Clinical applications of corneal confocal microscopy

Mitra Tavakoli, Parwez Hossain, Rayaz A Malik, Mitra Tavakoli, Parwez Hossain, Rayaz A Malik

Abstract

Corneal confocal microscopy is a novel clinical technique for the study of corneal cellular structure. It provides images which are comparable to in-vitro histochemical techniques delineating corneal epithelium, Bowman's layer, stroma, Descemet's membrane and the corneal endothelium. Because, corneal confocal microscopy is a non invasive technique for in vivo imaging of the living cornea it has huge clinical potential to investigate numerous corneal diseases. Thus far it has been used in the detection and management of pathologic and infectious conditions, corneal dystrophies and ecstasies, monitoring contact lens induced corneal changes and for pre and post surgical evaluation (PRK, LASIK and LASEK, flap evaluations and Radial Keratotomy), and penetrating keratoplasty. Most recently it has been used as a surrogate for peripheral nerve damage in a variety of peripheral neuropathies and may have potential in acting as a surrogate marker for endothelial abnormalities.

Keywords: cornea; corneal confocal microscopy; corneal dystrophy; infective keratitis; neuropathy.

Figures

Figure 1
Figure 1
Optical principle of the confocal microscope. (Courtesy of Nidek Technologies, from Mastropasqua and Nubile 2002).
Figure 2
Figure 2
Confocal microscopic corneal images (a) superficial epithelium (b) Basal membrane (c) Bowman’s layer (d) anterior stroma (e) posterior stroma (f) Endothelium. (The instrument used for all the pictures in this paper was the Tomey Confoscan P4 in-vivo slit-scanning real-time confocal microscope (Erlangen, Germany)).
Figure 3
Figure 3
Confocal microscopic images of epithelial layer of cornea: (a) the superficial epithelial cells, (b) wing cells, (c) basal cells.
Figure 4
Figure 4
Confocal microscopic images of Bowman’s membrane with nerve fibres. (a) Tomey confoscan P4, (b) Nidek confoscan 4, (c) laser HRT II.
Figure 5
Figure 5
Confocal microscopic images of the stroma (a) anterior (b) posterior (c) stromal nerves.
Figure 6
Figure 6
Confocal microscopic images of the Descemet’s membrane.
Figure 7
Figure 7
Confocal microscopic image of the endothelium.
Figure 8
Figure 8
Measurement of corneal thickness using the Z-Scan mode of the TOMEY Confoscan P4.
Figure 9
Figure 9
Microdeposits in the stromal layer of a patient after PRK (a) after 1 week (b) after 6 months.
Figure 10
Figure 10
Image of corneal nerves in Bowman’s layer from (a) healthy subject (b) diabetic patient.

