A review on anti-inflammatory activity of monoterpenes

Rita de Cássia da Silveira e Sá, Luciana Nalone Andrade, Damião Pergentino de Sousa, Rita de Cássia da Silveira e Sá, Luciana Nalone Andrade, Damião Pergentino de Sousa

Abstract

Faced with the need to find new anti-inflammatory agents, great effort has been expended on the development of drugs for the treatment of inflammation. This disorder reduces the quality of life and overall average productivity, causing huge financial losses. In this review the anti-inflammatory activity of 32 bioactive monoterpenes found in essential oils is discussed. The data demonstrate the pharmacological potential of this group of natural chemicals to act as anti-inflammatory drugs.

References

    1. Ferrero-Miliani L., Nielsen O.H., Andersen P.S., Girardin S.E. Chronic inflammation: Importance of NOD2 and NALP3 in interleukin-1beta generation. Clin. Exp. Immunol. 2007;147:227–235.
    1. Dassoler M., Schwanz M., Busseto F., Moreira E.A., Gutierrez L. Perfil fitoquímico e ensaio farmacológico de Averrhoa carambola L. (Oxalidaceae) J. Bras. Fitom. 2004;2:4–8.
    1. Falcão H., Lima I.O., Santos V.L., Dantas H.F., Diniz M.F.F.M., Barbosa-Filho J.M., Batista L.M. Review of the plants with anti-inflammatory activity studied in Brazil. Braz. J. Pharmacogn. 2005;15:381–391.
    1. Frum Y., Viljoen A.M. In vitro 5-lipoxygenase activity of three indigenous South African aromatic plants used in traditional healing and the stereospecific activity of limonene in the 5-lipoxygenase assay. J. Essent. Oil Res. 2006;18:85–88.
    1. Kedzia B., Jankowiak J., Holonska J., Krzyzaniak M. Investigation of essential oils and components with immunostimulating activity. Herba Pol. 1998;44:126–135.
    1. Standen M.D., Connellan P.A., Leach D.N. Natural killer cell activity and lymphocyte activation: Investigating the effects of a selection of essential oils and components in vitro. Int. J. Aromather. 2006;16:133–139. doi: 10.1016/j.ijat.2006.09.006.
    1. Friedrich K., Delgado I.F., Santos L.M.F., Paumgartten F.J.R. Assessment of sensitization potential of monoterpenes using the rat popliteal lymph node assay. Food Chem. Toxicol. 2007;45:1516–1522. doi: 10.1016/j.fct.2007.02.011.
    1. Ahn G.S., Jang H.U., Jung G.Y., Kim J.H., Lee H.G., Lee I.S., Oh S.R., Park S.H. Essential oil component having inhibition activity of leukotriene production. KR 2001086473. Sep 12, 2001.
    1. Sun J. New antiasthmatic principles in the essential oil from leaves of Artemisia argyi. Zhong Cao Yao. 1981;12:558.
    1. Coordinating Research Group of Antiasthmatica in Zhejang. New antiasthmatic principles in the essential oil from leaves of Artemisia argyi. Zhong Cao Yao. 1982;13:241–245.
    1. Huang T.C., Liu P.K., Chang S.Y., Chou C.F., Tseng H.L. Study of antiasthmatic constituents in Ocimum basilicum Benth. Yao Xue Tong Bao. 1981;16:56.
    1. De Sousa D.P. Medicinal Essential Oils: Chemical, Pharmacological and Therapeutic Aspects. 1st. Nova Science Publishers; New York, NY, USA: 2012. p. 236.
    1. Santos F.A., Rao V.S.N. Antiinflammatory and antinociceptive effects of 1,8-cineole a terpenoid oxide present in many plant essential oils. Phytother. Res. 2000;14:240–244. doi: 10.1002/1099-1573(200006)14:4<240::AID-PTR573>;2-X.
    1. Valério D.A.R., Cunha T.M., Arakawa N.S., Lemos H.P., da Costa F.B., Parada C.A., Ferreira S.H., Cunha F.Q., Verri J.W.A. Anti-inflammatory and analgesic effects of the sesquiterpene lactone budlein A in mice: Inhibition of cytokine production-dependent mechanism. Eur. J. Pharmacol. 2007;562:155–163. doi: 10.1016/j.ejphar.2007.01.029.
