Effects of Auditory Rhythm and Music on Gait Disturbances in Parkinson's Disease

Aidin Ashoori, David M Eagleman, Joseph Jankovic, Aidin Ashoori, David M Eagleman, Joseph Jankovic

Abstract

Gait abnormalities, such as shuffling steps, start hesitation, and freezing, are common and often incapacitating symptoms of Parkinson's disease (PD) and other parkinsonian disorders. Pharmacological and surgical approaches have only limited efficacy in treating these gait disorders. Rhythmic auditory stimulation (RAS), such as playing marching music and dance therapy, has been shown to be a safe, inexpensive, and an effective method in improving gait in PD patients. However, RAS that adapts to patients' movements may be more effective than rigid, fixed-tempo RAS used in most studies. In addition to auditory cueing, immersive virtual reality technologies that utilize interactive computer-generated systems through wearable devices are increasingly used for improving brain-body interaction and sensory-motor integration. Using multisensory cues, these therapies may be particularly suitable for the treatment of parkinsonian freezing and other gait disorders. In this review, we examine the affected neurological circuits underlying gait and temporal processing in PD patients and summarize the current studies demonstrating the effects of RAS on improving these gait deficits.

Keywords: Parkinson’s disease; freezing; gait; music; rhythm.

Figures

Figure 1
Figure 1
Neurological schema of cued gait training. BG, basal ganglia; CMA, cingulate motor area; PMC, premotor cortex; SMA, supplementary motor area.
Figure 2
Figure 2
Self-improving relationship between beat perception and gait training efficacy.
Figure 3
Figure 3
Interactive rhythmic auditory stimulation using WalkMate. (A) Parkinson’s patients during rhythmic treatment, (B) Healthy participants during rhythmic treatment, and (C) Parkinson’s patients’ carry-over effect during a silent trial 5 min after the rhythmic treatment. The cueing conditions are unassisted silent control, interactive WalkMate rhythmic auditory stimulation (RAS), and fixed-tempo RAS. Error bars represent six SEM. *P < 0.05; n.s., non-significant. Reproduced from Hove et al. (109).
Figure 4
Figure 4
Smart music player: person–machine interaction loop and the main components involved. Reproduced from Moens et al. (112).
Figure 5
Figure 5
Rehabilitation of gait using virtual reality feedback cues. Measurements of walking speed and stride prior to the sessions (baseline), VR display off, VR display on, and 15 min after end of the session (15-min residual). Error bars represent SEM. *P < 0.01; **P < 0.001. Adopted from Badarny et al. (124).

References

    1. Jankovic J. Gait disorders. Neurol Clin (2015) 33(1):249–68.10.1016/j.ncl.2014.09.007
    1. de Dreu MJ, van der Wilk ASD, Poppe E, Kwakkel G, van Wegen EEH. Rehabilitation, exercise therapy and music in patients with Parkinson’s disease: a meta-analysis of the effects of music-based movement therapy on walking ability, balance and quality of life. Parkinsonism Relat Disord (2012) 18:S114–9.10.1016/S1353-8020(11)70036-0
    1. Patel N, Jankovic J, Hallett M. Sensory aspects of movement disorders. Lancet Neurol (2014) 13(1):100–12.10.1016/S1474-4422(13)70213-8
    1. Paulson S, Bharucha J, Iyer V, Limb C, Tomaino C. Music and the mind: the magical power of sound. Ann N Y Acad Sci (2013) 1303:63–79.10.1111/nyas.12183
    1. Holmes D. Music therapy’s breakthrough act. Lancet Neurol (2012) 11(6):486–7.10.1016/S1474-4422(11)70294-0
    1. Westfall SS. Gabby Giffords Says Music Therapy Has Helped Her Recover. People Magazine (2015).
    1. Francois C, Grau-Sanchez J, Duarte E, Rodriguez-Fornells A. Musical training as an alternative and effective method for neuro-education and neuro-rehabilitation. Front Psychol (2015) 6:475.10.3389/fpsyg.2015.00475
