Structural basis for phospholipase A2-like toxin inhibition by the synthetic compound Varespladib (LY315920)

Guilherme H M Salvador, Antoniel A S Gomes, Wendy Bryan-Quirós, Julián Fernández, Matthew R Lewin, José María Gutiérrez, Bruno Lomonte, Marcos R M Fontes, Guilherme H M Salvador, Antoniel A S Gomes, Wendy Bryan-Quirós, Julián Fernández, Matthew R Lewin, José María Gutiérrez, Bruno Lomonte, Marcos R M Fontes

Abstract

The World Health Organization recently listed snakebite envenoming as a Neglected Tropical Disease, proposing strategies to significantly reduce the global burden of this complex pathology by 2030. In this context, effective adjuvant treatments to complement conventional antivenom therapy based on inhibitory molecules for specific venom toxins have gained renewed interest. Varespladib (LY315920) is a synthetic molecule clinically tested to block inflammatory cascades of several diseases associated with elevated levels of secreted phospholipase A2 (sPLA2). Most recently, Varespladib was tested against several whole snake venoms and isolated PLA2 toxins, demonstrating potent inhibitory activity. Herein, we describe the first structural and functional study of the complex between Varespladib and a PLA2-like snake venom toxin (MjTX-II). In vitro and in vivo experiments showed this compound's capacity to inhibit the cytotoxic and myotoxic effects of MjTX-II from the medically important South American snake, Bothrops moojeni. Crystallographic and bioinformatics analyses revealed interactions of Varespladib with two specific regions of the toxin, suggesting inhibition occurs by physical blockage of its allosteric activation, preventing the alignment of its functional sites and, consequently, impairing its ability to disrupt membranes. Furthermore, based on the analysis of several crystallographic structures, a distinction between toxin activators and inhibitors is proposed.

Conflict of interest statement

M.R.L. has an ownership stake in Ophirex, Inc, a Public Benefit Corporation. The other authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1
Myotoxic and cytotoxic activities of MjTX-II in mice and cultured C2C12 myoblasts, respectively, and their inhibition by preincubation with Varespladib. (A) Mice were injected by intramuscular route with toxin alone (50 μg, in 100 μL of PBS), or preincubated for 15 min with Varespladib (VAR) at a final concentration of 400 μM. Control groups were injected with PBS alone or Varespladib alone, respectively. After 3 hr, blood was obtained and the plasma creatine kinase (CK) activity was determined, as described in Methods. Each bar represents the mean ± SD of 4–5 mice per group. (B) Cells were exposed to the toxin alone (20 μg, in 150 μL of medium), or preincubated for 15 min with Varespladib (VAR) at a final concentration of 400 μM. After incubating the cells for 3 hr at 37 °C, an aliquot of supernatant was assayed for lactate dehydrogenase (LDH) activity, as described in Methods. Cytotoxicity is expressed as percentage, considering the LDH activity of cells exposed to medium with 0.1% Triton X-100, or to medium alone, as 100% and 0%, respectively. Each bar represents the mean ± SD of three replicates. Statistically significant (p < 0.05) differences between values obtained with the toxin alone or the toxin preincubated with Varespladib are indicated by an asterisk.
Figure 2
Figure 2
Crystal structure of the complex MjTX-II/Varespladib. (A) The overall structure of the complex is depicted as cartoon representation (cyan) and the inhibitor molecules are represented as sticks (yellow). (B) Omit electron density map (coefficients 2|Fobs| − |Fcalc|) corresponding to Varespladib bound to monomer A and (C) Varespladib bound to monomer B. The maps corresponding to inhibitor molecules are contoured at 1.0 σ.
Figure 3
Figure 3
Molecular dynamic simulation of the MjTX-II/Varespladib complex. (A) RMSD for MjTX-II backbone atoms (black line) and Varespladib non-hydrogen atoms (red line). (B) Backbone atoms RMSF for MjTX-II chains A (dark blue line) and B (cyan line).