    1. Juergens U.R., Stober M.V. The anti-inflammatory activity of l-menthol compared to mint oil in human monocytes in vitro: A novel perspective for its therapeutic use in inflammatory diseases. Eur. J. Med. Res. 1998;3:539–545.
    1. Wu X., Li X., Xiao F., Zhang Z., Xu Z., Wang H. Studies on the analgesic and anti-inflammatory effect of bornyl acetate in volatile oil from Amomum villosum. Zhong Yao Cai. 2004;27:438–439.
    1. Santos F.A., Silva R.M., Campos A.R., Araújo R.P., Júnior R.C.P.L., Rao V.S.N. 1,8-cineole (eucalyptol), a monoterpene oxide attenuates the colonic damage in rats on acute TNBS-colitis. Food Chem. Toxicol. 2004;42:579–584. doi: 10.1016/j.fct.2003.11.001.
    1. Chen B.W., Wang H.H., Liu J.X., Liu X.G. Zinc sulphate solution enema decreases inflammation in experimental colitis in rats. J. Gastroenterol. Hepatol. 1999;14:1088–1092. doi: 10.1046/j.1440-1746.1999.02013.x.
    1. Kettle A.J., Gedye C.A., Winterbourn C.C. Mechanism of inactivation of myeloperoxidase by 4-aminobenzoic acid hydrochloride. Biochem. J. 1997;321:503–508.
    1. Rachmilewitz D., Simonm P.L., Schwartz L.W., Griswold D.E., Fondacaro J.D., Wasserman M.A. Inflammatory mediators of experimental colitis in rats. Gastroenterology. 1989;97:326–337.
    1. Juergens U.R., Dethlefsen U., Steinkamp G., Gillissena R.R., Vetter H. Anti-inflammatory activity of 1.8-cineol (eucalyptol) in bronchial asthma: A double-blind placebo-controlled trial. Respir. Med. 2003;97:250–256. doi: 10.1053/rmed.2003.1432.
    1. Juergens U.R., Stober M., Vetter H. Steroid-like inhibition of monocyte arachidonic acid metabolism and IL-1β production by 1,8-cineole. Atemwegs Lungenkrankheiten. 1998;24:3–11.
    1. Juergens U.R., Engelen T., Racke K., Stoeber M., Gillissen A., Vetter H. Inhibitory activity of 1,8-cineol (eucalyptol) on cytokine production in cultured human lymphocytes and monocytes. Pulm. Pharmacol. Ther. 2004;17:281–287. doi: 10.1016/j.pupt.2004.06.002.
    1. Bastos V.P.D., Gomes A.S., Lima F.J.B., Brito T.S., Soares P.M.G., Pinho J.P.M., Silva C.S., Santos A.A., Souza M.H.L.P., Magalhães P.J.C. Inhaled 1,8-cineole reduces inflammatory parameters in airways of ovalbumin-challenged guinea pigs. Basic Clin. Pharmacol. Toxicol. 2011;108:34–39. doi: 10.1111/j.1742-7843.2010.00622.x.
    1. Nascimento N.R.F., Refosco R.M.C., Vasconcelos E.C.F., Kerntopf M.R., Santos C.F., Batista F.J.A., de Sousa C.M., Fonteles M.C. 1,8-Cineole induces relaxation in rat and guinea-pig airway smooth muscle. J. Pharm. Pharmacol. 2009;61:361–366. doi: 10.1211/jpp.61.03.0011.
    1. Heinrich W., Christian S., Uwe D. Concomitant therapy with Cineole (Eucalyptole) reduces exacerbations in COPD: A placebo-controlled double-blind trial. Respir. Res. 2009;10:69. doi: 10.1186/1465-9921-10-69.
    1. Trinh H.T., Lee I.A., Hyun Y.J., Kim D.H. Artemisia princeps Pamp. essential oil and its constitutents eucalyptol and α-terpineol ameliorate bacterial vaginosis and vulvovaginal candidiasis in mice by inhibiting bacterial growth and NF-κB activation. Planta Med. 77:1996–2002.
    1. Barnes P.J. How corticosteroids control inflammation: Quintiles Prize Lecture 2005. Br. J. Pharmacol. 2006;148:245–254. doi: 10.1038/sj.bjp.0706736.