    1. Sacks O. Musicophilia: Tales of Music and the Brain. New York, NY: Vintage Books; (2008).
    1. Jankovic J, Ashoori A. Movement disorders in musicians. Mov Disord (2008) 23(14):1957–65.10.1002/mds.22255
    1. Albanese A, Bhatia K, Bressman SB, Delong MR, Fahn S, Fung VS, et al. Phenomenology and classification of dystonia: a consensus update. Mov Disord (2013) 28(7):863–73.10.1002/mds.25475
    1. Kennedy M, Kennedy JB. The Concise Oxford Dictionary of Music. 5th ed Oxford: Oxford University Press; (2007).
    1. Haueisen J, Knosche TR. Involuntary motor activity in pianists evoked by music perception. J Cogn Neurosci (2001) 13(6):786–92.10.1162/08989290152541449
    1. Bangert M, Altenmuller EO. Mapping perception to action in piano practice: a longitudinal DC-EEG study. BMC Neurosci (2003) 4:26.10.1186/1471-2202-4-26
    1. Baumann S, Koeneke S, Meyer M, Lutz K, Jancke L. A network for sensory-motor integration: what happens in the auditory cortex during piano playing without acoustic feedback? Ann N Y Acad Sci (2005) 1060:186–8.10.1196/annals.1360.038
    1. Bangert M, Peschel T, Schlaug G, Rotte M, Drescher D, Hinrichs H, et al. Shared networks for auditory and motor processing in professional pianists: evidence from fMRI conjunction. Neuroimage (2006) 30(3):917–26.10.1016/j.neuroimage.2005.10.044
    1. Lahav A, Saltzman E, Schlaug G. Action representation of sound: audiomotor recognition network while listening to newly acquired actions. J Neurosci (2007) 27(2):308–14.10.1523/JNEUROSCI.4822-06.2007
    1. Zatorre RJ, Chen JL, Penhune VB. When the brain plays music: auditory-motor interactions in music perception and production. Nat Rev Neurosci (2007) 8(7):547–58.10.1038/nrn2152
    1. Chen JL, Penhune VB, Zatorre RJ. Listening to musical rhythms recruits motor regions of the brain. Cereb Cortex (2008) 18(12):2844–54.10.1093/cercor/bhn003
    1. Thaut MH, McIntosh GC, Hoemberg V. Neurobiological foundations of neurologic music therapy: rhythmic entrainment and the motor system. Front Psychol (2014) 5:1185.10.3389/fpsyg.2014.01185
    1. Zivotofsky AZ, Hausdorff JM. The sensory feedback mechanisms enabling couples to walk synchronously: an initial investigation. J Neuroeng Rehabil (2007) 4:28.10.1186/1743-0003-4-28
    1. Nessler JA, De Leone CJ, Gilliland S. Nonlinear time series analysis of knee and ankle kinematics during side by side treadmill walking. Chaos (2009) 19(2):026104.10.1063/1.3125762
    1. Nessler JA, McMillan D, Schoulten M, Shallow T, Stewart B, De Leone C. Side by side treadmill walking with intentionally desynchronized gait. Ann Biomed Eng (2013) 41(8):1680–91.10.1007/s10439-012-0657-6
    1. Larsson M. Self-generated sounds of locomotion and ventilation and the evolution of human rhythmic abilities. Anim Cogn (2014) 17(1):1–14.10.1007/s10071-013-0678-z
    1. Fraisse P. Les Structures Rythmiques. Paris: Érasme; (1956).
    1. Fraisse P. Rhythm and tempo. In: Deutsch D, editor. The Psychology of Music. New York, NY: Academic Press; (1982). p. 149–80.
    1. Repp B. Subliminal temporal discrimination revealed in sensorimotor coordination. In: Desain P, Windsor L, editors. Rhythm Perception and Production. Lisse: Swets & Zeitlinger Publishers; (2000). p. 129–42.
    1. van Noorden L, Moelants D. Resonance in the perception of musical pulse. J New Music Res (2010) 28(1):43–66.10.1076/jnmr.28.1.43.3122
    1. Moelants D. Preferred tempo reconsidered. In: Stevens C, Burnham D, McPherson G, Schubert E, Renwick J, editors. Proceedings of the 7th International Conference on Music Perception and Cognition Adelaide: Causal Productions (2002). p. 580–3.