Figure 4
Figure 4
Schematic representation of the interaction of Varespladib molecules with MjTX-II. (A) Interaction of Varespladib with monomer A. (B) Contacts of Varespladib with monomer B. The figure was made using Lidia extension from Coot v.0.8.9.
Figure 5
Figure 5
Interaction of Varespladib and myristic acid (FA14) with side chain of residues from Helix-I, hydrophobic channel and MDiS residues. (A) Overall crystal structure of MjTX-II/Varespladib (cyan), zoomed region of contacts of inhibitor to side chain of aminoacids from protein and the same region after 90° of rotation. (B) Overall of crystal structure of MjTX-II/FA14 (green), zoomed region from the interaction of fatty acid molecule with the protein and the same region after 90° of rotation.
Figure 6
Figure 6
Different forms of inhibition of Lys49 PLA2-like toxins by inhibitors described in literature. The monomer A is showed as light gray and the monomer B is represented as dark gray (A) Class 1 inhibitors (yellow), which prevent the binding of fatty acids (yellow sticks - activator) to hydrophobic channel (cyan) of toxin. (B) Class 2 inhibitors (blue) which bind to functional MDoS (green) and MDiS (red) and prevent the interaction of toxin to membrane (orange). (C) Class 3 inhibitors (magenta) which induce protein oligomerization.

References

    1. Kasturiratne A, et al. The global burden of snakebite: a literature analysis and modelling based on regional estimates of envenoming and deaths. PLoS Med. 2008;5:e218. doi: 10.1371/journal.pmed.0050218.
    1. Longbottom J, et al. Vulnerability to snakebite envenoming: a global mapping of hotspots. Lancet. 2018;392:673–684. doi: 10.1016/S0140-6736(18)31224-8.
    1. World Health Organization. Snakebite envenoming, (2018).
    1. World Health Organization. Neglected tropical diseases, (2018).
    1. Williams DJ, et al. Strategy for a globally coordinated response to a priority neglected tropical disease: Snakebite envenoming. PLoS Negl Trop Dis. 2019;13:e0007059. doi: 10.1371/journal.pntd.0007059.
    1. Fernandes CA, et al. Structural Basis for the Inhibition of a Phospholipase A2-like Toxin by Caffeic and Aristolochic Acids. PLoS One. 2015;10:e0133370. doi: 10.1371/journal.pone.0133370.
    1. de Oliveira, R. C. W. F. H. & Sifuentes, D. N. In Animais peçonhentos do Brasil: biologia, clínica e terapêutica dos envenenamentos (eds J. L. C.; França Cardoso, F. O. S.; Wen, F. H.; Malaque, C. M. S.; Haddad Jr., V.) 6–21 (Sarvier, 2009).
    1. Gutierrez, J. M. Envenenamientos por mordeduras de serpientes en América Latina y el Caribe: Una visión integral de carácter regional. Boletín de Malariología Y Salud AmbientalL1 (2011).
    1. Chippaux JP. Incidence and mortality due to snakebite in the Americas. PLoS Negl Trop Dis. 2017;11:e0005662. doi: 10.1371/journal.pntd.0005662.
    1. Gutierrez JM, Ownby CL. Skeletal muscle degeneration induced by venom phospholipases A2: insights into the mechanisms of local and systemic myotoxicity. Toxicon. 2003;42:915–931. doi: 10.1016/j.toxicon.2003.11.005.
    1. Lomonte B, Gutierrez JM. Phospholipases A2 from viperidae snake venoms: how do they induce skeletal muscle damage? Acta Chim Slov. 2011;58:647–659.
    1. Warrell DA. Snake bite. Lancet. 2010;375:77–88. doi: 10.1016/S0140-6736(09)61754-2.
    1. Calvete JJ, et al. Snake population venomics and antivenomics of Bothrops atrox: Paedomorphism along its transamazonian dispersal and implications of geographic venom variability on snakebite management. J Proteomics. 2011;74:510–527. doi: 10.1016/j.jprot.2011.01.003.
