Delayed Oral LY333013 Rescues Mice from Highly Neurotoxic, Lethal Doses of Papuan Taipan (Oxyuranus scutellatus) Venom

Matthew R Lewin, José María Gutiérrez, Stephen P Samuel, María Herrera, Wendy Bryan-Quirós, Bruno Lomonte, Philip E Bickler, Tommaso C Bulfone, David J Williams, Matthew R Lewin, José María Gutiérrez, Stephen P Samuel, María Herrera, Wendy Bryan-Quirós, Bruno Lomonte, Philip E Bickler, Tommaso C Bulfone, David J Williams

Abstract

There is an unmet need for economical snakebite therapies with long shelf lives that are effective even with delays in treatment. The orally bioavailable, heat-stable, secretory phospholipase A₂ (sPLA₂) inhibitor, LY333013, demonstrates antidotal characteristics for severe snakebite envenoming in both field and hospital use. A murine model of lethal envenoming by a Papuan taipan (Oxyuranus scutellatus) demonstrates that LY333013, even with delayed oral administration, improves the chances of survival. Furthermore, LY333013 improves the performance of antivenom even after it no longer reverses neurotoxic signs. Our study is the first demonstration that neurotoxicity from presynaptic venom sPLA2S can be treated successfully, even after the window of therapeutic antivenom has closed. These results suggest that sPLA₂ inhibitors have the potential to reduce death and disability and should be considered for the initial and adjunct treatment of snakebite envenoming. The scope and capacity of the sPLA2 inhibitors ability to achieve these endpoints requires further investigation and development efforts.

Keywords: PLA2; antivenom; envenoming; field antidote; inhibitor; neglected tropical disease; neurotoxicity; phospholipase A2; snakebite; taipan.

Conflict of interest statement

M.R.L. is employed by Ophirex, Inc. and has stock; S.P.S., T.C.B. and P.B. have consulted for Ophirex, Inc. for compensation. Author contributions from the study sponsor are detailed, above. Ophirex, Inc. is a Public Benefit Corporation. J.M.G., W.B.-Q., B.L., M.H., D.J.W. and P.E.B. have no competing interests.

Figures

Figure 1
Figure 1
A single oral dose of LY333013 restores the effect of antivenom even after an otherwise fatal delay in antivenom administration. A single oral dose of LY333013 (10 mg/kg) or intravenous taipan specific antivenom (5 mL/kg) administered urgently (within 5 min) following subcutaneous injection of 12 × LD50O. scutellatus venom resulted in survival of all tested mice. A single dose of oral LY333013 administered with a 60 min delay following the 12 × LD50 resulted in survival of seven out of nine mice, whereas only one out of five mice receiving antivenom with a 60 min delay survived. The combination of LY333013 and antivenom at this same 60 min time resulted in survival for all mice.