    1. Whittle MW. Gait Analysis: An Introduction. Oxford: Butterworth-Heinemann Ltd. (2007).
    1. Van Dyck E, Moens B, Buhmann J, Demey M, Coorevits E, Dalla Bella S, et al. Spontaneous entrainment of running cadence to music tempo. Sports Med Open (2015) 1(1):15.10.1186/s40798-015-0025-9
    1. Wu LJ, Jankovic J. Runner’s dystonia. J Neurol Sci (2006) 251(1–2):73–6.10.1016/j.jns.2006.09.003
    1. Hirtz D, Thurman DJ, Gwinn-Hardy K, Mohamed M, Chaudhuri AR, Zalutsky R. How common are the “common” neurologic disorders? Neurology (2007) 68(5):326–37.10.1212/01.wnl.0000252807.38124.a3
    1. Jankovic J. Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry (2008) 79(4):368–76.10.1136/jnnp.2007.131045
    1. Kalia LV, Lang AE. Parkinson’s disease. Lancet (2015) 386(9996):896–912.10.1016/S0140-6736(14)61393-3
    1. Lees AJ. A modern perspective on the top 100 cited JNNP papers of all time the relevance of the Lewy body to the pathogenesis of idiopathic Parkinson’s disease accuracy of clinical diagnosis of idiopathic Parkinson’s disease. J Neurol Neurosurg Psychiatry (2012) 83(10):954–5.10.1136/jnnp-2012-302969
    1. Factor SA, Higgins DS, Qian J. Primary progressive freezing gait: a syndrome with many causes. Neurology (2006) 66(3):411–4.10.1212/01.wnl.0000196469.52995.ab
    1. Thenganatt MA, Jankovic J. Parkinson disease subtypes. JAMA Neurol (2014) 71(4):499–504.10.1001/jamaneurol.2013.6233
    1. Arias P, Cudeiro J. Effects of rhythmic sensory stimulation (auditory, visual) on gait in Parkinson’s disease patients. Exp Brain Res (2008) 186(4):589–601.10.1007/s00221-007-1263-y
    1. Bloem BR, Hausdorff JM, Visser JE, Giladi N. Falls and freezing of gait in Parkinson’s disease: a review of two interconnected, episodic phenomena. Mov Disord (2004) 19(8):871–84.10.1002/mds.20115
    1. Grabli D, Karachi C, Welter ML, Lau B, Hirsch EC, Vidailhet M, et al. Normal and pathological gait: what we learn from Parkinson’s disease. J Neurol Neurosurg Psychiatry (2012) 83(10):979–85.10.1136/jnnp-2012-302263
    1. Blin O, Ferrandez AM, Serratrice G. Quantitative analysis of gait in Parkinson patients: increased variability of stride length. J Neurol Sci (1990) 98(1):91–7.10.1016/0022-510X(90)90184-O
    1. Morris ME, Iansek R, Matyas TA, Summers JJ. Ability to modulate walking cadence remains intact in Parkinson’s disease. J Neurol Neurosurg Psychiatry (1994) 57(12):1532–4.10.1136/jnnp.57.12.1532
    1. Morris ME, Iansek R, Matyas TA, Summers JJ. Stride length regulation in Parkinson’s disease. Normalization strategies and underlying mechanisms. Brain (1996) 119(Pt 2):551–68.10.1093/brain/119.2.551
    1. Thaut MH, McIntosh GC, Rice RR, Miller RA, Rathbun J, Brault JM. Rhythmic auditory stimulation in gait training for Parkinson’s disease patients. Mov Disord (1996) 11(2):193–200.10.1002/mds.870110213
    1. Ebersbach G, Heijmenberg M, Kindermann L, Trottenberg T, Wissel J, Poewe W. Interference of rhythmic constraint on gait in healthy subjects and patients with early Parkinson’s disease: evidence for impaired locomotor pattern generation in early Parkinson’s disease. Mov Disord (1999) 14(4):619–25.10.1002/1531-8257(199907)14:4<619::AID-MDS1011>;2-X
    1. Hausdorff JM. Gait dynamics in Parkinson’s disease: common and distinct behavior among stride length, gait variability, and fractal-like scaling. Chaos (2009) 19(2):026113.10.1063/1.3147408