    1. Nunez V, et al. Snake venomics and antivenomics of Bothrops atrox venoms from Colombia and the Amazon regions of Brazil, Peru and Ecuador suggest the occurrence of geographic variation of venom phenotype by a trend towards paedomorphism. J Proteomics. 2009;73:57–78. doi: 10.1016/j.jprot.2009.07.013.
    1. Rodrigues VM, et al. Geographic variations in the composition of myotoxins from Bothrops neuwiedi snake venoms: biochemical characterization and biological activity. Comp Biochem Physiol A Mol Integr Physiol. 1998;121:215–222. doi: 10.1016/S1095-6433(98)10136-8.
    1. Mora-Obando D, Fernandez J, Montecucco C, Gutierrez JM, Lomonte B. Synergism between basic Asp49 and Lys49 phospholipase A2 myotoxins of viperid snake venom in vitro and in vivo. PLoS One. 2014;9:e109846. doi: 10.1371/journal.pone.0109846.
    1. Bustillo S, et al. Synergism between baltergin metalloproteinase and Ba SPII RP4 PLA2 from Bothrops alternatus venom on skeletal muscle (C2C12) cells. Toxicon. 2012;59:338–343. doi: 10.1016/j.toxicon.2011.11.007.
    1. Arni RK, Ward RJ. Phospholipase A2-a structural review. Toxicon. 1996;34:827–841. doi: 10.1016/0041-0101(96)00036-0.
    1. Kini RM. Excitement ahead: structure, function and mechanism of snake venom phospholipase A2 enzymes. Toxicon. 2003;42:827–840. doi: 10.1016/j.toxicon.2003.11.002.
    1. Fernandes CA, Borges RJ, Lomonte B, Fontes MR. A structure-based proposal for a comprehensive myotoxic mechanism of phospholipase A2-like proteins from viperid snake venoms. Biochim Biophys Acta. 2014;1844:2265–2276. doi: 10.1016/j.bbapap.2014.09.015.
    1. Borges RJ, Lemke N, Fontes MRM. PLA2-like proteins myotoxic mechanism: a dynamic model description. Sci Rep. 2017;7:15514. doi: 10.1038/s41598-017-15614-z.
    1. dos Santos JI, Soares AM, Fontes MR. Comparative structural studies on Lys49-phospholipases A2 from Bothrops genus reveal their myotoxic site. J Struct Biol. 2009;167:106–116. doi: 10.1016/j.jsb.2009.04.003.
    1. Aung HT, Furukawa T, Nikai T, Niwa M, Takaya Y. Contribution of cinnamic acid analogues in rosmarinic acid to inhibition of snake venom induced hemorrhage. Bioorg Med Chem. 2011;19:2392–2396. doi: 10.1016/j.bmc.2011.02.013.
    1. Borges MH, et al. Neutralization of proteases from Bothrops snake venoms by the aqueous extract from Casearia sylvestris (Flacourtiaceae) Toxicon. 2001;39:1863–1869. doi: 10.1016/S0041-0101(01)00169-6.
    1. Cardoso FF, et al. Structural basis of phospholipase A2-like myotoxin inhibition by chicoric acid, a novel potent inhibitor of ophidian toxins. Biochim Biophys Acta Gen Subj. 2018;1862:2728–2737. doi: 10.1016/j.bbagen.2018.08.002.
    1. Carvalho BM, et al. Snake venom PLA2s inhibitors isolated from Brazilian plants: synthetic and natural molecules. Biomed Res Int. 2013;2013:153045.
    1. Cavalcante WL, et al. Neutralization of snake venom phospholipase A2 toxins by aqueous extract of Casearia sylvestris (Flacourtiaceae) in mouse neuromuscular preparation. J Ethnopharmacol. 2007;112:490–497. doi: 10.1016/j.jep.2007.04.002.