    1. Ciftci O., Tanyildizi S., Godekmerdan A. Curcumin, myrecen and cineol modulate the percentage of lymphocyte subsets altered by 2,3,7, 8-Tetracholorodibenzo-p-dioxins (TCDD) in rats. Hum. Exp. Toxicol. 2011;30:1986–1994. doi: 10.1177/0960327111404909.
    1. Arakawa T., Osawa K. Pharmacological study and application to food of mint flavor-antibacterial and antiallergic principles. Aroma Res. 2000;1:20–23.
    1. Arakawa T., Shibata M., Hosomi K., Watanabe T., Honma Y., Kawasumi K., Takeuchi Y. Anti-allergenic effects of peppermint oil, chicle, and jelutong. Shokuhin Eiseigaku Zasshi. 1992;33:569–575. doi: 10.3358/shokueishi.33.569.
    1. Sidell N., Taga T., Hirano T., Kishimoto T., Saxon A. Retinoic acid-induced growth inhibition of a human myeloma cell line via down-regulation of IL-6 receptors. J. Immunol. 1991;146:3809–3814.
    1. Ali B.H., Blunden G. Pharmacological and toxicological properties of Nigella sativa. Phytother. Res. 2003;17:299–305. doi: 10.1002/ptr.1309.
    1. El-Tahir K.E., Ashour M.M., AL-Harbi M.M. The respiratory effects of the volatile oil of the black seed (Nigella sativa) in guinea pigs: Elucidation of the mechanism(s) of action. Gen. Pharmacol. 1993;24:1115–1122. doi: 10.1016/0306-3623(93)90358-5.
    1. Mutabagani A., El-Mahdy S.A. Study of the anti-inflammatory activity of Nigella sativa L and thymoquinone in rats. Saudi Pharm. J. 1997;5:110–113.
    1. Swamy S.M., Tan B.K. Cytotoxic and immunopotentiating effects of ethanolic extract of Nigella sativa L. seeds. J. Ethnopharmacol. 2000;70:1–7. doi: 10.1016/S0378-8741(98)00241-4.
    1. Mezayen R.E., Gazzar M.E., Nicolls M.R., Marecki J.C., Dreskin S.C., Nomiyama H. Effect of thymoquinone on cyclooxygenase expression and prostaglandin production in a mouse model of allergic airway inflammation. Immunol. Lett. 2006;106:72–81. doi: 10.1016/j.imlet.2006.04.012.
    1. Elias J.A., Lee C.G., Zheng T.M.B., Homer R.J., Zhu Z. New insights into the pathogenesis of asthma. J. Clin. Invest. 2003;111:291–297.
    1. Lukacs N.W. Role of chemokines in the pathogenesis of asthma. Nat. Rev. Immunol. 2001;1:108–116. doi: 10.1038/35100503.
    1. Wardlaw A.J., Dunnette S., Gleich G.J., Collins J.V., Kay A.B. Eosinophils and mast cells in bronchoalveolar lavage in subjects with mild asthma. Am. Rev. Respir. Dis. 1988;137:62–69. doi: 10.1164/ajrccm/137.1.62.
    1. Holgate S.T., Burns G.B., Robinson C., Church M.K. Anaphylactic- and calcium-dependent generation of prostaglandin D2 (PGD2), thromboxane B2, and other cyclooxygenase products of arachidonic acid by dispersed human lung cells and relationship to histamine release. J. Immunol. 1984;133:2138–2144.
    1. Tanaka K., Ogawa K., Sugamura K., Nakamura M., Takano S., Nagata K. Cutting edge: Differential production of prostaglandin D2 by human helper T cell subsets. J. Immunol. 2000;164:2277–2280.
    1. Fujitani Y., Kanaoka Y., Aritake K., Uodome N., Okazaki-Hatake K., Urade Y. Pronounced eosinophilic lung inflammation and Th2 cytokine release in human lipocalin-type prostaglandin D synthase transgenic mice. J. Immunol. 2002;168:443–449.
    1. Gazzar M.E., Mezayen R.E., Marecki J.C., Nicolls M.R., Canastar A., Dreskin S.C. Anti-inflammatory effect of thymoquinone in a mouse model of allergic lung inflammation. Int. Immunopharmacol. 2006;6:1135–1142. doi: 10.1016/j.intimp.2006.02.004.
