A bihemispheric autonomic model for traumatic stress effects on health and behavior

Sung W Lee, Lee Gerdes, Catherine L Tegeler, Hossam A Shaltout, Charles H Tegeler, Sung W Lee, Lee Gerdes, Catherine L Tegeler, Hossam A Shaltout, Charles H Tegeler

Abstract

A bihemispheric autonomic model (BHAM) may support advanced understanding of traumatic stress effects on physiology and behavior. The model builds on established data showing hemispheric lateralization in management of the autonomic nervous system, and proposes that traumatic stress can produce dominant asymmetry in activity of bilateral homologous brain regions responsible for autonomic management. Rightward and leftward dominant asymmetries are associated with sympathetic high arousal or parasympathetic freeze tendencies, respectively, and return to relative symmetry is associated with improved autonomic regulation. Autonomic auto-calibration for recovery (inverse of Jacksonian dissolution proposed by polyvagal theory) has implications for risk behaviors associated with traumatic life stress. Trauma-induced high arousal may be associated with risk for maladaptive behaviors to attenuate arousal (including abuse of alcohol or sedative-hypnotics). Trauma-induced freeze mode (including callous-unemotional trait) may be associated with low resting heart rate and risk for conduct disorders. The model may explain higher prevalence of leftward hemispheric abnormalities reported in studies of violence. Implications of the BHAM are illustrated through case examples of a military special operations officer with history of traumatic brain injury and post-traumatic stress disorder, and a university student with persisting post-concussion symptoms. Both undertook use of a noninvasive closed-loop neurotechnology - high-resolution, relational, resonance-based, electroencephalic mirroring - with ensuing decrease in hemispheric asymmetry, improvement in heart rate variability, and symptom reduction. Finally, the BHAM aligns with calls for researchers to use brain-behavioral constructs (research domain criteria or RDoC, proposed by the National Institutes of Mental Health) as building blocks for assessment and intervention in mental health science.

Keywords: RDoC; autonomic nervous system; hemispheric asymmetry; polyvagal theory; post-traumatic stress disorder; trauma; traumatic brain injury; violence.

Figures

FIGURE 1
FIGURE 1
Bihemispheric autonomic model (BHAM) for traumatic stress effects on health and behavior through auto-calibration of arousal. Top oval denotes state of relative symmetry (balance) in activity of bilateral homologous brain regions responsible for autonomic management. Middle oval denotes rightward dominant asymmetry in activation of the same brain regions, indicative of traumatic stress associated with high arousal. Bottom oval denotes leftward asymmetry in activation of the same regions, indicative of traumatic stress associated with parasympathetic freeze mode. Recovery from trauma may be associated with compensatory adverse behaviors (including but not limited to conduct disorders, especially from freeze state to progress to high arousal; and varying forms of substance abuse or medication dependence, to achieve state of balance). Effective autonomic interventions are needed, that can support recovery of balance and decrease likelihood of compensatory adverse behaviors.
FIGURE 2
FIGURE 2
Spectrographs of left and right temporal lobe brain electrical activity for 29-year-old US military special operations officer with history of mTBI and PTSD (Case 1) at baseline, before undergoing neurotechnology intervention for auto-calibration of neural oscillations. Data were collected from T3 and T4 in 10–20 system, with frequency (Hertz, Hz, vertical axis), plotted against amplitude (microvolts, µv, horizontal axis). Individual color bars reflect amplitude averages for one minute of recording, eyes closed, at rest, without stimulation. Columns to the left and right of the color bars denote ten frequency bands of aggregated data (00: < 1.0 Hz; 10: 1.0–3.0 Hz; 20: 3.0–5.5 Hz; 30: 5.5–7.5 Hz; 40: 7.5–10.0 Hz; 50: 10.0–12.0 Hz; 60: 12.0–15.0 Hz; 70: 15.0–23.0 Hz; 80: 23.0–36.0 Hz; 90: 36.0–48.0 Hz) and numerical values for averages in those ranges.
FIGURE 3
FIGURE 3
Spectrographs of left and right temporal lobe brain electrical activity for 29-year-old US military special operations officer (Case 1), during penultimate session of neurotechnology intervention, penultimate minute. Data reflect subject’s brain activity with eyes closed, at rest, while listening to audible tones. See Figure 2 legend for detailed explanation of data elements.
FIGURE 4
FIGURE 4
Spectrographs of left and right temporal lobe brain electrical activity for 23-year-old woman with history of persisting post-concussion symptoms (Case 2), before undergoing neurotechnology intervention for auto-calibration of neural oscillations. Data were collected from T3 and T4 in 10–20 system, with frequency (Hertz, Hz, vertical axis), plotted against amplitude (microvolts, µv, horizontal axis). See Figure 2 legend for detailed explanation of data elements.
FIGURE 5
FIGURE 5
Spectrographs of left and right temporal lobe brain electrical activity for 23-year-old woman (Case 2), during penultimate session of neurotechnology intervention, penultimate minute. Data reflect subject’s brain activity with eyes closed, at rest, while listening to audible tones. See Figure 2 legend for detailed explanation of data elements.