    1. Hage-Melim LI, Sampaio SV, Taft CA, Silva CH. Phospholipase A2 inhibitors isolated from medicinal plants: alternative treatment against snakebites. Mini Rev Med Chem. 2013;13:1348–1356. doi: 10.2174/1389557511313090009.
    1. Lindahl M, Tagesson C. Flavonoids as phospholipase A2 inhibitors: importance of their structure for selective inhibition of group II phospholipase A2. Inflammation. 1997;21:347–356. doi: 10.1023/A:1027306118026.
    1. Samy RP, Thwin MM, Gopalakrishnakone P, Ignacimuthu S. Ethnobotanical survey of folk plants for the treatment of snakebites in Southern part of Tamilnadu, India. J Ethnopharmacol. 2008;115:302–312. doi: 10.1016/j.jep.2007.10.006.
    1. Soares AM, et al. Medicinal plants with inhibitory properties against snake venoms. Curr Med Chem. 2005;12:2625–2641. doi: 10.2174/092986705774370655.
    1. Ticli FK, et al. Rosmarinic acid, a new snake venom phospholipase A2 inhibitor from Cordia verbenacea (Boraginaceae): antiserum action potentiation and molecular interaction. Toxicon. 2005;46:318–327. doi: 10.1016/j.toxicon.2005.04.023.
    1. Lomonte B, Kahan L. Production and partial characterization of monoclonal antibodies to Bothrops asper (terciopelo) myotoxin. Toxicon. 1988;26:675–689. doi: 10.1016/0041-0101(88)90249-8.
    1. Fernandez GP, et al. Neutralization of Bothrops mattogrossensis snake venom from Bolivia: experimental evaluation of llama and donkey antivenoms produced by caprylic acid precipitation. Toxicon. 2010;55:642–645. doi: 10.1016/j.toxicon.2009.07.031.
    1. Prado ND, et al. Inhibition of the Myotoxicity Induced by Bothrops jararacussu Venom and Isolated Phospholipases A2 by Specific Camelid Single-Domain Antibody Fragments. PLoS One. 2016;11:e0151363. doi: 10.1371/journal.pone.0151363.
    1. Tanjoni I, et al. Toxicon. 2003;42:801–808. doi: 10.1016/j.toxicon.2003.10.010.
    1. Borges RJ, et al. Functional and structural studies of a Phospholipase A2-like protein complexed to zinc ions: Insights on its myotoxicity and inhibition mechanism. Biochim Biophys Acta. 2017;1861:3199–3209. doi: 10.1016/j.bbagen.2016.08.003.
    1. Arruda EZ, Silva NM, Moraes RA, Melo PA. Effect of suramin on myotoxicity of some crotalid snake venoms. Braz J Med Biol Res. 2002;35:723–726. doi: 10.1590/S0100-879X2002000600013.
    1. de Oliveira M, et al. Antagonism of myotoxic and paralyzing activities of bothropstoxin-I by suramin. Toxicon. 2003;42:373–379. doi: 10.1016/S0041-0101(03)00166-1.
    1. Fathi B, Harvey AL, Rowan EG. Suramin inhibits the early effects of PLA2 neurotoxins at mouse neuromuscular junctions: A twitch tension study. J Venom Res. 2011;2:6–10.
    1. Fernandes CA, et al. Comparison between apo and complexed structures of bothropstoxin-I reveals the role of Lys122 and Ca+2-binding loop region for the catalytically inactive Lys49-PLA2s. J Struct Biol. 2010;171:31–43. doi: 10.1016/j.jsb.2010.03.019.
    1. Lewin, M., Samuel, S., Merkel, J. & Bickler, P. Varespladib (LY315920) Appears to Be a Potent, Broad-Spectrum, Inhibitor of Snake Venom Phospholipase A2 and a Possible Pre-Referral Treatment for Envenomation. Toxins (Basel) 8 (2016).