    1. Williams R.O. Collagen-induced arthritis as a model for rheumatoid arthritis. Methods Mol. Med. 2004;98:207–216.
    1. Tekeoglu I., Dogan A., Ediz L., Budancamanak M., Demirel A. Effects of thymoquinone (volatile oil of black cumin) on rheumatoid arthritis in rat models. Phytother. Res. 2007;21:895–897. doi: 10.1002/ptr.2143.
    1. Badr G., Alwasel S., Ebaid H., Mohany M., Alhazza I. Perinatal supplementation with thymoquinone improves diabetic complications and T cell immune responses in rat offspring. Cell. Immunol. 2011;267:133–140. doi: 10.1016/j.cellimm.2011.01.002.
    1. Marsik P., Kokoska L., Landa P., Nepovim A., Soudek P., Vanek T. In vitro inhibitory effects of thymol and quinones of Nigella sativa seeds on cyclooxygenase-1-and -2-catalyzed prostaglandin E2 biosyntheses. Planta Med. 2005;71:739–742. doi: 10.1055/s-2005-871288.
    1. Juhás S., Cikos S., Czikková S., Veselá J., Iková G., Hájek T., Domaracká K., Domaracký M., Bujnáková D., Rehák P., et al. Effects of Borneol and Thymoquinone on TNBS-Induced Colitis in Mice. Folia Biol. (Praha) 2008;54:1–7.
    1. Watanabe K., Yano S., Horie T., Kachia R.S., Ikegami F., Yamamoto Y., Fujimori H., Kasai M. Borneol as allergy inhibitor. JP 06211713. Aug 2, 1994.
    1. Sun X., Ou L., Mi S., Wang N. Analgesic and anti-inflammation effect of borneol. Zhong Yao Xin Yao Yu Lin Chuang Yao Li. 2007;18:353–355.
    1. Liu R., Zhang L., Lan X., Li L., Zhang T.T., Sun J.H., Du G.H. Protection by borneol on cortical neurons against oxygen-glucose deprivation/reperfusion: Involvement of anti-oxidation and anti-inflammation through nuclear transcription factor κappaB signaling pathway. Neuroscience. 2011;176:408–419. doi: 10.1016/j.neuroscience.2010.11.029.
    1. He X., Lu Q., Liu Y. Effects of borneol injection on inflammation in focal cerebral ischemia reperfusion rats. Hua Xi Yao Xue Za Zhi. 2006;21:523–526.
    1. Dai J.P., Chen J., Bei Y.F., Han B.X., Wang S. Influence of borneol on primary mice oral fibroblasts: A penetration enhancer may be used in oral submucous fibrosis. J. Oral Pathol. Med. 2009;38:276–281. doi: 10.1111/j.1600-0714.2008.00738.x.
    1. Chi T., Ji X., Xia M., Rong Y., Qiu F., Zou L. Effect of six extractions from Wuhu decoction on isolated tracheal smooth muscle in Guinea pig. Zhong Guo Shi Yan Fang Ji Xue Za Zhi. 2009;15:52–55.
    1. Tung Y.T., Chua M.T., Wang S., Chang S.T. Anti-inflammation activities of essential oil and its constituents from indigenous cinnamon (Cinnamomum osmophloeum) twigs. Bioresour. Technol. 2008;99:3908–3912. doi: 10.1016/j.biortech.2007.07.050.
    1. Wang X., Shi W., Ma A., Jiang G., Zhang J., Zhai X., Zhong X. Influence of quercetin and bornyl acetate on CD4+/CD8+ lymphocytes in uterus following LPS-induced abortion in pregnant mice. Jie Pou Xue Bao. 2008;39:734–737.
    1. Wang X., Ma A., Shi W., Geng M., Zhong X., Zhao Y. Quercetin and bornyl acetate regulate t-lymphocyte subsets and inf-γ/il-4 ratio in utero in pregnant mice. Evid. Based Complement. Alternat. Med. 2011;2011:745262.
    1. Zhao Y., Wang X., Shi W., Zhong X. Anti-abortive effect of quercetin and bornyl acetate on macrophages and IL-10 in uterus of mice. Afr. J. Biotechnol. 2011;10:8675–8682.
    1. Braga P.C., dal Sasso M., Culici M., Bianchi T., Bordoni L., Marabini L. Anti-inflammatory activity of thymol inhibitory effect on the release of human neutrophil elastase. Pharmacology. 2006;77:130–136. doi: 10.1159/000093790.