References

    1. Avnon Y., Nitzan M., Sprecher E., Rogowski Z., Yarnitsky D. (2004). Autonomic asymmetry in migraine: augmented parasympathetic activation in left unilateral migraineurs. Brain 127 2099–2108 10.1093/brain/awh236
    1. Balle M., Bornas X., Tortella-Feliu M., Llabres J., Morillas-Romero A., Aguayo-Siquier B., et al. (2013). Resting parietal asymmetry and cardiac vagal tone predict attentional control. Biol. Psychol. 93 257–261 10.1016/j.biopsycho.2013.02.012
    1. Barry R. J., Clarke A. R., Johnstone S. J., Magee C. A., Rushby J. A. (2007). EEG differences between eyes-closed and eyes-open resting conditions. Clin. Neurophysiol. 118 2765–2773 10.1016/j.clinph.2007.07.028
    1. Britton J. W., Ghearing G. R., Benarroch E. E., Cascino G. D. (2006). The ictal bradycardia syndrome: localization and lateralization. Epilepsia 47 737–744 10.1111/j.1528-1167.2006.00509.x
    1. Cechetto D. F., Shoemaker J. K. (2009). Functional neuroanatomy of autonomic regulation. Neuroimage 47 795–803 10.1016/j.neuroimage.2009.05.024
    1. Chang J. S., Yoo C. S., Yi S. H., Her J. Y., Choi H. M., Ha T. H., et al. (2012). An integrative assessment of the psychophysiologic alterations in young women with recurrent major depressive disorder. Psychoson. Med. 74 495–500 10.1097/PSY.0b013e31824d0da0
    1. Convit A., Czobor P., Volavka J. (1991). Lateralized abnormality in the EEG of persistently violent psychiatric inpatients. Biol. Psychiatry 30 363–370 10.1016/0006-3223(91)90292-T
    1. Craig A. D. (2005). Forebrain emotional asymmetry: a neuroanatomical basis? Trends Cogn. Sci. 9 566–571 10.1016/j.tics.2005.10.005
    1. Cuthbert B. N. (2014). The RDoC framework: facilitating transition from ICD/DSM to dimensional approaches that integrate neuroscience and psychopathology. World Psychiatry 13 28–35. 10.1002/wps.20087
    1. Cuthbert B. N., Insel T. R. (2013). Toward the future of psychiatric diagnosis: the seven pillars of RDoC. BMC Med. 11:126 10.1186/1741-7015-11-126
    1. Daniele O., Caravaglios G., Fierro B., Natale E. (2002). Stroke and cardiac arrhythmias. J. Stroke Cerebrovasc. Dis. 11 28–33 10.1053/jscd.2002.123972
    1. Davis T. A., Jovanovic T., Norrholm S. D., Glover E. M., Swanson M., Spann S., et al. (2013). Substance use attenuates physiological responses associated with PTSD among individuals with co-morbid PTSD and SUD’s. J. Psychol. Psychother. 10.4172/2161-0487.S7-006
    1. Engdahl B., Leuthold A. C., Tan H. R., Lewis S. M., Winskowski A. M., Dikel T. N., et al. (2010). Post-traumatic stress disorder: a right temporal lobe syndrome? J. Neural Eng. 7 066005 10.1088/1741-2560/7/6/066005
    1. Foster P. S., Drago V., Ferguson B. J., Harrison D. W. (2008). Cerebral modulation of cardiovascular functioning: a functional cerebral systems perspective. Clin. Neurophysiol. 119 2846–2854 10.1016/j.clinph.2008.08.021
    1. Gainotti G. (1972). Emotional behavior and hemispheric side of the lesion. Cortex 8 41–55 10.1016/S0010-9452(72)80026-1
    1. Gerdes L., Gerdes P., Lee S. W., Tegeler C. H. (2013). HIRREMTM: a non-invasive, allostatic methodology for relaxation and auto-calibration of neural oscillations. Brain Behav. 3 193–205 10.1002/brb3.116
    1. Glenn A. L., Raine A. (2014). Neurocriminology: implications for the punishment, prediction, and prevention of criminal behavior. Nat. Rev. Neurosci. 15 54–63 10.1038/nrn3640
    1. Gray M. A., Taggart P., Sutton P. M., Groves D., Holdright D. R., Bradbury D., et al. (2007). A cortical potential reflecting cardiac function. Proc. Natl. Acad. Sci. U.S.A. 104 6818–6823 10.1073/pnas.0609509104
    1. Heilman K. M., Schwartz H. D., Watson R. T. (1978). Hypoarousal in patients with the neglect syndrome and emotional indifference. Neurology 28 229–232 10.1212/WNL.28.3.229