References

    1. Auran JD, Koester CJ, Kleiman NJ, et al. Scanning slit confocal microscopic observation of cell morphology and movement within the normal human anterior cornea. Ophthalmology. 1995;102:33–41.
    1. Auran JD, Starr MB, Koester CJ, et al. In vivo scanning slit confocal microscopy of Acanthamoeba keratitis. A case report. Cornea. 1994;13:183–5.
    1. Avunduk AM, Senft CJ, Emerah S, et al. Corneal healing after uncomplicated LASIK and its relationship to refractive changes: A six-month prospective confocal study. IOVS. 2004;45:1334–9.
    1. Benitez-Del-Castillo JM, Acosta MC, Wassfi MA, et al. Relation between corneal innervation with confocal microscopy and corneal sensitivity with noncontact esthesiometry in patients with dry eye. Invest Ophthalmol Vis Sci. 2007;48:173–81.
    1. Beuerman RW, Laird JA, Kaufman SC, et al. Quantification of real-time confocal images of the human cornea. J Neurosci Methods. 1994;54:197–203.
    1. Böhnke M, Masters BR. Confocal microscopy of the cornea. Prog Retin Eye Res. 1999;18:553–628.
    1. Böhnke M, Thaer A, Schipper I. Confocal microscopy reveals persisting stromal changes after myopic photorefractive keratectomy in zero haze corneas. British Journal of Ophthalmology. 1998;82:1393–400.
    1. Böhnke M, Masters BR. Long-term contact lens wear induces a corneal degeneration with microdot deposits in the corneal stroma. Ophthalmology. 1997;104:1887–96.
    1. Bragheeth MA, Dua HS. Corneal sensation after myopic and hyperopic LASIK: clinical and confocal microscopic study. Br J Ophthalmol. 2005;89:580–5.
    1. Brookes NH, Loh I-P, et al. Involvement of corneal nerves in the progression of keratoconus. Experimental Eye Research. 2003;77:515–24.
    1. Brugin E, Ghirlando A, Gambato C, et al. Central corneal thickness: z-ring corneal confocal microscopy versus ultrasound pachymetry. Cornea. 2007;26:303–7.
    1. Calvillo MP, McLaren JW, Hodge DO, et al. Corneal reinnervation after LASIK: prospective 3-year longitudinal study. IOVS. 2004;45:3991–6.
    1. Cavanagh HD, McCulley JP. In vivo confocal microscopy and Acanthamoeba keratitis. Am J Ophthalmol. 1996;121:207–8.
    1. Cavanagh HD, Petroll WM, Alizadeh H, et al. Clinical and diagnostic use of in vivo confocal microscopy in patients with corneal disease. Ophthalmology. 1993;100:1444–54.
    1. Chang PY, Carrel H, Huang JS, et al. Decreased density of corneal basal epithelium and subbasal corneal nerve bundle changes in patients with diabetic retinopathy. Am J Ophthalmol. 2006;142:488–90.
    1. Chew SJ, Beuerman RW, Assouline M, et al. Early diagnosis of infectious keratitis with in vivo real time confocal microscopy. CLAO Journal. 1992;18:197–201.
    1. Chiou AG, Beuerman RW, Kaufman SC, et al. Confocal microscopy in lattice corneal dystrophy. Graefes Archive for Clinical and Experimental Ophthalmology. 1999;237:697–701.
    1. Chiou AG, Kaufman SC, Beuerman RW, et al. Confocal microscopy in cornea guttata and Fuchs’ endothelial dystrophy. British Journal of Ophthalmology. 1999a;83:185–9.
    1. Chiou AG, Kaufman SC, Beuerman RW, et al. Confocal microscopy in posterior polymorphous corneal dystrophy. Ophthalmologica. 1999b;213:211–13.
    1. Chiou AG, Kaufman SC, Beuerman RW, et al. Differential diagnosis of linear corneal images on confocal microscopy. Cornea. 1999c;18:63–6.