References

    1. Longbottom J., Shearer F.M., Devine M., Alcoba G., Chappuis F., Weiss D.J., Ray S.E., Ray N., Warrell D.A., Ruiz de Castañeda R., et al. Vulnerability to snakebite envenoming: A global mapping of hotspots. Lancet. 2018 doi: 10.1016/S0140-6736(18)31224-8.
    1. Rodríguez C., Estrada R., Herrera M., Gómez A., Segura Á., Vargas M., Villalta M., León G. Bothrops asper envenoming in cattle: Clinical features and management using equine-derived whole IgG antivenom. Vet. J. 2016;207:160–163. doi: 10.1016/j.tvjl.2015.08.008.
    1. Gutiérrez J.M., Calvete J.J., Habib A.G., Harrison R.A., Williams D.J., Warrell D.A. Snakebite envenoming. Nat. Rev. Dis. Prim. 2017;3:17063. doi: 10.1038/nrdp.2017.63.
    1. Editorial Board Snake-bite envenoming: A priority neglected tropical disease. Lancet. 2017;390:2. doi: 10.1016/S0140-6736(17)31751-8.
    1. Fayrer J.S. The venomous snakes of India. [(accessed on 3 August 2018)];Eclect. Mag. 1889 Available online: .
    1. Warrell D.A. Snake bite. Lancet. 2010;375:77–88. doi: 10.1016/S0140-6736(09)61754-2.
    1. Sharma S.K., Chappuis F., Jha N., Bovier P.A., PLoutan L., Koirala S. Impact of snake bites and determinants of fatal outcomes in Southeastern Nepal. Am. J. Trop. Med. Hyg. 2004;71:234–238. doi: 10.4269/ajtmh.2004.71.234.
    1. Harrison R.A., Hargreaves A., Wagstaff S.C., Faragher B., Lalloo D.G. Snake Envenoming: A Disease of Poverty. PLoS Negl. Trop. Dis. 2009;3:e569. doi: 10.1371/journal.pntd.0000569.
    1. Lewin M., Samuel S., Merkel J., Bickler P. Varespladib (LY315920) Appears to Be a Potent, Broad-Spectrum, Inhibitor of Snake Venom Phospholipase A2 and a Possible Pre-Referral Treatment for Envenomation. Toxins. 2016;8:248. doi: 10.3390/toxins8090248.
    1. Pereira N.A., Pereira B.M., do Nascimento M.C., Parente J.P., Mors W.B. Pharmacological screening of plants recommended by folk medicine as snake venom antidotes; IV. Protection against jararaca venom by isolated constituents. Planta Med. 1994;60:99–100. doi: 10.1055/s-2006-959425.
    1. Panfoli I., Calzia D., Ravera S., Morelli A. Inhibition of hemorrhagic snake venom components: Old and new approaches. Toxins. 2010;2:417–427. doi: 10.3390/toxins2040417.
    1. Arias A.S., Rucavado A., Gutierrez J.-M. Peptidomimetic hydroxamate metalloproteinase inhibitors abrogate local and systemic toxicity induced by Echis ocellatus (saw-scaled) snake venom. Toxicon. 2017;132:40–49. doi: 10.1016/j.toxicon.2017.04.001.
    1. Laustsen A.H. Snakebites: Costing recombinant antivenoms. Nature. 2016;538:41. doi: 10.1038/538041e.
    1. Vaiyapuri S., Vaiyapuri R., Ashokan R., Ramasamy K., Nattamaisundar K., Jeyaraj A., Chandran V., Gajjeraman P., Baksh M.F., Gibbins J.M., et al. Snakebite and Its Socio-Economic Impact on the Rural Population of Tamil Nadu, India. PLoS ONE. 2013;8:e80090. doi: 10.1371/journal.pone.0080090.
    1. Habib A.G., Brown N.I. The snakebite problem and antivenom crisis from a health-economic perspective. Toxicon. 2018;150:115–123. doi: 10.1016/j.toxicon.2018.05.009.
    1. Herzel B.J., Samuel S.P., Bulfone T.C., Raj C.S., Lewin M., Kahn J.G. Snakebite: An Exploratory Cost-Effectiveness Analysis of Adjunct Treatment Strategies. Am. J. Trop. Med. Hyg. 2018 doi: 10.4269/ajtmh.17-0922.
    1. Calvete J.J. Proteomic tools against the neglected pathology of snake bite envenoming. Expert Rev. Proteomics. 2011;8:739–758. doi: 10.1586/epr.11.61.
    1. Harris J.B., Grubb B.D., Maltin C.A., Dixon R. The neurotoxicity of the venom phospholipases A(2), notexin and taipoxin. Exp. Neurol. 2000;161:517–526. doi: 10.1006/exnr.1999.7275.
