. Evaluation of fluid responsiveness in ventilated septic patients: back to venous return. Intensive Care Med. 2004;30:1699–1701.
    1. Cecconi M, De Backer D, Antonelli M, Beale R, Bakker J, Hofer C, Jaeschke R, Mebazaa A, Pinsky MR, Teboul JL, Vincent JL, Rhodes A. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2014;40:1795–1815.
    1. Teboul JL, Saugel B, Cecconi M, De Backer D, Hofer CK, Monnet X, Perel A, Pinsky MR, Reuter DA, Rhodes A, Squara P, Vincent JL, Scheeren TW. Less invasive hemodynamic monitoring in critically ill patients. Intensive Care Med. 2016;42:1350–1359.
    1. De Backer D, Hajjar LA, Pinsky MR. Is there still a place for the Swan-Ganz catheter? We are not sure. Intensive Care Med. 2018;44:960–962.
    1. Jozwiak M, Monnet X, Teboul JL. Less or more hemodynamic monitoring in critically-ill patients? Curr Opin Crit Care. 2018;24:309–315.
    1. Myatra SN, Prabu NR, Divatia JV, Monnet X, Kulkarni AP, Teboul JL. The changes in pulse pressure variation or stroke volume variation after a "tidal volume challenge" reliably predict fluid responsiveness during low tidal volume ventilation. Crit Care Med. 2017;45:415–421.
    1. Jozwiak M, Teboul JL, Monnet X. Extravascular lung water in critical care: recent advances and clinical applications. Ann Intensive Care. 2015;5:38.
    1. Vignon P, Begot E, Mari A, Silva S, Chimot L, Delour P, Vargas F, Filloux B, Vandroux D, Jabot J, François B, Pichon N, Clavel M, Levy B, Slama M, Riu-Poulenc B. Hemodynamic assessment of patients with septic shock using transpulmonary thermodilution and critical care echocardiography. A comparative study. Chest. 2018;153:55–64.
    1. Vieillard-Baron A, Prigent A, Repessé X, Goudelin M, Prat G, Evrard B, Charron C, Vignon P, Geri G (2020) Right ventricular failure in septic shock. Characterization, incidence and impact on fluid-responsiveness. Crit Care (in press)
    1. Beurton A, Teboul JL, Girotto V, Galarza L, Anguel N, Richard C, Monnet X. Intra-abdominal hypertension is responsible for false negatives to the passive leg raising test. Crit Care Med. 2019;47:e639–e647.
    1. Mahjoub Y, Pila C, Friggeri A, Zogheib E, Lobjoie E, Tinturier F, Galy C, Slama M, Dupont H. Assessing fluid responsiveness in critically ill patients: false-positive pulse pressure variation is detected by Doppler echocardiographic evaluation of the right ventricle. Crit Care Med. 2009;37:2570–2575.
    1. Jardin F, Delorme G, Hardy A, Auvert B, Beauchet A, Bourdarias JP. Reevaluation of hemodynamic consequences of positive pressure ventilation: emphasis on cyclic right ventricular afterloading by mechanical lung inflation. Anesthesiology. 1990;72:966–970.
    1. Mekontso Dessap A, Boissier F, Charron C, Bégot E, Repessé X, Legras A, Brun-Buisson C, Vignon P, Vieillard-Baron A. Acute cor pulmonale during protective ventilation for acute respiratory distress syndrome: prevalence, predictors, and clinical impact. Intensive Care Med. 2016;42:862–870.
    1. Vignon P. Preload and fluid responsiveness. In: MacLean A, Huang S, Hilton A, editors. Oxford textbook of advanced echocardiography in critical care. Oxford: Oxford University Press; 2019. pp. 141–152.
    1. Vignon P, Repessé X, Bégot E, Léger J, Jacob C, Bouferrache K, Slama M, Prat G, Vieillard-Baron A. Comparison of echocardiographic indices used to predict fluid responsiveness in ventilated patients. Am J Respir Crit Care Med. 2017;195:1022–1032.
    1. Vieillard-Baron A, Evrard B, Repessé X, Maizel J, Jacob C, Goudelin M, Charron C, Prat G, Slama M, Géri G, Vignon P. Limited value of end-expiratory inferior vena cava diameter to predict fluid responsiveness. Impact of intra-abdominal pressure. Intensive Care Med. 2018;44:197–203.