    1. Cohen RA, Chew SJ, Gebhardt BM, et al. Confocal microscopy of corneal graft rejection. Cornea. 1995;14:467–72.
    1. Corbett MC, Prydal JI, Verma S, et al. An in vivo investigation of the structures responsible for corneal haze after photorefractive keratectomy and their effect on visual function. Ophthalmology. 1996;103:1366–80.
    1. Efron N, Perez-Gomez I, Morgan PB. Confocal microscopic observations of stromal keratocytes during extended contact lens wear. Clinical and Experimental Optometry. 2002;85:156–60.
    1. Efron N, Mutalib HA, Perez-Gomez I, et al. Confocal microscopic observations of the human cornea following overnight contact lens wear. Clinical and Experimental Optometry. 2002;85:149–55.
    1. Efron N, Perez-Gomez I, Mutalib HA, et al. Confocal microscopy of the normal human cornea. Cont Lens Anterior Eye. 2001;24:16–24.
    1. Erie JC, Patel SV, McLaren JW, et al. Corneal keratocyte deficits after photorefractive keratectomy and laser in situ keratomileusis. Am J Ophthalmol. 2006;141:799–809.
    1. Erie JC, McLaren JW, Hodge DO, et al. Long-term corneal keratoctye deficits after photorefractive keratectomy and laser in situ keratomileusis. Trans Am Ophthalmol Soc. 2005a;103:56–66.
    1. Erie JC, McLaren JW, Hodge DO, et al. Recovery of corneal subbbasal nerve density after PRK and LASIK. Am J Ophthalmol. 2005b;140:1059–64.
    1. Erie JC, McLaren JW, Hodge DO, et al. The effect of age on the corneal subbasal nerve plexus. Cornea. 2005c;24:705–9.
    1. Erie JC, Patel SV, McLaren JW, et al. Keratocyte density in the human cornea after photorefractive keratectomy. Archives of Ophthalmology. 2003;121:770–6.
    1. Erie JC. Corneal wound healing after photorefractive keratectomy: a 3-year confocal microscopy study. Trans Am Ophthalmol Soc. 2003;101:287–328.
    1. Erie JC, Patel SV, McLaren JW, et al. Effect of myopic laser in situ keratomileusis on epithelial and stromal thickness: a confocal microscopy study. Ophthalmology. 2002a;109:1447–52.
    1. Erie JC, Patel SV, McLaren JW, et al. Keratocyte density in keratoconus. A confocal microscopy study (a) American Journal of Ophthalmology. 2002b;134:689–95.
    1. Erie JC, Patel SV, McLaren JW, et al. Keratocyte density in vivo after photorefractive keratectomy in humans. Transactions of the American Ophthalmological Society. 1999;97:221–36.
    1. Font RL, Fine BS. Ocular pathology in Fabry’s disease. Histochemical and electron microscope observations. Am J Pathol. 1972;97:671.
    1. Grupcheva CN, Wong T, Riley AF, et al. Assessing the sub-basal nerve plexus of the living healthy human cornea by in vivo confocal microscopy. Clinical and Experimental Ophthalmology. 2002;30:187–90.
    1. Hahnel C, Somodi S, Weiss DG, et al. The keratocyte network of human cornea: a three-dimensional study using confocal laser scanning fluorescence microscopy. Cornea. 2000;19:185–93.
    1. Harrison DA, Joos C, Ambrosio R., Jr Morphology of corneal Basal epithelial cells by in vivo slit-scanning confocal microscopy. Cornea. 2003;22:246–8.
    1. Heinz P, Bodanowitz S, Wiegand W, et al. In vivo observation of corneal nerve regeneration after photorefractive keratectomy with a confocal videomicroscope. German Journal of Ophthalmology. 1996;5:373–7.
    1. Hill JD, inventor. 1994. Confocal tandem scanning reflected light microscope. US Patent 5,307,203.

