Towards Continuous Camera-Based Respiration Monitoring in Infants

Ilde Lorato, Sander Stuijk, Mohammed Meftah, Deedee Kommers, Peter Andriessen, Carola van Pul, Gerard de Haan, Ilde Lorato, Sander Stuijk, Mohammed Meftah, Deedee Kommers, Peter Andriessen, Carola van Pul, Gerard de Haan

Abstract

Aiming at continuous unobtrusive respiration monitoring, motion robustness is paramount. However, some types of motion can completely hide the respiration information and the detection of these events is required to avoid incorrect rate estimations. Therefore, this work proposes a motion detector optimized to specifically detect severe motion of infants combined with a respiration rate detection strategy based on automatic pixels selection, which proved to be robust to motion of the infants involving head and limbs. A dataset including both thermal and RGB (Red Green Blue) videos was used amounting to a total of 43 h acquired on 17 infants. The method was successfully applied to both RGB and thermal videos and compared to the chest impedance signal. The Mean Absolute Error (MAE) in segments where some motion is present was 1.16 and 1.97 breaths/min higher than the MAE in the ideal moments where the infants were still for testing and validation set, respectively. Overall, the average MAE on the testing and validation set are 3.31 breaths/min and 5.36 breaths/min, using 64.00% and 69.65% of the included video segments (segments containing events such as interventions were excluded based on a manual annotation), respectively. Moreover, we highlight challenges that need to be overcome for continuous camera-based respiration monitoring. The method can be applied to different camera modalities, does not require skin visibility, and is robust to some motion of the infants.

Keywords: NICU; camera; infants; infrared; non-nutritive sucking; respiration; thermal camera; thermography; unobtrusive; vital signs.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Results of the manual annotation: the breakdown of the included class into the subcategories for the training and testing, and the validation set.
Figure 2
Figure 2
Main blocks of the processing chain and an example of the results.
Figure 3
Figure 3
Example of features obtained during a type 2 motion, i.e., arm motion. In (a,d) the merged thermal images are presented, the circle indicates the position of the baby’s arm where the type 2 motion is happening. The images in (b,c,e) show the three features. While in this case, pseudo-periodicity and gradient are sensitive to the presence of type 2 motion, Respiration Rate (RR) clusters are not, this is due to the RR^ matrix shown in (f) where the arm area can have frequencies equal to zero.
Figure 4
Figure 4
Receiver Operating Characteristics (ROC) curve obtained with the nine folds of the cross-validation by using all the parameters combinations.
Figure 5
Figure 5
Bland-Altman and correlation plot: (a) training and testing set, (b) validation set. RRCI and RRVideo are in BPM.
Figure 6
Figure 6
Example of the Short Time Fourier Transform (STFT) obtained using the camera and the Chest Impedance (CI) reference. The noisiness of the reference’s spectrum during type 1 motion shows the sensitivity of the reference to this type of artifact. The excluded segments are due to camera motion.
Figure 7
Figure 7
Example of results showing the RR estimated using our cameras and algorithm, and the reference one. The difference in the manual annotation of type 1 motion and the detected one is visible in the bottom plot. Examples of frames during the type 1 motion (infant crying) are also shown.
Figure 8
Figure 8
Example of results with periodic breathing. The sudden changes in RR can be seen in the STFTs close to the breathing pauses (indicated using the rectangular boxes with width of 8 s).