    1. Demirci F., Paper D.H., Franz G., Baser K., Huesnue C. Investigation of the Origanum onites L. Essential Oil Using the Chorioallantoic Membrane (CAM) J. Agric. Food Chem. 2004;52:251–254. doi: 10.1021/jf034850k.
    1. Amirghofran Z., Hashemzadeh R., Javidnia K., Golmoghaddam H., Esmaeilbeig A. In vitro immunomodulatory effects of extracts from three plants of the Labiatae family and isolation of the active compound(s) J. Immunotoxicol. 2011;8:265–273. doi: 10.3109/1547691X.2011.590828.
    1. Pascual M.E., Slowing K., Carretero E., Sanchez M.D., Villar A. Lippia: Traditional uses, chemistry and pharmacology: A review. J. Ethnopharmacol. 2001;76:201–214. doi: 10.1016/S0378-8741(01)00234-3.
    1. Riella K.R., Marinho R.R., Santos J.S., Pereira-Filho R.N., Cardoso J.C., Albuquerque-Junior R.L.C., Thomazzi S.M. Albuquerque-Junior, R.L.C.; Thomazzi, S.M. Anti-inflammatory and cicatrizing activities of thymol, a monoterpene of the essential oil from Lippia gracilis, in rodents. J. Ethnopharmacol. 2012;143:656–663. doi: 10.1016/j.jep.2012.07.028.
    1. Enomoto S., Asano R., Iwahori Y., Narui T., Okada Y. Hematological studies on black cumin oil from the seeds of Nigella sativa L. Biol. Pharm. Bull. 2001;24:307–310. doi: 10.1248/bpb.24.307.
    1. De Vicenzi M., Stammati A., de Vicenzi A., Silano M. Constituents of aromatic plants: Carvacrol. Fitoterapia. 2004;75:801–804. doi: 10.1016/j.fitote.2004.05.002.
    1. Wieten L., van der Zee R., Spiering R., Wagenaar-Hilbers J., van Kooten P., Broere F., van Eden W. A novel heat-shock protein coinducer boosts stress protein Hsp70 to activate T cell regulation of inflammation in autoimmune arthritis. Arthritis Rheum. 2010;62:1026–1035. doi: 10.1002/art.27344.
    1. Sosa S., Altinier G., Politi M., Braca A., Morelli I., Della Logia R. Extracts and constituents of Lavandula multifida with topical anti-inflammatory activity. Phytomedicine. 2005;12:271–277. doi: 10.1016/j.phymed.2004.02.007.
    1. Landa P., Kokoska L., Pribylova M., Vanek T., Marsik P. In vitro Anti-inflammatory Activity of Carvacrol: Inhibitory Effect on COX-2 Catalyzed Prostaglandin E2 Biosynthesis. Arch. Pharm. Res. 2009;1:75–78.
    1. Mariko H., Rieko N., Michiko K., Kazuyuki H., Saori T., Hiroyasu I. Carvacrol, a component of thyme oil, activates PPARalpha and gamma and suppresses COX-2 expression. J. Lipid Res. 2010;51:132–139. doi: 10.1194/jlr.M900255-JLR200.
    1. Cho S., Choi Y., Park S., Park T. Carvacrol prevents diet-induced obesity by modulating gene expressions involved in adipogenesis and inflammation in mice fed with high-fat diet. J. Nutr. Biochem. 2012;23:192–201. doi: 10.1016/j.jnutbio.2010.11.016.
    1. Bimczok D., Rau H., Sewekow E., Janczyk P., Souffrant W.B., Roethkoetter H.J. Influence of carvacrol on proliferation and survival of porcine lymphocytes and intestinal epithelial cells in vitro. Toxicol. In Vitro. 2008;22:652–658. doi: 10.1016/j.tiv.2007.11.023.
    1. Guimarães A.G., Xavier M.A., Santana M.T., Camargo E.A., Santos C.A., Brito F.A., Barreto E.O., Cavalcanti S.C.H., Antoniolli A.R., Oliveira R.C.M., et al. Carvacrol attenuates mechanical hypernociception and inflammatory response. Naunyn Schmiedebergs Arch. Pharmacol. 2012;385:253–263. doi: 10.1007/s00210-011-0715-x.