    1. Tolleson CM, Dobolyi D, Roman OC, Kanoff K, Barton S, Wylie SA, et al. Dysrhythmia of timed movements in Parkinson’s disease and freezing of gait. Brain Res (2015).10.1016/j.brainres.2015.07.041
    1. Virmani T, Moskowitz CB, Vonsattel JP, Fahn S. Clinicopathological characteristics of freezing of gait in autopsy-confirmed Parkinson’s disease. Mov Disord (2015).10.1002/mds.26346
    1. Perez-Lloret S, Negre-Pages L, Damier P, Delval A, Derkinderen P, Destee A, et al. Prevalence, determinants, and effect on quality of life of freezing of gait in Parkinson disease. JAMA Neurol (2014) 71(7):884–90.10.1001/jamaneurol.2014.753
    1. Shine JM, Matar E, Ward PB, Frank MJ, Moustafa AA, Pearson M, et al. Freezing of gait in Parkinson’s disease is associated with functional decoupling between the cognitive control network and the basal ganglia. Brain (2013) 136(Pt 12):3671–81.10.1093/brain/awt272
    1. Szewczyk-Krolikowski K, Menke RA, Rolinski M, Duff E, Salimi-Khorshidi G, Filippini N, et al. Functional connectivity in the basal ganglia network differentiates PD patients from controls. Neurology (2014) 83(3):208–14.10.1212/WNL.0000000000000592
    1. Bohnen NI, Frey KA, Studenski S, Kotagal V, Koeppe RA, Constantine GM, et al. Extra-nigral pathological conditions are common in Parkinson’s disease with freezing of gait: an in vivo positron emission tomography study. Mov Disord (2014) 29(9):1118–24.10.1002/mds.25929
    1. Bella SD, Benoit CE, Farrugia N, Schwartze M, Kotz SA. Effects of musically cued gait training in Parkinson’s disease: beyond a motor benefit. Ann N Y Acad Sci (2015) 1337:77–85.10.1111/nyas.12651
    1. Fasano A, Daniele A, Albanese A. Treatment of motor and non-motor features of Parkinson’s disease with deep brain stimulation. Lancet Neurol (2012) 11(5):429–42.10.1016/S1474-4422(12)70049-2
    1. Lozano AM, Snyder BJ. Deep brain stimulation for parkinsonian gait disorders. J Neurol (2008) 255(Suppl 4):30–1.10.1007/s00415-008-4005-6
    1. Ferraye MU, Debu B, Fraix V, Goetz L, Ardouin C, Yelnik J, et al. Effects of pedunculopontine nucleus area stimulation on gait disorders in Parkinson’s disease. Brain (2010) 133(Pt 1):205–14.10.1093/brain/awp229
    1. Jones CR, Jahanshahi M. Motor and perceptual timing in Parkinson’s disease. Adv Exp Med Biol (2014) 829:265–90.10.1007/978-1-4939-1782-2_14
    1. Gomez J, Jesus Marin-Mendez J, Molero P, Atakan Z, Ortuno F. Time perception networks and cognition in schizophrenia: a review and a proposal. Psychiatry Res (2014) 220(3):737–44.10.1016/j.psychres.2014.07.048
    1. Parker KL, Lamichhane D, Caetano MS, Narayanan NS. Executive dysfunction in Parkinson’s disease and timing deficits. Front Integr Neurosci (2013) 7(75):75.10.3389/fnint.2013.00075
    1. Malapani C, Rakitin B, Levy R, Meck WH, Deweer B, Dubois B, et al. Coupled temporal memories in Parkinson’s disease: a dopamine-related dysfunction. J Cogn Neurosci (1998) 10(3):316–31.10.1162/089892998562762
    1. Drew MR, Simpson EH, Kellendonk C, Herzberg WG, Lipatova O, Fairhurst S, et al. Transient overexpression of striatal D2 receptors impairs operant motivation and interval timing. J Neurosci (2007) 27(29):7731–9.10.1523/JNEUROSCI.1736-07.2007
    1. Eagleman DM, Tse PU, Buonomano D, Janssen P, Nobre AC, Holcombe AO. Time and the brain: how subjective time relates to neural time. J Neurosci (2005) 25(45):10369–71.10.1523/JNEUROSCI.3487-05.2005
    1. Parsons BD, Gandhi S, Aurbach EL, Williams N, Williams M, Wassef A, et al. Lengthened temporal integration in schizophrenia. Neuropsychologia (2013) 51(2):372–6.10.1016/j.neuropsychologia.2012.11.008