    1. Gutiérrez J.M., Ownby C.L. Skeletal muscle degeneration induced by venom phospholipases A2: Insights into the mechanisms of local and systemic myotoxicity. Toxicon. 2003;42:915–931. doi: 10.1016/j.toxicon.2003.11.005.
    1. Tasoulis T., Isbister G.K. A Review and Database of Snake Venom Proteomes. Toxins. 2017;9:290. doi: 10.3390/toxins9090290.
    1. Snyder D.W., Bach N.J., Dillard R.D., Draheim S.E., Carlson D.G., Fox N., Roehm N.W., Armstrong C.T., Chang C.H., Hartley L.W., et al. Pharmacology of LY315920/S-5920, [[3-(aminooxoacetyl)-2-ethyl-1-(phenylmethyl)-1H-indol-4-yl]oxy] acetate, a potent and selective secretory phospholipase A2 inhibitor: A new class of anti-inflammatory drugs, SPI. J. Pharmacol. Exp. Ther. 1999;288:1117–1124.
    1. Clemetson K.J., Lu Q., Clemetson J.M. Snake venom proteins affecting platelets and their applications to anti-thrombotic research. Curr. Pharm. Des. 2007;13:2887–2892. doi: 10.2174/138161207782023702.
    1. Wang Y., Zhang J., Zhang D., Xiao H., Xiong S., Huang C. Exploration of the Inhibitory Potential of Varespladib for Snakebite Envenomation. Molecules. 2018;23:391. doi: 10.3390/molecules23020391.
    1. Adis R., Profile D. Varespladib. Am. J. Cardiovasc Drugs. 2011;11:137–143.
    1. Fohlman J., Eaker D., Karlsoon E., Thesleff S. Taipoxin, an extremely potent presynaptic neurotoxin from the venom of the Australian snake taipan (Oxyuranus s. scutellatus). Isolation, characterization, quaternary structure and pharmacological properties. Eur. J. Biochem. 1976;68:457–469. doi: 10.1111/j.1432-1033.1976.tb10833.x.
    1. Lalloo D.G., Trevett A.J., Korinhona A., Nwokolo N., Laurenson I.F., Paul M., Black J., Naraqi S., Mavo B., Saweri A., et al. Snake bites by the Papuan taipan (Oxyuranus scutellatus canni): Paralysis, hemostatic and electrocardiographic abnormalities, and effects of antivenom. Am. J. Trop. Med. Hyg. 1995;52:525–531. doi: 10.4269/ajtmh.1995.52.525.
    1. Trevett A.J., Lalloo D.G., Nwokolo N.C., Naraqi S., Kevau I.H., Theakston R.D.G., Warrell D.A. The efficacy of antivenom in the treatment of bites by the Papuan taipan (Oxyuranus scutellatus canni) Trans. R. Soc. Trop. Med. Hyg. 1995;89:322–325. doi: 10.1016/0035-9203(95)90562-6.
    1. Prasarnpun S., Walsh J., Awad S.S., Harris J.B. Envenoming bites by kraits: The biological basis of treatment-resistant neuromuscular paralysis. Brain. 2005;128:2987–2996. doi: 10.1093/brain/awh642.
    1. Herrera M., Fernández J., Vargas M., Villalta M., Segura Á., León G., Angulo Y., Paiva O., Matainaho T., Jensen S.D., et al. Comparative proteomic analysis of the venom of the taipan snake, Oxyuranus scutellatus, from Papua New Guinea and Australia: Role of neurotoxic and procoagulant effects in venom toxicity. J. Proteom. 2012;75:2128–2140. doi: 10.1016/j.jprot.2012.01.006.
    1. Harrison R., Gutiérrez J. Priority Actions and Progress to Substantially and Sustainably Reduce the Mortality, Morbidity and Socioeconomic Burden of Tropical Snakebite. Toxins. 2016;8:351. doi: 10.3390/toxins8120351.
    1. Herrera M., de Cássia de O Collaço R., Villalta M., Segura Á., Vargas M., Wright C.E., Paiva O.K., Matainaho T., Jensen S.D., León G., et al. Neutralization of the neuromuscular inhibition of venom and taipoxin from the taipan (Oxyuranus scutellatus) by F(ab)2 and whole IgG antivenoms. Toxicol. Lett. 2016;241:175–183. doi: 10.1016/j.toxlet.2015.11.020.

Source: PubMed

3
Iratkozz fel