    1. Lin-Shiau SY, Lin MJ. Suramin inhibits the toxic effects of presynaptic neurotoxins at the mouse motor nerve terminals. Eur J Pharmacol. 1999;382:75–80. doi: 10.1016/S0014-2999(99)00544-0.
    1. Murakami MT, et al. Inhibition of myotoxic activity of Bothrops asper myotoxin II by the anti-trypanosomal drug suramin. J Mol Biol. 2005;350:416–426. doi: 10.1016/j.jmb.2005.04.072.
    1. Salvador GH, et al. Structural and functional evidence for membrane docking and disruption sites on phospholipase A2-like proteins revealed by complexation with the inhibitor suramin. Acta Crystallogr D Biol Crystallogr. 2015;71:2066–2078. doi: 10.1107/S1399004715014443.
    1. Salvador GHM, et al. Structural and functional characterization of suramin-bound MjTX-I from Bothrops moojeni suggests a particular myotoxic mechanism. Sci Rep. 2018;8:10317. doi: 10.1038/s41598-018-28584-7.
    1. Zhou X, et al. Structural characterization of myotoxic ecarpholin S from Echis carinatus venom. Biophys. 2008;J95:3366–3380.
    1. Bryan-Quiros W, Fernandez J, Gutierrez JM, Lewin MR, Lomonte B. Neutralizing properties of LY315920 toward snake venom group I and II myotoxic phospholipases A2. Toxicon. 2019;157:1–7. doi: 10.1016/j.toxicon.2018.11.292.
    1. dos Santos JI, et al. Structural and functional studies of a bothropic myotoxin complexed to rosmarinic acid: new insights into Lys49-PLA2 inhibition. PLoS One. 2011;6:e28521. doi: 10.1371/journal.pone.0028521.
    1. Salvador GHM, et al. Search for efficient inhibitors of myotoxic activity induced by ophidian phospholipase A2-like proteins using functional, structural and bioinformatics approaches. Sci Rep. 2019;9:510. doi: 10.1038/s41598-018-36839-6.
    1. Kokotou MG, Limnios D, Nikolaou A, Psarra A, Kokotos G. Inhibitors of phospholipase A2 and their therapeutic potential: an update on patents (2012-2016) Expert Opin Ther Pat. 2017;27:217–225. doi: 10.1080/13543776.2017.1246540.
    1. Nikolaou A, Kokotou MG, Vasilakaki S, Kokotos G. Small-molecule inhibitors as potential therapeutics and as tools to understand the role of phospholipases A2. Biochim Biophys Acta Mol Cell Biol Lipids. 2019;1864:941–956. doi: 10.1016/j.bbalip.2018.08.009.
    1. De Luca D, et al. Varespladib inhibits secretory phospholipase A2 in bronchoalveolar lavage of different types of neonatal lung injury. J Clin Pharmacol. 2012;52:729–737. doi: 10.1177/0091270011405498.
    1. Varespladib. Am J Cardiovasc Drugs11, 137–143, (2011).
    1. Lomonte B, et al. Isolation of basic myotoxins from Bothrops moojeni and Bothrops atrox snake venoms. Toxicon. 1990;28:1137–1146. doi: 10.1016/0041-0101(90)90114-M.
    1. Soares AM, et al. A rapid procedure for the isolation of the Lys-49 myotoxin II from Bothrops moojeni (caissaca) venom: biochemical characterization, crystallization, myotoxic and edematogenic activity. Toxicon. 1998;36:503–514. doi: 10.1016/S0041-0101(97)00133-5.
    1. Lewin, M. R. et al. Delayed LY333013 (Oral) and LY315920 (Intravenous) Reverse Severe Neurotoxicity and Rescue Juvenile Pigs from Lethal Doses of Micrurus fulvius (Eastern Coral Snake) Venom. Toxins (Basel)10 (2018).
    1. Angulo Y, Lomonte B. Inhibitory effect of fucoidan on the activities of crotaline snake venom myotoxic phospholipases A2. Biochem Pharmacol. 2003;66:1993–2000. doi: 10.1016/S0006-2952(03)00579-3.