    1. Coull J, Nobre A. Dissociating explicit timing from temporal expectation with fMRI. Curr Opin Neurobiol (2008) 18(2):137–44.10.1016/j.conb.2008.07.011
    1. Piras F, Coull JT. Implicit, predictive timing draws upon the same scalar representation of time as explicit timing. PLoS One (2011) 6(3):e18203.10.1371/journal.pone.0022514
    1. Artieda J, Pastor MA, Lacruz F, Obeso JA. Temporal discrimination is abnormal in Parkinson’s disease. Brain (1992) 115(1):199–210.10.1093/brain/115.1.199
    1. Harrington DL, Haaland KY, Hermanowitz N. Temporal processing in the basal ganglia. Neuropsychology (1998) 12(1):3–12.10.1037/0894-4105.12.1.3
    1. Smith JG, Harper DN, Gittings D, Abernethy D. The effect of Parkinson’s disease on time estimation as a function of stimulus duration range and modality. Brain Cogn (2007) 64(2):130–43.10.1016/j.bandc.2007.02.001
    1. Grahn JA, Brett M. Impairment of beat-based rhythm discrimination in Parkinson’s disease. Cortex (2009) 45(1):54–61.10.1016/j.cortex.2008.01.005
    1. Bares M, Lungu O, Liu T, Waechter T, Gomez CM, Ashe J. Impaired predictive motor timing in patients with cerebellar disorders. Exp Brain Res (2007) 180(2):355–65.10.1007/s00221-007-0857-8
    1. Beudel M, Galama S, Leenders KL, de Jong BM. Time estimation in Parkinson’s disease and degenerative cerebellar disease. Neuroreport (2008) 19(10):1055–8.10.1097/WNR.0b013e328303b7b9
    1. Merchant H, Grahn J, Trainor L, Rohrmeier M, Fitch WT. Finding the beat: a neural perspective across humans and non-human primates. Philos Trans R Soc Lond B Biol Sci (2015) 370(1664):20140093.10.1098/rstb.2014.0093
    1. Coull JT, Cheng RK, Meck WH. Neuroanatomical and neurochemical substrates of timing. Neuropsychopharmacology (2011) 36(1):3–25.10.1038/npp.2010.113
    1. Bengtsson SL, Ullen F, Ehrsson HH, Hashimoto T, Kito T, Naito E, et al. Listening to rhythms activates motor and premotor cortices. Cortex (2009) 45(1):62–71.10.1016/j.cortex.2008.07.002
    1. Schaefer RS, Overy K. Motor responses to a steady beat. Ann N Y Acad Sci (2015) 1337:40–4.10.1111/nyas.12717
    1. Pastor MA, Artieda J, Jahanshahi M, Obeso JA. Time estimation and reproduction is abnormal in Parkinson’s disease. Brain (1992) 115(1):211–25.10.1093/brain/115.1.211
    1. Ivry RB. The representation of temporal information in perception and motor control. Curr Opin Neurobiol (1996) 6(6):851–7.10.1016/S0959-4388(96)80037-7
    1. Ivry RB, Spencer RM. The neural representation of time. Curr Opin Neurobiol (2004) 14(2):225–32.10.1016/j.conb.2004.03.013
    1. Grahn JA, Rowe JB. Finding and feeling the musical beat: striatal dissociations between detection and prediction of regularity. Cereb Cortex (2013) 23(4):913–21.10.1093/cercor/bhs083
    1. Meck WH. Affinity for the dopamine D2 receptor predicts neuroleptic potency in decreasing the speed of an internal clock. Pharmacol Biochem Behav (1986) 25(6):1185–9.10.1016/0091-3057(86)90109-7
    1. Drew MR, Fairhurst S, Malapani C, Horvitz JC, Balsam PD. Effects of dopamine antagonists on the timing of two intervals. Pharmacol Biochem Behav (2003) 75(1):9–15.10.1016/S0091-3057(03)00036-4
    1. Buhusi CV, Meck WH. What makes us tick? Functional and neural mechanisms of interval timing. Nat Rev Neurosci (2005) 6(10):755–65.10.1038/nrn1764
    1. Meck WH. Neuroanatomical localization of an internal clock: a functional link between mesolimbic, nigrostriatal, and mesocortical dopaminergic systems. Brain Res (2006) 1109(1):93–107.10.1016/j.brainres.2006.06.031