    1. Minini A, Abraham P, Malbrain MLNG. Predicting fluid responsiveness with the passive leg raising test: don't be fooled by intra-abdominal hypertension! Ann Transl Med. 2020;8:799.
    1. Jozwiak M, Depret F, Teboul JL, Alphonsine JE, Lai C, Richard C, Monnet X. Predicting fluid responsiveness in critically-ill patients by using combined end-expiratory and end-inspiratory occlusions with echocardiography. Crit Care Med. 2017;45:e1131–1138.
    1. Mallat J, Meddour M, Durville E, Lemyze M, Pepy F, Temime J, Vangrunderbeeck N, Tronchon L, Thevenin D, Tavernier B. Decrease in pulse pressure and stroke volume variations after mini-fluid challenge accurately predicts fluid responsivenessdagger. Br J Anaesth. 2015;115:449–456.
    1. Biais M, de Courson H, Lanchon R, Pereira B, Bardonneau G, Griton M, Sesay M, Nouette-Gaulain K. Mini-fluid challenge of 100 ml of crystalloid predicts fluid responsiveness in the operating room. Anesthesiology. 2017;127:450–456.
    1. Muller L, Toumi M, Bousquet PJ, Riu-Poulenc B, Louart G, Candela D, Zoric L, Suehs C, de La Coussaye JE, Molinari N, Lefrant JY, AzuRéa Group An increase in aortic blood flow after an infusion of 100 ml colloid over 1 minute can predict fluid responsiveness: the mini-fluid challenge study. Anesthesiology. 2011;115:541–547.
    1. Jozwiak M, Mercado P, Teboul JL, Benmalek A, Gimenez J, Depret F, Richard C, Monnet X. What is the lowest change in cardiac output that transthoracic echocardiography can detect? Crit Care. 2019;23:116.
    1. Pinsky MR. Cardiopulmonary interactions: physiologic basis and clinical applications. Ann Am Thorac Soc. 2018;15:S45–48.
    1. Priebe HJ, Heimann JC, Hedley-Whyte J. Mechanisms of renal dysfunction during positive end-expiratory pressure ventilation. J Appl Physiol Respir Environ Exerc Physiol. 1981;50:643–649.
    1. Gattinoni L, Carlesso E, Cadringher P, Valenza F, Vagginelli F, Chiumello D. Physical and biological triggers of ventilator-induced lung injury and its prevention. Eur Respir J Suppl. 2003;47:15s–25s.
    1. Chiumello D, Carlesso E, Cadringher P, Caironi P, Valenza F, Polli F, Tallarini F, Cozzi P, Cressoni M, Colombo A, Marini JJ, Gattinoni L. Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome. Am J Respir Crit Care Med. 2008;178:346–355.
    1. Berry AJ, Geer RT, Marshall C, Wu WH, Zbuzek VM, Marshall BE. The effect of long-term controlled mechanical ventilation with positive end-expiratory pressure on renal function in dogs. Anesthesiology. 1984;61:406–415.
    1. Vassalli F, Pasticci I, Romitti F, Duscio E, Assmann DJ, Grunhagen H, Vasques F, Bonifazi M, Busana M, Macri MM, Giosa L, Reupke V, Herrmann P, Hahn G, Leopardi O, Moerer O, Quintel M, Marini JJ, Gattinoni L. Does iso-mechanical power lead to iso-lung damage? An Experimental Study in a Porcine Model. Anesthesiology. 2020;132:1126–1137.
    1. Frost P. Intravenous fluid therapy in adult inpatients. BMJ. 2015;350:1–10.
    1. Hall JE. Guyton and hall textbook of medical physiology. 13. Philadelphia: Elsevier; 2016.
    1. Gattinoni L, Caspani ML. Albumin and furosemide in acute lung injury: a little step forward? Crit Care Med. 2002;30:2376–2377.
    1. Upadhyaya VD, Shariff MZ, Mathew RO, Hossain MA, Asif A, Vachharajani TJ. Management of acute kidney injury in the setting of acute respiratory distress syndrome: review focusing on ventilation and fluid management strategies. J Clin Med Res. 2020;12:1–5.