    1. Chan A.S.L., Pang H., Yip E.C., Tam Y.K., Wong Y.H. Carvacrol and eugenol differentially stimulate intracellular Ca2+ mobilization and mitogen-activated protein kinases in Jurkat T-cells and monocytic THP-1 cells. Planta Med. 2005;71:634–639. doi: 10.1055/s-2005-871269.
    1. Silva F.V., Guimaraes A.G., Silva E.R.S., Sousa-Neto B.P., Machado F.D.F., Quintans-Júnior L.J., Arcanjo D.D.R., Oliveira F.A., Oliveira R.C.M. Anti-inflammatory and anti-ulcer activities of carvacrol, a monoterpene present in the essential oil of oregano. J. Med. Food. 2012;15:984–991. doi: 10.1089/jmf.2012.0102.
    1. Batista P.A., Werner M.F.P., Oliveira E.C., Burgos L., Pereira P., Brum L.F.S., Story G.M., Santos A.R.S. The antinociceptive effect of (−)-linalool in models of chronic inflammatory and neuropathic hypersensitivity in mice. J. Pain. 2010;11:1222–1229. doi: 10.1016/j.jpain.2010.02.022.
    1. Peana A.T., D’Aquila P.S., Serra F.P.G., Pippia P., Moretti M.D.L. Anti-inflammatory activity of linalool and linalyl acetate constituents of essential oils. Phytomedicine. 2002;9:721–726. doi: 10.1078/094471102321621322.
    1. Kawata J., Kameda M., Miyazawa M. Cyclooxygenase-2 inhibitory effects of monoterpenoids with a p-methane skeleton. Int. J. Essent. Oil Ther. 2008;2:145–148.
    1. Pongprayoon U., Soontornsaratune P., Jarikasem S., Sematong T., Wasuwat S., Claeson P. Topical antiinflammatory activity of the major lipophilic constituents of the rhizome of Zingiber cassumunar. Part 1. The essential oil. Phytomedicine. 1997;3:319–322. doi: 10.1016/S0944-7113(97)80003-7.
    1. Hart P.H., Brand C., Carson C.F., Riley T.V., Prager R.H., Finlay-Jones J.J. Terpinen-4-ol, the main component of the essential oil of Melaleuca alternifolia (tea tree oil), suppresses inflammatory mediator production by activated human monocytes. Inflamm. Res. 2000;49:619–626. doi: 10.1007/s000110050639.
    1. Ji P., Si M.S., Podnos Y., Imagawa D.K. Monoterpene Geraniol Prevents Acute Allograft Rejection. Transplant. Proc. 2002;34:1418–1419. doi: 10.1016/S0041-1345(02)02910-X.
    1. Marcuzzi A., Crovella S., Pontillo A. Geraniol rescues inflammation in cellular and animal models of mevalonate kinase deficiency. In Vivo. 2011;25:87–92.
    1. Marcuzzi A., Pontillo A., de Leo L., Tommasini A., Decorti G., Not T., Ventura A. Natural Isoprenoids are Able to Reduce Inflammation in a Mouse Model of Mevalonate Kinase Deficiency. Pediatr. Res. 2008;64:177–182. doi: 10.1203/PDR.0b013e3181761870.
    1. Su Y.W., Chao S.H., Lee M.H., Ou T.Y., Tsai Y.C. Inhibitory effects of citronellol and geraniol on nitric oxide and prostaglandin E2 production in macrophages. Planta Med. 2010;76:1666–1671. doi: 10.1055/s-0030-1249947.
    1. Katsukawa M., Nakata R., Koeji S., Hori K., Takahashi S., Inoue H. Citronellol and geraniol, components of rose oil, activate peroxisome proliferator-activated receptor α and γ and suppress cyclooxygenase-2 expression. Biosci. Biotech. Biochem. 2011;75:1010–1012. doi: 10.1271/bbb.110039.
    1. Maruyama N., Takizawa T., Ishibashi H., Hisajima T., Inouye S., Yamaguchi H., Abe S. Protective activity of geranium oil and its component, geraniol, in combination with vaginal washing against vaginal candidiasis in mice. Biol. Pharm. Bull. 2008;31:1501–1506. doi: 10.1248/bpb.31.1501.
    1. Shigeru A., Maruyama N., Hayama K., Ishibashi H., Inoue S., Oshima H., Yamaguchi H. Suppression of tumor necrosis factor-alpha-induced neutrophil adherence responses by essential oils. Mediatars Inflamm. 2003;12:323–328. doi: 10.1080/09629350310001633342.