    1. Buhusi CV, Meck WH. Relativity theory and time perception: single or multiple clocks? PLoS One (2009) 4(7):e6268.10.1371/journal.pone.0006268
    1. Lake JI, Meck WH. Differential effects of amphetamine and haloperidol on temporal reproduction: dopaminergic regulation of attention and clock speed. Neuropsychologia (2013) 51(2):284–92.10.1016/j.neuropsychologia.2012.09.014
    1. O’Boyle DJ, Freeman JS, Cody FW. The accuracy and precision of timing of self-paced, repetitive movements in subjects with Parkinson’s disease. Brain (1996) 119(Pt 1):51–70.10.1093/brain/119.1.51
    1. Harrington DL, Haaland KY. Neural underpinnings of temporal processing: a review of focal lesion, pharmacological, and functional imaging research. Rev Neurosci (1999) 10(2):91–116.10.1515/REVNEURO.1999.10.2.91
    1. Schwartze M, Keller PE, Patel AD, Kotz SA. The impact of basal ganglia lesions on sensorimotor synchronization, spontaneous motor tempo, and the detection of tempo changes. Behav Brain Res (2011) 216(2):685–91.10.1016/j.bbr.2010.09.015
    1. Sen S, Kawaguchi A, Truong Y, Lewis MM, Huang X. Dynamic changes in cerebello-thalamo-cortical motor circuitry during progression of Parkinson’s disease. Neuroscience (2010) 166(2):712–9.10.1016/j.neuroscience.2009.12.036
    1. Parsons BD, Novich SD, Eagleman DM. Motor-sensory recalibration modulates perceived simultaneity of cross-modal events at different distances. Front Psychol (2013) 4:46.10.3389/fpsyg.2013.00046
    1. Leuthold H, Jentzsch I. Neural correlates of advance movement preparation: a dipole source analysis approach. Brain Res Cogn Brain Res (2001) 12(2):207–24.10.1016/S0926-6410(01)00052-0
    1. Cajal R, Swanson N, Swanson L. Histology of the Nervous System of Man and Vertebrates. New York, NY: Oxford University Press; (1953).
    1. Nieuwboer A, Rochester L, Müncks L, Swinnen SP. Motor learning in Parkinson’s disease: limitations and potential for rehabilitation. Parkinsonism Relat Disord (2009) 15:S53–8.10.1016/j.parkreldis.2008.03.003
    1. Nombela C, Hughes LE, Owen AM, Grahn JA. Into the groove: can rhythm influence Parkinson’s disease? Neurosci Biobehav Rev (2013) 37(10 Pt 2):2564–70.10.1016/j.neubiorev.2013.08.003
    1. McIntosh GC, Brown SH, Rice RR, Thaut MH. Rhythmic auditory-motor facilitation of gait patterns in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry (1997) 62(1):22–6.10.1136/jnnp.62.1.22
    1. Styns F, van Noorden L, Moelants D, Leman M. Walking on music. Hum Mov Sci (2007) 26(5):769–85.10.1016/j.humov.2007.07.007
    1. Wittwer JE, Webster KE, Hill K. Music and metronome cues produce different effects on gait spatiotemporal measures but not gait variability in healthy older adults. Gait Posture (2013) 37(2):219–22.10.1016/j.gaitpost.2012.07.006
    1. Thaut MH, Miltner R, Lange HW, Hurt CP, Hoemberg V. Velocity modulation and rhythmic synchronization of gait in Huntington’s disease. Mov Disord (1999) 14(5):808–19.10.1002/1531-8257(199909)14:5<808::AID-MDS1014>;2-J
    1. Leow LA, Parrott T, Grahn JA. Individual differences in beat perception affect gait responses to low- and high-groove music. Front Hum Neurosci (2014) 8:811.10.3389/fnhum.2014.00811
    1. Leow LA, Rinchon C, Grahn J. Familiarity with music increases walking speed in rhythmic auditory cuing. Ann N Y Acad Sci (2015) 1337:53–61.10.1111/nyas.12658