    1. Hollingsworth J, Perez-Gomez I, Mutalib HA, et al. A population study of the normal cornea using an in vivo, slit-scanning confocal microscope. Optometry and Vision Science. 2001;78:706–11.
    1. Hollingsworth JG, Efron N, Tullo AB. A case study of advanced Fuchs’ endothelial dystrophy using the confocal microscope. Contact Lens Ant Eye. 2000;23:165.
    1. Hollingsworth JG, Efron N. Confocal microscopy of the corneas of long-term rigid contact lens wearers. Cont Lens Anterior Eye. 2004;27:57–64.
    1. Hollingsworth JG, Efron N, Tullo AB. In vivo corneal confocal microscopy in keratoconus. Ophthalmic Physiol Opt. 2005;25:254–60.
    1. Hossain P, Sachdev A, Malik RA. Early detection of diabetic peripheral neuropathy with corneal confocal microscopy. Lancet. 2005;366:1340–3.
    1. Hosal BM, Ornek N, Zilelioglu G, et al. Morphology of corneal nerves and corneal sensation in dry eye: a preliminary study. Eye. 2005;19:1276–9.
    1. Inoue K, Kato S, Inoue Y, et al. The corneal endothelium and thickness in type II diabetes mellitus. Jpn J Ophthalmol. 2002;46:65–9.
    1. Iqbal I, Kallinikos P, Boulton AJM, et al. Corneal nerve morphology: a surrogate marker for human diabetic neuropathy improves with improved glycaemic control. Diabetes. 2005;54:871.
    1. Jalbert I, Stapleton F, Papas E, et al. In vivo confocal microscopy of the human cornea. Br J Ophthalmol. 2003;87:225–36.
    1. Jalbert I, Stapleton F. Effect of lens wear on corneal stroma: preliminary findings. Australian and New Zealand Journal of Ophthalmology. 1999;27:211–13.
    1. Javaloy J, Vidal MT, Villada JR, et al. Comparison of four corneal pachymetry techniques in corneal refractive surgery. J Refract Surg. 2004;20:29–34.
    1. Joyce NC. Proliferative capacity of the corneal endothelium. Progress in Retinal and Eye Research. 2003;22:359–89.
    1. Kallinikos P, Morgan P, Efron N. On the etiology of keratocyte loss during contact lens wear. Invest Ophthalmol Vis Sci. 2004;45:3011–20.
    1. Kallinikos P, Morgan P, Efron N. Assessment of stromal keratocytes and tear film inflammatory mediators during extended wear of contact lenses. Cornea. 2006;25:1–10.
    1. Kallinikos P, Berhanu M, O’Donnell C, et al. Corneal nerve tortuosity in diabetic patients with neuropathy. IOVS. 2004;45:418–22.
    1. Kaufman SC, Laird JA, Cooper R, et al. Diagnosis of bacterial contact lens related keratitis with the white-light confocal microscope. CLAO Journal. 1996;22:274–7.
    1. Kaufman SC, Beuerman RW, Kaufman HE. Diagnosis of advanced Fuchs’ endothelial dystrophy with the confocal microscope. American Journal of Ophthalmology. 1993;116:652–3.
    1. Kauffmann T, Bodanowitz S, Hesse L, et al. Corneal reinnervation after photorefractive keratectomy and laser in situ keratomileusis: an in vivo study with a confocal videomicroscope. German Journal of Ophthalmology. 1996;5:508–12.
    1. Kaufman SC, Hamano H, Beuerman RW, et al. Transient corneal stromal and endothelial changes following soft contact lens wear: a study with confocal microscopy. CLAO Journal. 1996;22:127–32.
    1. Kaufman SC, Musch DC, Belin MW, et al. Confocal microscopy: a report by the American Academy of Ophthalmology. Ophthalmology. 2004;111:396–406.
    1. Kobayashi A, Yokogawa H, Sugiyama K. In vivo laser confocal microscopy of Bowman’s layer of the cornea. Ophthalmology. 2006;113:2203–8.
    1. Kobayashi A, Sugiyama K. In vivo laser confocal microscopy findings for Bowman’s layer dystrophies (Thiel-Behnke and Reis-Bucklers corneal dystrophies) Ophthalmology. 2007;114:69–75.
    1. Lee JS, Oum BS, Choi HY, et al. Differences in corneal thickness and corneal endothelium related to duration in diabetes. Eye. 2006;20:315–18.
    1. Lee BH, McLaren JW, Erie JC, et al. Reinnervation in the cornea after LASIK. IOVS. 2002;43:3660–4.
    1. Linna TU, Vesaluoma MH, Pérez-Santonja JJ, et al. Effect of myopic LASIK on corneal sensitivity and morphology of subbasal nerves. IOVS. 2000;41:393–7.
    1. Linna T, Tervo T. Real-time confocal microscopic observations on human corneal nerves and wound healing after excimer laser photorefractive keratectomy. Current Eye Research. 1997;16:640–9.
    1. Malik RA, Kallinikos P, Abbott CA, et al. Corneal confocal microscopy: a non-invasive surrogate of nerve fibre damage and repair in diabetic patients. Diabetologia. 2003;46:683–8.