    1. Hilz M. J., DeFina P., Anders S., Koehn J., Lang C. J., Pauli E., et al. (2011). Frequency analysis unveils cardiac autonomic dysfunction after mild traumatic brain injury. J. Neurotrauma 28 1727–1738 10.1089/neu.2010.1497
    1. Hilz M. J., Dutsch M. D., Perrine K., Nelson P. K., Rauhut U., Devinsky O. (2001). Hemispheric influence on autonomic modulation and baroreflex sensitivity. Ann. Neurol. 49 575–584 10.1002/ana.1006
    1. Institute of Medicine. (2013). Returning Home from Iraq and Afghanistan: Assessment of Readjustment Needs of Veterans, Service Members, and Their Families. Washington, DC: National Academies Press
    1. Kerig P. K., Bennett D. C., Thompson M., Becker S. P. (2012). “Nothing really matters”: emotional numbing as a link between trauma exposure and callousness n delinquent youth. J. Traumatic Stress 25 272–279 10.1002/jts.21700
    1. Kuhn T. (1962). The Structure of Scientific Revolutions. Chicago, IL: University of Chicago Press
    1. Maniglio R. (2014). Significance, nature, and direction of the association between child sexual abuse and conduct disorder: a systematic review. Trauma Violence Abuse. 10.1177/1524838014526068 [Epub ahead of print]
    1. McGrath C. L., Kelley M. E., Holtzheimer P. E., Dunlop B. W., Craighead W. E., Franco A. R., et al. (2013). Towards a neuroimaging treatment selection biomarker for major depressive disorder. JAMA Psychiatry 12 1–9 10.1001/jamapsychiatry.2013.143
    1. McMahon R. J., Witkiewitz K., Kotler J. S. and Conduct Problems Prevention Research Group. (2010). Predictive validity of callous-unemotional traits measured in early adolescence with respect to multiple antisocial outcomes. J. Abnorm. Psychol. 119 752–763 10.1037/a0020796
    1. Montenegro R. A., Farinatti Pde T., Fontes E. B., Soares E. B., Cunha F. A., Gurgel J. L., et al. (2011). Transcranial direct current stimulation influences the cardiac autonomic nervous control. Neurosci. Lett. 497 32–36 10.1016/j.neulet.2011.04.019
    1. Morin C. M., Barlow D. H., Dement W. C. (1993). Insomnia: Psychological Assessment and Management. New York: Guilford Press
    1. Morrow L., Vrtunski P. B., Kim Y., Boller F. (1981). Arousal responses to emotional stimuli and laterality of lesion. Neuropsychologia 19 65–71 10.1016/0028-3932(81)90045-2
    1. Nachson I., Denno D. (1987). “Violent behavior and cerebral hemisphere function,” in The Causes of Crime: New Biological Approaches eds Mednick S. A., Moffitt T. E., Stack S. A. (New York: Cambridge University Press; ) 185–217
    1. Okano A. H., Fontes E. B., Montenegro R. A., Farinatti P. D., Cyrino E. S., Li L. M., et al. (2013). Brain stimulation modulates the autonomic nervous system, rating of perceived exertion and performance during maximal exercise. Br. J. Sports Med. 10.1136/bjsports-2012-091658
    1. Oppenheimer S. M., Gelb A., Girvin J. P., Hachinski V. C. (1992). Cardiovascular effects of human insular cortex stimulation. Neurology 42 1727–1732 10.1212/WNL.42.9.1727
    1. Ostrosky-Solis F., Velez-Garcia A., Santana-Vargas D., Perez M., Ardila A. (2008). A middle-aged female serial killer. J. Forensic Sci. 53 1223–1230 10.1111/j.1556-4029.2008.00803.x
    1. Pillman F., Rohde A., Ullrich S., Draba S., Sannemuller U., Marneros A. (1999). Violence, criminal behavior, and the EEG: significance of left hemispheric focal abnormalities. J. Neuropsych. Clin. Neurosci. 11454–457
    1. Porges S. (2011). The Polyvagal Theory. New York: W. W. Norton and Company
    1. Rabe S., Beauducel A., Zöllner T., Maercker A., Karl A. (2006). Regional brain activity in posttraumatic stress disorder after motor vehicle accident. J. Abnorm. Psychol. 115 687–698 10.1037/0021-843X.115.4.687
    1. Rabe S., Zoellner T., Beauducel A., Maercker A., Karl A. (2008). Changes in brain electrical activity after cognitive behavioral therapy for posttraumatic stress disorder in patients injured in motor vehicle accidents. Psychoson. Med. 70 13–19 10.1097/PSY.0b013e31815aa325