    1. Lopez WO, Higuera CA, Fonoff ET, Souza Cde O, Albicker U, Martinez JA. Listenmee and Listenmee smartphone application: synchronizing walking to rhythmic auditory cues to improve gait in Parkinson’s disease. Hum Mov Sci (2014) 37:147–56.10.1016/j.humov.2014.08.001
    1. Benoit CE, Dalla Bella S, Farrugia N, Obrig H, Mainka S, Kotz SA. Musically cued gait-training improves both perceptual and motor timing in Parkinson’s disease. Front Hum Neurosci (2014) 8:494.10.3389/fnhum.2014.00494
    1. Pecenka N, Engel A, Keller PE. Neural correlates of auditory temporal predictions during sensorimotor synchronization. Front Hum Neurosci (2013) 7:380.10.3389/fnhum.2013.00380
    1. Rochester L, Hetherington V, Jones D, Nieuwboer A, Willems AM, Kwakkel G, et al. Attending to the task: interference effects of functional tasks on walking in Parkinson’s disease and the roles of cognition, depression, fatigue, and balance. Arch Phys Med Rehabil (2004) 85(10):1578–85.10.1016/j.apmr.2004.01.025
    1. Yogev G, Giladi N, Peretz C, Springer S, Simon ES, Hausdorff JM. Dual tasking, gait rhythmicity, and Parkinson’s disease: which aspects of gait are attention demanding? Eur J Neurosci (2005) 22(5):1248–56.10.1111/j.1460-9568.2005.04298.x
    1. Rochester L, Nieuwboer A, Baker K, Hetherington V, Willems AM, Chavret F, et al. The attentional cost of external rhythmical cues and their impact on gait in Parkinson’s disease: effect of cue modality and task complexity. J Neural Transm (2007) 114(10):1243–8.10.1007/s00702-007-0756-y
    1. Hausdorff JM, Purdon PL, Peng CK, Ladin Z, Wei JY, Goldberger AL. Fractal dynamics of human gait: stability of long-range correlations in stride interval fluctuations. J Appl Physiol (1985) (1996) 80(5):1448–57.
    1. Hove MJ, Keller PE. Impaired movement timing in neurological disorders: rehabilitation and treatment strategies. Ann N Y Acad Sci (2015) 1337:111–7.10.1111/nyas.12615
    1. Hove MJ, Suzuki K, Uchitomi H, Orimo S, Miyake Y. Interactive rhythmic auditory stimulation reinstates natural 1/f timing in gait of Parkinson’s patients. PLoS One (2012) 7(3):e32600.10.1371/journal.pone.0032600
    1. Herman T, Giladi N, Gurevich T, Hausdorff JM. Gait instability and fractal dynamics of older adults with a “cautious” gait: why do certain older adults walk fearfully? Gait Posture (2005) 21(2):178–85.10.1016/S0966-6362(05)80311-X
    1. Moens B, Leman M. Alignment strategies for the entrainment of music and movement rhythms. Ann N Y Acad Sci (2015) 1337:86–93.10.1111/nyas.12647
    1. Moens B, Muller C, van Noorden L, Franek M, Celie B, Boone J, et al. Encouraging spontaneous synchronisation with D-Jogger, an adaptive music player that aligns movement and music. PLoS One (2014) 9(12):e114234.10.1371/journal.pone.0114901
    1. Azulay JP, Mesure S, Amblard B, Pouget J. Increased visual dependence in Parkinson’s disease. Percept Mot Skills (2002) 95(3 Pt 2):1106–14.10.2466/PMS.95.7.1106-1114
    1. Caudron S, Guerraz M, Eusebio A, Gros JP, Azulay JP, Vaugoyeau M. Evaluation of a visual biofeedback on the postural control in Parkinson’s disease. Neurophysiol Clin (2014) 44(1):77–86.10.1016/j.neucli.2013.10.134
    1. Adamovich SV, Berkinblit MB, Hening W, Sage J, Poizner H. The interaction of visual and proprioceptive inputs in pointing to actual and remembered targets in Parkinson’s disease. Neuroscience (2001) 104(4):1027–41.10.1016/S0306-4522(01)00099-9
    1. Keijsers NL, Admiraal MA, Cools AR, Bloem BR, Gielen CC. Differential progression of proprioceptive and visual information processing deficits in Parkinson’s disease. Eur J Neurosci (2005) 21(1):239–48.10.1111/j.1460-9568.2004.03840.x