References

    1. Fairchild K., Mohr M., Paget-Brown A., Tabacaru C., Lake D., Delos J., Moorman J.R., Kattwinkel J. Clinical associations of immature breathing in preterm infants: Part 1—central apnea. Pediatr. Res. 2016;80:21–27. doi: 10.1038/pr.2016.43.
    1. Baharestani M.M. An overview of neonatal and pediatric wound care knowledge and considerations. Ostomy/Wound Manag. 2007;53:34–55.
    1. Di Fiore J.M. Neonatal cardiorespiratory monitoring techniques. Semin. Neonatol. 2004;9:195–203. doi: 10.1016/j.siny.2003.11.009.
    1. Alinovi D., Ferrari G., Pisani F., Raheli R. Respiratory rate monitoring by video processing using local motion magnification; Proceedings of the 2018 26th European Signal Processing Conference (EUSIPCO); Rome, Italy. 3–7 September 2018; pp. 1780–1784.
    1. Sun Y., Wang W., Long X., Meftah M., Tan T., Shan C., Aarts R.M., de With P.H.N. Respiration monitoring for premature neonates in NICU. Appl. Sci. 2019;9:5246. doi: 10.3390/app9235246.
    1. Jorge J., Villarroel M., Chaichulee S., Guazzi A., Davis S., Green G., McCormick K., Tarassenko L. Non-contact monitoring of respiration in the neonatal intensive care unit; Proceedings of the 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017); Washington, DC, USA. 30 May–3 June 2017; pp. 286–293.
    1. Huang X., Sun L., Tian T., Huang Z., Clancy E. Real-time non-contact infant respiratory monitoring using UWB radar; Proceedings of the 2015 IEEE 16th International Conference on Communication Technology (ICCT); Hangzhou, China. 18–20 October 2015; pp. 493–496.
    1. Kim J.D., Lee W.H., Lee Y., Lee H.J., Cha T., Kim S.H., Song K.M., Lim Y.H., Cho S.H., Cho S.H., et al. Non-contact respiration monitoring using impulse radio ultrawideband radar in neonates. R. Soc. Open Sci. 2019;6:190149. doi: 10.1098/rsos.190149.
    1. Mercuri M., Lorato I.R., Liu Y.H., Wieringa F., Van Hoof C., Torfs T. Vital-sign monitoring and spatial tracking of multiple people using a contactless radar-based sensor. Nat. Electron. 2019;2:252–262. doi: 10.1038/s41928-019-0258-6.
    1. Joshi R., Bierling B., Feijs L., van Pul C., Andriessen P. Monitoring the respiratory rate of preterm infants using an ultrathin film sensor embedded in the bedding: A comparative feasibility study. Physiol. Meas. 2019;40:045003. doi: 10.1088/1361-6579/ab1595.
    1. Bu N., Ueno N., Fukuda O. Monitoring of respiration and heartbeat during sleep using a flexible piezoelectric film sensor and empirical mode decomposition; Proceedings of the 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; Lyon, France. 22–26 August 2007; pp. 1362–1366.
    1. Bekele A., Nizami S., Dosso Y.S., Aubertin C., Greenwood K., Harrold J., Green J.R. Real-time neonatal respiratory rate estimation using a pressure-sensitive mat; Proceedings of the 2018 IEEE International Symposium on Medical Measurements and Applications (MeMeA); Rome, Italy. 11–13 June 2018; pp. 1–5.
    1. Abbas A.K., Heimann K., Jergus K., Orlikowsky T., Leonhardt S. Neonatal non-contact respiratory monitoring based on real-time infrared thermography. Biomed. Eng. Online. 2011;10:93. doi: 10.1186/1475-925X-10-93.
    1. Pereira C.B., Yu X., Czaplik M., Rossaint R., Blazek V., Leonhardt S. Remote monitoring of breathing dynamics using infrared thermography. Biomed. Opt. Express. 2015;6:4378–4394. doi: 10.1364/BOE.6.004378.
    1. Scebba G., Da Poian G., Karlen W. Multispectral Video Fusion for Non-contact Monitoring of Respiratory Rate and Apnea. IEEE Trans. Biomed. Eng. 2021;68:350–359. doi: 10.1109/TBME.2020.2993649.
    1. Eichenwald E.C. Apnea of prematurity. Pediatrics. 2016;137:e20153757. doi: 10.1542/peds.2015-3757.
    1. Shao D., Liu C., Tsow F. Noncontact Physiological Measurement Using a Camera: A Technical Review and Future Directions. ACS Sens. 2021;6:321–334. doi: 10.1021/acssensors.0c02042.