    1. Radloff L. S. (1977). The CES-D Scale: a self-report depression scale for research in the general population. Appl. Psychol. Meas. 1 385–401 10.1177/014662167700100306
    1. Raine A. (1996). “Autonomic nervous system activity and violence,” in Neurobiological Approaches to Clinical Aggression Research eds Stoff D. M., Cairns R. B. (Mahway, NJ: Lawrence Earlbaum; ).
    1. Raine A. (2002). Annotation: the role of prefrontal deficits, low autonomic arousal, and early health factors in the development of antisocial and aggressive behavior in children. J. Child Psychol. Psychiatry 43 417–434 10.1111/1469-7610.00034
    1. Rees C. A. (2014). Lost among the trees? The autonomic nervous system and paediatrics. Arch. Dis. Child. 99 552–562 10.1136/archdischild-2012-301863
    1. Saper C. B. (2002). The central autonomic nervous system: conscious visceral perception and autonomic pattern generation. Annu. Rev. Neurosci. 25 433–469 10.1146/annurev.neuro.25.032502.111311
    1. Sterling P. (2012). Allostasis: a model of predictive regulation. Physiol. Behav. 106 5–15 10.1016/j.physbeh.2011.06.004
    1. Task Force for the European Society of Cardiology and the North American Society of Pacing Electrophysiology. (1996). Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation 93 1043–1065 10.1161/01.CIR.93.5.1043
    1. Tegeler C. H., Kumar S., Conklin D., Lee S. W., Gerdes E. L., Turner D. P., et al. (2012). Open label, randomized, cross-over pilot trial of high resolution, relational, resonance-based electroencephalic mirroring (HIRREM) to relieve insomnia. Brain Behav. 2 814–824 10.1002/brb3.101
    1. Tegeler C. H., Lee S., Tegeler C., Shaltout H. (2013). Correlation between temporal lobe EEG asymmetry and heart rate variability. Neurology 80 (Meeting abstracts 1): P03:031
    1. Tegeler C. H., Lee S. W., Shaltout H. A. (2014). Significance of right anterior insula activity for mental health intervention. JAMA Psychiatry 71 336 10.1001/jamapsychiatry.2013.3507
    1. Volkow N. D., Tancredi L. (1987). Neural substrates of violent behaviour. A preliminary study with positron emission tomography. Br. J. Psychiatry 151 668–673 10.1192/bjp.151.5.668
    1. Weathers F., Litz B., Herman D., Huska J., Keane T. (1993). The PTSD Checklist: reliability, validity, & diagnostic utility. Paper presented at the 9th Annual Meeting of the International Society of Traumatic Stress Studies San Antonio, TX
    1. Weiler B. L., Widom C. S. (1996). Psychopathy and violent behavior in abused and neglected young adults. Crim. Behav. Ment. Health 6 253–271 10.1002/cbm.99
    1. Wittling W. (1990). Psychophysiological correlates of human brain asymmetry: blood pressure changes during lateralized presentation of an emotionally laden film. Neuropsychologia 28 457–470 10.1016/0028-3932(90)90072-V
    1. Wittling W., Block A., Genzel S., Schweiger E. (1998a). Hemisphere asymmetry in parasympathetic control of the heart. Neuropsychologia 36 461–468 10.1016/S0028-3932(97)00129-2
    1. Wittling W., Block A., Schweiger E., Genzel S. (1998b). Hemisphere asymmetry in sympathetic control of the human myocardium. Brain Cogn. 38 17–35 10.1006/brcg.1998.1000
    1. Wong M. T., Lumsden J., Fenton G. W., Fenwick P. B. (1994). Electroencephalography, computed tomography and violence ratings of male patients in a maximum-security mental hospital. Acta Psychiatr. Scand. 90 97–101 10.1111/j.1600-0447.1994.tb01562.x
    1. Yoon B. W., Morillo C. A., Cechetto D. F., Hachinski V. (1997). Cerebral hemispheric lateralization in cardiac autonomic control. Arch. Neurol. 54741–744 10.1001/archneur.1997.00550180055012
    1. Zamrini E. Y., Meador K. J., Loring D. W., Nichols F. T., Lee G. P., Figueroa R. E., et al. (1990). Unilateral cerebral inactivation produces differential left/right heart rate responses. Neurology 40 1408–1411 10.1212/WNL.40.9.1408

Source: PubMed

3
Iratkozz fel