    1. Jiang Y, Norman KE. Effects of visual and auditory cues on gait initiation in people with Parkinson’s disease. Clin Rehabil (2006) 20(1):36–45.10.1191/0269215506cr925oa
    1. Lee SJ, Yoo JY, Ryu JS, Park HK, Chung SJ. The effects of visual and auditory cues on freezing of gait in patients with Parkinson disease. Am J Phys Med Rehabil (2012) 91(1):2–11.10.1097/PHM.0b013e3182745a04
    1. Luessi F, Mueller LK, Breimhorst M, Vogt T. Influence of visual cues on gait in Parkinson’s disease during treadmill walking at multiple velocities. J Neurol Sci (2012) 314(1–2):78–82.10.1016/j.jns.2011.10.027
    1. Darekar A, McFadyen BJ, Lamontagne A, Fung J. Efficacy of virtual reality-based intervention on balance and mobility disorders post-stroke: a scoping review. J Neuroeng Rehabil (2015) 12(1):46.10.1186/s12984-015-0035-3
    1. Kim JH, Jang SH, Kim CS, Jung JH, You JH. Use of virtual reality to enhance balance and ambulation in chronic stroke: a double-blind, randomized controlled study. Am J Phys Med Rehabil (2009) 88(9):693–701.10.1097/PHM.0b013e3181b811e3
    1. Lewek MD, Feasel J, Wentz E, Brooks FP, Jr, Whitton MC. Use of visual and proprioceptive feedback to improve gait speed and spatiotemporal symmetry following chronic stroke: a case series. Phys Ther (2012) 92(5):748–56.10.2522/ptj.20110206
    1. Cho KH, Lee WH. Virtual walking training program using a real-world video recording for patients with chronic stroke: a pilot study. Am J Phys Med Rehabil (2013) 92(5):371–80; quiz 380-372, 458.10.1097/PHM.0b013e31828cd5d3
    1. Badarny S, Aharon-Peretz J, Susel Z, Habib G, Baram Y. Virtual reality feedback cues for improvement of gait in patients with Parkinson’s disease. Tremor Other Hyperkinet Mov (N Y) (2014) 4:225.10.7916/D8V69GM4
    1. Rizzo AA, Bowerly T, Buckwalter JG, Klimchuk D, Mitura R, Parsons TD. A virtual reality scenario for all seasons: the virtual classroom. CNS Spectr (2006) 11(1):35–44.10.1017/S1092852900024196
    1. Lange B, Koenig S, Chang CY, McConnell E, Suma E, Bolas M, et al. Designing informed game-based rehabilitation tasks leveraging advances in virtual reality. Disabil Rehabil (2012) 34(22):1863–70.10.3109/09638288.2012.670029
    1. de Bruin N, Doan JB, Turnbull G, Suchowersky O, Bonfield S, Hu B, et al. Walking with music is a safe and viable tool for gait training in Parkinson’s disease: the effect of a 13-week feasibility study on single and dual task walking. Parkinsons Dis (2010) 2010:483530.10.4061/2010/483530
    1. FitzGerald PM, Jankovic J. Lower body parkinsonism: evidence for vascular etiology. Mov Disord. (1989) 4(3):249–60.
    1. Korczyn AD. Vascular parkinsonism – characteristics, pathogenesis and treatment. Nat Rev Neurol. (2015) 11(6):319–26.
    1. Chomiak T, Pereira FV, Meyer N, de Bruin N, Derwent L, Luan K, et al. A new quantitative method for evaluating freezing of gait and dual-attention task deficits in Parkinson’s disease. J Neural Transm. (2015) 122(11):1523–31.
    1. de Bruin N, Kempster C, Doucette A, Doan JB, Hu B, Brown LA. The effects of music salience on the gait performance of young adults. J Music Ther (2015).
    1. Novich SD, Eagleman DM. Using space and time to encode vibrotactile information: toward an estimate of the skin’s achievable throughput. Exp Brain Res (2015) 233(10):2777–88.10.1007/s00221-015-4346-1

Source: PubMed

3
Iratkozz fel