    1. Massaroni C., Nicolò A., Sacchetti M., Schena E. Contactless Methods For Measuring Respiratory Rate: A Review. IEEE Sens. J. 2020 doi: 10.1109/JSEN.2020.3023486. to be published.
    1. Mercuri E., Pera M.C., Brogna C. Handbook of Clinical Neurology. Volume 162. Elsevier; Amsterdam, The Netherlands: 2019. Neonatal hypotonia and neuromuscular conditions; pp. 435–448.
    1. Mizrahi E.M., Clancy R.R. Neonatal seizures: Early-onset seizure syndromes and their consequences for development. Ment. Retard. Dev. Disabil. Res. Rev. 2000;6:229–241. doi: 10.1002/1098-2779(2000)6:4<229::AID-MRDD2>;2-Y.
    1. Lim K., Jiang H., Marshall A.P., Salmon B., Gale T.J., Dargaville P.A. Predicting apnoeic events in preterm infants. Front. Pediatr. 2020;8:570. doi: 10.3389/fped.2020.00570.
    1. Joshi R., Kommers D., Oosterwijk L., Feijs L., Van Pul C., Andriessen P. Predicting Neonatal Sepsis Using Features of Heart Rate Variability, Respiratory Characteristics, and ECG-Derived Estimates of Infant Motion. IEEE J. Biomed. Health Inform. 2019;24:681–692. doi: 10.1109/JBHI.2019.2927463.
    1. Alinovi D., Ferrari G., Pisani F., Raheli R. Respiratory rate monitoring by maximum likelihood video processing; Proceedings of the 2016 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT); Limassol, Cyprus. 12–14 December 2016; pp. 172–177.
    1. Janssen R., Wang W., Moço A., de Haan G. Video-based respiration monitoring with automatic region of interest detection. Physiol. Meas. 2015;37:100–114. doi: 10.1088/0967-3334/37/1/100.
    1. Villarroel M., Chaichulee S., Jorge J., Davis S., Green G., Arteta C., Zisserman A., McCormick K., Watkinson P., Tarassenko L. Non-contact physiological monitoring of preterm infants in the Neonatal Intensive Care Unit. NPJ Digit. Med. 2019;2:1–18. doi: 10.1038/s41746-019-0199-5.
    1. Lorato I., Stuijk S., Meftah M., Kommers D., Andriessen P., van Pul C., de Haan G. Multi-camera infrared thermography for infant respiration monitoring. Biomed. Opt. Express. 2020;11:4848–4861. doi: 10.1364/BOE.397188.
    1. Sun Y., Kommers D., Wang W., Joshi R., Shan C., Tan T., Aarts R.M., van Pul C., Andriessen P., de With P.H. Automatic and continuous discomfort detection for premature infants in a NICU using video-based motion analysis; Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); Berlin, Germany. 23–27 July 2019; pp. 5995–5999.
    1. Hafström M., Lundquist C., Lindecrantz K., Larsson K., Kjellmer I. Recording non-nutritive sucking in the neonate. Description of an automatized system for analysis. Acta Paediatr. 1997;86:82–90. doi: 10.1111/j.1651-2227.1997.tb08838.x.
    1. Pineda R., Dewey K., Jacobsen A., Smith J. Non-nutritive sucking in the preterm infant. Am. J. Perinatol. 2019;36:268–276.
    1. Patel M., Mohr M., Lake D., Delos J., Moorman J.R., Sinkin R.A., Kattwinkel J., Fairchild K. Clinical associations with immature breathing in preterm infants: Part 2—periodic breathing. Pediatr. Res. 2016;80:28–34. doi: 10.1038/pr.2016.58.
    1. Mohr M.A., Fairchild K.D., Patel M., Sinkin R.A., Clark M.T., Moorman J.R., Lake D.E., Kattwinkel J., Delos J.B. Quantification of periodic breathing in premature infants. Physiol. Meas. 2015;36:1415–1427. doi: 10.1088/0967-3334/36/7/1415.
    1. Lorato I., Stuijk S., Meftah M., Verkruijsse W., de Haan G. Camera-Based On-Line Short Cessation of Breathing Detection; Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW); Seoul, Korea. 27–28 October 2019; pp. 1656–1663.
    1. Lee H., Rusin C.G., Lake D.E., Clark M.T., Guin L., Smoot T.J., Paget-Brown A.O., Vergales B.D., Kattwinkel J., Moorman J.R., et al. A new algorithm for detecting central apnea in neonates. Physiol. Meas. 2011;33:1–17. doi: 10.1088/0967-3334/33/1/1.

Source: PubMed

3
Iratkozz fel