    1. Su Y.W., Lee M.H. Composition comprising butylidene phthalide, citronellol, geraniol or combinations thereof, for inhibiting nitric oxide and/or prostaglandin E2 synthesis and method for inhibiting inflammation. US 20080268078 A1. Oct 30, 2008.
    1. Zhuang S.R., Chen S.L., Tsai J.H., Huang C.C., Wu T.C., Liu W.S., Tseng H.C., Lee H.S., Huang M.C., Shane G.T., et al. Effect of citronellol and the Chinese medical herb complex on cellular immunity of cancer patients receiving chemotherapy/radiotherapy. Phytother. Res. 2009;23:785–790. doi: 10.1002/ptr.2623.
    1. Wiseman D.A., Werner S.R., Crowell P.L. Cell cycle arrest by the isoprenoids perillyl alcohol, geraniol, and farnesol is mediated by p21Cip1 and p27Kip1 in human pancreatic adenocarcinoma cells. J. Pharmacol. Exp. Ther. 2007;320:1163–1170.
    1. Chaudhary S.C., Alam M.S., Siddiqui M.S., Athar M. Perillyl alcohol attenuates Ras-ERK signaling to inhibit murine skin inflammation and tumorigenesi. Chem. Biol. Interact. 2009;179:145–153. doi: 10.1016/j.cbi.2008.12.016.
    1. Wei X., Si M.S., Imagawa D.K., Ji P., Tromberg B.J., Cahalan M.D. Perillyl Alcohol Inhibits TCR-Mediated [Ca2+]i Signaling, Alters Cell Shape and Motility, and Induces Apoptosis in T Lymphocytes. Cell. Immunol. 2000;201:6–13. doi: 10.1006/cimm.2000.1637.
    1. Khan R., Sultana S. Farnesol attenuates 1,2-dimethylhydrazine induced oxidative stress, inflammation and apoptotic responses in the colon of Wistar rats. Chem. Biol. Interact. 2011;192:193–200. doi: 10.1016/j.cbi.2011.03.009.
    1. Katsukawa M., Nakata R., Takizawa Y., Hori K., Takahashi S., Inoue H. Citral, a component of lemongrass oil, activates PPARα and γ and suppresses COX-2 expression. Biochim. Biophys. Acta. 2010;1801:1214–1220. doi: 10.1016/j.bbalip.2010.07.004.
    1. Quintans-Júnior L.J., Guimarães A.G., Santana M.T., Araujo B.E.S., Moreira F.V., Bonjardim L.R., Araujo A.A.S., Siqueira J.S., Antoniolli A.R., Botelho M.A., et al. Citral reduces nociceptive and inflammatory response in rodents. Rev. Bras. Farmacogn. 2011;21:497–502. doi: 10.1590/S0102-695X2011005000065.
    1. Lee H., Jeong H., Jeong H.S., Kim D.J., Noh Y.H., Yuk D.Y., Hong J.T. Inhibitory effect of citral on NO production by suppression of iNOS expression and NF-κB activation in RAW264.7 cells. Arch. Pharm. Res. 2008;31:342–349. doi: 10.1007/s12272-001-1162-0.
    1. Yoon W.J., Lee N.H., Hyun C.G. Limonene suppresses lipopolysaccharide-induced production of nitric oxide, prostaglandin E2, and pro-inflammatory cytokines in RAW 264.7 macrophages. J. Oleo Sci. 2010;59:415–421. doi: 10.5650/jos.59.415.
    1. Hirota R., Roger N.N., Nakamura H., Song H.S., Sawamura M., Suganuma N. Anti-inflammatory effects of limonene from yuzu (Citrus junos Tanaka) essential oil on eosinophils. J. Food Sci. 2010;75:H87–H92. doi: 10.1111/j.1750-3841.2010.01541.x.
    1. Keinan E., Alt A., Amir G., Bentur L., Bibi H., Shoseyov D. Natural ozone scavenger prevents asthma in sensitized rats. Bioorg. Med. Chem. 2005;13:557–562. doi: 10.1016/j.bmc.2004.09.057.
    1. Kim M.H., Chung W.T., Kim Y.K., Lee J.H., Lee H.Y., Hwang B., Park Y.S., Hwang S.J., Kim J.H. The effect of the oil of Agastache rugosa O. Kuntze and three of its components on human cancer cell lines. J. Essent. Oil Res. 2001;13:214–218. doi: 10.1080/10412905.2001.9699669.