    1. Mantyjarvi M, Tuppurainen K, Ikaheimo K. Ocular side effects of amiodarone. Surv Ophthalmol. 1998;42:360–6.
    1. Masters BR, Thaer AA. In vivo real-time confocal microscopy of wing cells in the human cornea: A new benchmark for in vivo corneal microscopy. Bioimages. 1995;3:7–11.
    1. Masters BR, Thaer A. Real-time scanning slit confocal microscopy of the in vivo human cornea. Applied Optics. 1994;33:695–701.
    1. Mastropasqua L, Nubile M. Basic principles of confocal microscopy of the cornea. Slack Incorporated; USA: 2002. pp. 1–5.
    1. Mathers WD, Sutphin JE, Folberg R, et al. Outbreak of keratitis presumed to be caused by Acanthamoeba. American Journal of Ophthalmology. 1996;121:129–42.
    1. Mathers WD, Goldberg MA, et al. Coexistent Acanthamoeba keratitis and herpetic keratitis. Arch Ophthalmol. 1997;115:714–18.
    1. McLaren JW, Nau CB, Erie JC, et al. Corneal thickness measurement by confocal microscopy, ultrasound, and scanning slit methods. Am J Ophthalmol. 2004;137:1011–20.
    1. Mehra S, Tavakoli M, Kallinikos PA, et al. Corneal confocal microscopy detects early nerve regeneration after pancreas transplantation in patients with type 1 diabetes. Diabetes Care. 2007;10:2608–12.
    1. Minsky M. Memoir on inventing the confocal scanning microscope. Scanning. 1988;10:128–38.
    1. Mitooka K, Ramirez M, Maguire LJ, et al. Keratocyte density of central human cornea after laser in situ keratomileusis. American Journal of Ophthalmology. 2002;133:307–14.
    1. Mocan MC, Durukan I, Irkec M, et al. Morphologic alterations of both the stromal and subbasal nerves in the corneas of patients with diabetes. Cornea. 2006;25:769–73.
    1. Moilanen JA, Vesaluoma MH, Muller LJ, et al. Long-term corneal morphology after PRK by in vivo confocal microscopy. Investigative Ophthalmology and Visual Science. 2003;44:1064–9.
    1. Morishige N, Chikama TI, Sassa Y, et al. Abnormal light scattering detected by confocal biomicroscopy at the corneal epithelial basement membrane of subjects with type II diabetes. Diabetologia. 2001;44:340–5.
    1. Müller LJ, Pels L, Vrensen GFJM. Ultrastructural organisation of human corneal nerves. IOVS. 1996:476–88.
    1. Müller LJ, Vrensen GFJM, Pels L, et al. Architecture of human corneal nerves. IOVS. 1997;38:985–94.
    1. Mustonen RK, McDonald MB, Srivannaboon S, et al. Normal human corneal cell populations evaluated by in vivo scanning slit confocal microscopy. Cornea. 1998;17:485–92.
    1. Mustonen RK, McDonald MB, Srivannaboon S, et al. In vivo confocal microscopy of Fuchs’ endothelial dystrophy. Cornea. 1998;17:493–503.
    1. O’Donnell C, Efron N. Corneal endothelial cell morphometry and corneal thickness in diabetic contact lens wearers. Optom Vis Sci. 2004;81:858–62.
    1. O’Donnell C, Efron N, Boulton AJ. A prospective study of contact lens wears in diabetes mellitus. Ophthalmic Physiol Opt. 2001;21:127–38.
    1. Oliveira-Soto L, Efron N. Morphology of corneal nerves using confocal microscopy. Cornea. 2001;20:374–84.
    1. Oliveira-Soto L, Efron N. Morphology of corneal nerves in soft contact lens wear. A comparative study using confocal microscopy. Ophthalmic and Physiological Optics. 2003;23:163–74.
    1. Oliveira-Soto L, Efron N. Assessing the cornea by in vivo confocal microscopy. Clinical and Experimental Ophthalmology. 2003;31:83–4.
    1. Patel S, Reinstein DZ, Silverman RH, et al. The shape of Bowman’s layer in the human cornea. J Refract Surg. 1998;14:636–40.
    1. Patel SV, McLaren JW, Hodge DO, et al. Confocal microscopy in vivo in corneas of long-term contact lens wearers. Investigative Ophthalmology and Visual Science. 2002;43:995–1003.
    1. Patel DV, McGhee CN. Mapping the corneal sub-basal nerve plexus in keratoconus by in vivo laser scanning confocal microscopy. IOVS. 2006;47:1348–51.
    1. Patel DV, McGhee CN. Mapping of the normal human corneal sub-basal nerve plexus by in vivo laser scanning confocal microscopy. IOVS. 2005;46:4485–8.
    1. Petroll WM, Jester JV, Cavanagh HD. In vivo confocal imaging. Int Rev Exp Pathol. 1996;36:93–129.
    1. Pe’er J, Vidaurri J, Halfon ST, et al. Association between corneal arcus and some of the risk factors for coronary artery disease. Br J Ophthalmol. 1983;67:795–8.
    1. Perez-Gomez I, Efron N. Change to corneal morphology after refractive surgery (myopic laser in situ keratomileusis) as viewed with a confocal microscope. Optometry and Vision Science. 2003;80:690–7.