    1. Marik PE, Linde-Zwirble WT, Bittner EA, Sahatjian J, Hansell D. Fluid administration in severe sepsis and septic shock, patterns and outcomes: an analysis of a large national database. Intensive Care Med. 2017;43:625–632.
    1. Vallée F, Vallet B, Mathe O, Parraguette J, Mari A, Silva S, Samii K, Fourcade O, Genestal M. Central venous-to-arterial carbon dioxide difference: an additional target for goal-directed therapy in septic shock? Intensive Care Med. 2008;34:2218–2225.
    1. Sturm JA, Carpenter MA, Lewis FR, Graziano C, Trunkey DD. Water and protein movement in the sheep lung after septic shock: effect of colloid versus crystalloid resuscitation. J Surg Res. 1979;26:233–248.
    1. Corl KA, Prodromou M, Merchant RC, Gareen I, Marks S, Banerjee D, Amass T, Abbasi A, Delcompare C, Palmisciano A, Aliotta J, Jay G, Levy MM. The restrictive IV fluid trial in severe sepsis and septic shock (RIFTS): a randomized pilot study. Crit Care Med. 2019;47:951–959.
    1. Hjortrup PB, Haase N, Bundgaard H, Thomsen SL, Winding R, Pettilä V, Aaen A, Lodahl D, Berthelsen RE, Christensen H, Madsen MB, Winkel P, Wetterslev J, Perner A, CLASSIC Trial Group; Scandinavian Critical Care Trials Group Restricting volumes of resuscitation fluid in adults with septic shock after initial management: the CLASSIC randomised, parallel-group, multicentre feasibility trial. Intensive Care Med. 2016;42:1695–1705.
    1. Hamzaoui O, Georger JF, Monnet X, Ksouri H, Maizel J, Richard C, Teboul JL. Early administration of norepinephrine increases cardiac preload and cardiac output in septic patients with life-threatening hypotension. Crit Care. 2010;14:R142.
    1. Permpikul C, Tongyoo S, Viarasilpa T, Trainarongsakul T, Chakorn T, Udompanturak S. Early use of norepinephrine in septic shock resuscitation (CENSER). A randomized trial. Am J Respir Crit Care Med. 2019;199:1097–1105.
    1. Macdonald SPJ, Keijzers G, Taylor DM, Kinnear F, Arendts G, Fatovich DM, Bellomo R, McCutcheon D, Fraser JF, Ascencio-Lane JC, Burrows S, Litton E, Harley A, Anstey M, Mukherjee A, REFRESH trial investigators Restricted fluid resuscitation in suspected sepsis associated hypotension (REFRESH): a pilot randomised controlled trial. Intensive Care Med. 2018;44:2070–2078.
    1. Lindén-Søndersø A, Jungner M, Spångfors M, Jan M, Oscarson A, Choi S, Kander T, Undén J, Griesdale D, Boyd J, Bentzer P. Survey of non-resuscitation fluids administered during septic shock: a multicenter prospective observational study. Ann Intensive Care. 2019;9:132.
    1. Asfar P, Schortgen F, Boisramé-Helms J, et al. Hyperoxia and hypertonic saline in patients with septic shock (HYPER2S): a two-by-two factorial, multicentre, randomised, clinical trial. Lancet Respir Med. 2017;5:180–190.
    1. Gattinoni L, Chiumello D, Caironi P, Busana M, Romitti F, Brazzi L, Camporota L. COVID-19 pneumonia: different respiratory treatments for different phenotypes? Intensive Care Med. 2020;46:1099–1102.
    1. Jolley SE, Hough CL, Clermont G, Hayden D, Hou S, Schoenfeld D, Smith NL, Thompson BT, Bernard GR, Angus DC, Network Investigators ARDS. Relationship between race and the effect of fluids on long-term mortality after acute respiratory distress syndrome. secondary analysis of the national heart, lung, and blood institute fluid and catheter treatment trial. Ann Am Thorac Soc. 2017;14:1443–1449.
    1. Marts LT, Kempker JA, Martin GS. Fluid management in acute respiratory distress syndrome: do we have all the FACTTs to determine the effect of race? Ann Am Thorac Soc. 2017;14:1391–1392.

Source: PubMed

3
Iratkozz fel