    1. Fernandes CA, et al. Structural bases for a complete myotoxic mechanism: crystal structures of two non-catalytic phospholipases A2-like from Bothrops brazili venom. Biochim Biophys Acta. 2013;1834:2772–2781. doi: 10.1016/j.bbapap.2013.10.009.
    1. Salvador GHM, Dos Santos JI, Borges RJ, Fontes MRM. Structural evidence for a fatty acid-independent myotoxic mechanism for a phospholipase A2-like toxin. Biochim Biophys Acta. 2017;1866:473–481. doi: 10.1016/j.bbapap.2017.12.008.
    1. Marchi-Salvador DP, Fernandes CA, Silveira LB, Soares AM, Fontes MR. Crystal structure of a phospholipase A2 homolog complexed with p-bromophenacyl bromide reveals important structural changes associated with the inhibition of myotoxic activity. Biochim Biophys Acta. 2009;1794:1583–1590. doi: 10.1016/j.bbapap.2009.07.005.
    1. Lomonte B, Gutierrez JM. A new muscle damaging toxin, myotoxin II, from the venom of the snake Bothrops asper (terciopelo) Toxicon. 1989;27:725–733. doi: 10.1016/0041-0101(89)90039-1.
    1. McPherson, A. Introduction to Macromolecular Crystallography. (Wiley - Blackwell, 2009).
    1. Otwinowski Z, Minor W. Processing of X-ray diffraction data collected in oscillation mode. Macromolecular Crystallography. 1997;Pt A276:307–326. doi: 10.1016/S0076-6879(97)76066-X.
    1. McCoy AJ, et al. Phaser crystallographic software. J Appl Crystallogr. 2007;40:658–674. doi: 10.1107/S0021889807021206.
    1. Adams PD, et al. Acta Crystallogr D Biol Crystallogr. 2010. PHENIX: a comprehensive Python-based system for macromolecular structure solution; pp. 213–221.
    1. Emsley P, Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr. 2004;60:2126–2132. doi: 10.1107/S0907444904019158.
    1. Chen VB, et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr. 2010;66:12–21. doi: 10.1107/S0907444909042073.
    1. Schrodinger, LLC. The PyMOL Molecular Graphics System, Version 1.3r1 (2010).
    1. Abraham MJ, et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25. doi: 10.1016/j.softx.2015.06.001.
    1. Huang J, MacKerell AD., Jr. CHARMM36 all-atom additive protein force field: validation based on comparison to NMR. data. J Comput Chem. 2013;34:2135–2145. doi: 10.1002/jcc.23354.
    1. Jo S, Kim T, Iyer VG, Im W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem. 2008;29:1859–1865. doi: 10.1002/jcc.20945.
    1. Olsson MH, Sondergaard CR, Rostkowski M, Jensen JH. PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical pKa Predictions. Journal of Chemical Theory and Computation. 2011;7:525–537. doi: 10.1021/ct100578z.
    1. Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. J Chem Phys. 2007;126:014101. doi: 10.1063/1.2408420.
    1. Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A. & Haak, J. R. Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics81 (1984).
    1. Hoover WG. Canonical dynamics: Equilibrium phase-space distributions. Phys Rev A Gen Phys. 1985;31:1695–1697. doi: 10.1103/PhysRevA.31.1695.
    1. Nosé S. A molecular dynamics method for simulations in the canonical ensemble. Molecular Physics. 1983;52:255–268. doi: 10.1080/00268978400101201.
    1. Parrinello, M., Rahman, A. Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics52 (1981).
    1. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM. LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry. 1997;18:1463–1472. doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>;2-H.
    1. Kumari R, Kumar R, Lynn A. g_mmpbsa - a GROMACS tool for high-throughput MM-PBSA calculations. J Chem Inf Model. 2014;54:1951–1962. doi: 10.1021/ci500020m.

Source: PubMed

3
Iratkozz fel