    1. Pfister DR, Cameron JD, Krachmer JH, et al. Confocal microscopy findings of Acanthamoeba keratitis. Am J Ophthalmol. 1996;121:119–28.
    1. Pisella PJ, Auzerie O, Bokobza Y, et al. Evaluation of corneal stromal changes in vivo after laser in situ keratomileusis with confocal microscopy. Ophthalmology. 2001;108:1744–50.
    1. Quadrado MJ, Popper M, Morgado AM, et al. Diabetes and corneal cell densities in humans by in vivo confocal microscopy. Cornea. 2006;25:761–8.
    1. Richter A, Slowik C, Somodi S, et al. Corneal reinnervation following penetrating keratoplasty: correlation of esthesiometry and confocal microscopy. Ger J Ophthalmol. 1996;5:513–17.
    1. Rosenberg ME, Tervo TM, Muller LJ, et al. In vivo confocal microscopy after herpes keratitis. Cornea. 2002;21:265–9.
    1. Rosenberg ME, Tervo TM, Immonen IJ, et al. Corneal structure and sensitivity in type 1 diabetes mellitus. Invest Ophthalmol Vis Sci. 2000;41:2915–21.
    1. Roszkowska AM, Tringali CG, Colosi P, et al. Corneal endothelium evaluation in type I and type II diabetes mellitus. Ophthalmologica. 1999;213:258–61.
    1. Simo Mannion L, Tromans C, O’Donnell C. An evaluation of corneal nerve morphology and function in moderate keratoconus. Cont Lens Anterior Eye. 2005;28:185–92.
    1. Somodi S, Hahnel C, Slowik C, et al. Confocal in vivo microscopy and confocal laser-scanning fluorescence microscopy in keratoconus. Ger J Ophthalmol. 1996;5:518–25.
    1. Stachs O, Zhivov A, Kraak R, et al. In vivo three-dimensional confocal laser scanning microscopy of the epithelial nerve structure in the human cornea. Graefes Arch Clin Exp Ophthalmol. 2006 doi: 10.1007/s00417-006-0387-2.
    1. Sutphin JE, Kantor AL, Mathers WD, et al. Evaluation of infectious crystalline keratitis with confocal microscopy in a case series. Cornea. 1997;16:21–6.
    1. Su Pei-Yuang, Fung-Rong Hu, Yen-Ming Chen, et al. Dendritiform cells found in central cornea by in-vivo confocal microscopy in a patient with mixed bacterial keratitis. Ocul Immunol Inflamm. 2006;14:241–4.
    1. Tavakoli M, Mehra S, Augustine T, et al. Early neural regeneration after pancreas transplantation detected by corneal confocal microscopy: A pilot Study. Diabetic Medicine. 2006;23(Suppl 2):P98.
    1. Tervo T, Moilanen J. In vivo confocal microscopy for evaluation of wound healing following corneal refractive surgery. Progress in Retinal and Eye Research. 2003;22:339–58.
    1. Tervo TM, Moilanen J, Rosenberg ME, et al. In vivo confocal microscopy for studying corneal diseases and conditions associated with corneal nerve damage. Adv Exp Med Biol. 2002;506:657–65.
    1. Tomii S, Kinoshita S. Observations of human corneal epithelium by tandem scanning confocal microscope. Scanning. 1994;16:305–6.
    1. Tuominen IS, Konttinen YT, Vesaluoma MH, et al. Corneal innervation and morphology in primary Sjogren’s syndrome. IOVS. 2003;44:2545–9.
    1. Waring GO, Bourne WM, et al. The corneal endothelium. Normal and pathologic structure and function. Ophthalmology. 1982;89:531–90.
    1. Werner LP, Werner L, Dighiero P, et al. Confocal microscopy in Bowman and stromal corneal dystrophies. Ophthalmology. 1999;106:1697–704.
    1. Wiebers DO, Hollenhorst RW, Goldstein NP. The ophthalmologic manifestations of Wilson’s disease. Mayo Clin Proc. 1977;52:409–16.
    1. Wilson T, Sheppard CJR. Theory and practice of scanning optical microscopy. London: Academic Press; 1984.
    1. Wilson SE, Hong JW. Bowman’s layer structure and function: critical or dispensable to corneal function? A hypothesis. Cornea. 2000;19:417–20.
    1. Winchester K, Mathers WD, Sutphin JE, et al. Diagnosis of Acanthamoeba keratitis in vivo with confocal microscopy. Cornea. 1995;14:10–17.
    1. Winchester K, Mathers WD, Sutphin JE. Diagnosis of Aspergillus keratitis in vivo with confocal microscopy. Cornea. 1997;16:27–31.
    1. Zhivov A, Vollmar B, Guthoff R. In vivo confocal microscopic evaluation of Langerhans cell density and distribution in the normal human corneal epithelium. Graefes Arch Clin Exp Ophthalmol. 2005;243:1056–61.
    1. Zhivov A, Stave J, Vollmar B, et al. In vivo confocal microscopic evaluation of langerhans cell density and distribution in the corneal epithelium of healthy volunteers and contact lens wearers. Cornea. 2007;26:47–54.

Source: PubMed

3
Iratkozz fel