    1. Del Toro-Arreola S., Flores-Torales E., Torres-Lozano C., del Toro-Arreola A., Tostado-Pelayo K., Guadalupe R.D.M., Daneri-Navarro A. Effect of D-limonene on immune response in BALB/c mice with lymphoma. Int. Immunopharmacol. 2005;5:829–838. doi: 10.1016/j.intimp.2004.12.012.
    1. Souza M.C., Siani A.C., Ramos M.F.S., Menezes-de-Lima O., Jr., Henriques M.G. Evaluation of anti-inflammatory activity of essential oils from two Asteraceae species. Pharmazie. 2003;58:582–586.
    1. Held S., Schieberle P., Somoza V. Recent Highlights in Flavor Chemistry & Biology. 8th. Deutsche Forschungsanstalt für Lebensmittelchemie; Garching, Germany: 2007. Identification of α-terpineol as an anti-inflammatory component of orange juice by in vitro and ex vivo studies; pp. 239–244. Proceedings of the Wartburg Symposium on Flavor Chemistry and Biology, Eisenach, Germany, 27 February-2 March 2007.
    1. Held S., Somoza V. Identification of volatile orange juice components that increase the IL-4 and IL-10 formation in buccal cells. Curr. Top. Nutraceutical Res. 2008;6:23–28.
    1. Raphael T.J., Kuttan G. Immunomodulatory activity of naturally occurring monoterpenes carvone, limonene, and perillic acid. Immunopharmacol. Immunotoxicol. 2003;25:285–294. doi: 10.1081/IPH-120020476.
    1. Cariddi L., Escobar F., Moser M., Panero A., Alaniz F., Zygadlo J., Sabini L., Maldonado A. Monoterpenes isolated from Minthostachys verticillata (Griseb.) epling essential oil modulates immediate-type hypersensitivity responses in vitro and in vivo. Planta Med. 2011;77:1687–1694. doi: 10.1055/s-0030-1271090.
    1. De Sousa D.P., Camargo E.A., Oliveira F.S., de Almeida R.N. Anti-inflammatory activity of hydroxydihydrocarvone. Z. Naturforschung C. 2010;65:543–550.
    1. Salminen A., Lehtonen M., Suuronen T., Kaarniranta K., Huuskonen J. Terpenoids: Natural inhibitors of NF-kB signaling with anti-inflammatory and anticancer potential. Cell. Mol. Life Sci. 2008;65:2979–2999. doi: 10.1007/s00018-008-8103-5.
    1. Perkins N.D. Integrating cell-signalling pathways with NF-kB and IKK function. Nat. Rev. Mol. Cell Biol. 2007;8:49–62. doi: 10.1038/nrm2083.
    1. Ozbek H. Investigation of lethal dose levels and anti-inflammatory effect of Fenchone. Turk Hijyen ve Deneysel Biyoloji Dergisi. 2007;64:22–25.
    1. Quintão N.L., da Silva G.F., Antonialli C.S., Rocha L.W., Cechinel F.V., Ciccio J.F. Chemical composition and evaluation of the anti-hypernociceptive effect of the essential oil extracted from the leaves of Ugni myricoides on inflammatory and neuropathic models of pain in mice. Planta Med. 2010;76:1411–1418. doi: 10.1055/s-0029-1240891.
    1. Choi I.Y., Lim J.H., Hwang S., Lee J.C., Cho G.S., Kim W.K. Anti-ischemic and anti-inflammatory activity of (S)-cis-verbenol. Free Radic. Res. 2010;44:541–551. doi: 10.3109/10715761003667562.
    1. Sousa P.J.C., Linard C.F.B.M., Azevedo-Batista D., Oliveira A.C., Coelho-de-Souza A.N., Leal-Cardoso J.H. Antinociceptive effects of the essential oil of Mentha x villosa leaf and its major constituent piperitenone oxide in mice. Braz. J. Med. Biol. Res. 2009;42:655–659.
    1. Miguel M.G. Antioxidant and Anti-Inflammatory Activities of Essential oil: A short Revision. Molecules. 2010;15:9252–9287. doi: 10.3390/molecules15129252.

Source: PubMed

3
Iratkozz fel