Accuracy of whole-body diffusion-weighted MRI (WB-DWI/MRI) in diagnosis, staging and follow-up of gastric cancer, in comparison to CT: a pilot study

Sofie De Vuysere, Vincent Vandecaveye, Yves De Bruecker, Saskia Carton, Koen Vermeiren, Tim Tollens, Frederik De Keyzer, Raphaëla Carmen Dresen, Sofie De Vuysere, Vincent Vandecaveye, Yves De Bruecker, Saskia Carton, Koen Vermeiren, Tim Tollens, Frederik De Keyzer, Raphaëla Carmen Dresen

Abstract

Background: Accurate staging of patients with gastric cancer is necessary for selection of the most appropriate and personalized therapy. Computed tomography (CT) is currently used as primary staging tool, being widely available with a relatively high accuracy for the detection of parenchymal metastases, but with low sensitivity for the detection of peritoneal metastases. Magnetic resonance imaging (MRI) with diffusion-weighted imaging (DWI) has a very high contrast resolution, suggesting a higher diagnostic performance in the detection of small peritoneal lesions. The aim of this study was to retrospectively evaluate the added value of whole-body diffusion-weighted MRI (WB-DWI/MRI) to CT for detection of peritoneal carcinomatosis (PC) and distant metastases in the preoperative staging of gastric cancer.

Methods: This retrospective study included thirty-two patients with a suspicion of gastric cancer/recurrence, who underwent WB-DWI/MRI at 1.5 T, in addition to CT of thorax and abdomen. Images were evaluated by two experienced abdominal radiologists in consensus. Histopathology, laparoscopy and/or 1-year follow-up were used as reference standard.

Results: For overall tumour detection (n = 32), CT sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) was 83.3%, 100%, 100% and 82.4% respectively. For WB-DWI/MRI these values were 100%, 92.9%, 94.7% and 100%, respectively. For staging (n = 18) malignant lymph nodes and metastases, CT had a sensitivity, specificity/PPV/NPV of 50%/100%/100%/71.4%, and 15.4%/100%/100%/31.3% respectively. For WB-DWI/MRI, all values were 100%, for both malignant lymph nodes and metastases. WB-DWI/MRI was significantly better than CT in detecting tumour infiltration of the mesenteric root, serosal involvement of the small bowel and peritoneal metastases for which WB-DWI/MRI was correct in 100% of these cases, CT 0%.

Conclusions: WB-DWI/MRI is highly accurate for diagnosis, staging and follow-up of patients with suspected gastric cancer.

Keywords: Computed tomography (CT); Diffusion-weighted imaging (DWI); Magnetic resonance imaging (MRI); Neoplasm metastases; Neoplasm staging; Peritoneal neoplasms; Stomach neoplasm; WB-DWI/MRI.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
A patient with an age-range between 60 and 70 years old was diagnosed with a primary gastric adenocarcinoma with signet ring cell differentiation, localized at the cardia. CT scan (a) showed the primary tumor (arrows) as well as hydronephrosis of the right kidney (*), without a demonstrable cause. He had a WB-DWI/MRI for operability assessment. The primary gastric cancer is well visualized on the axial b1000 DWI (b, arrow). Apart from a peritoneal tumor implant on the right distal ureter (arrows) as the cause for the hydronephrosis on the coronal (c) and axial b1000 DWI (d), a brain metastasis (arrowheads) was found in the left cerebellum on the axial post-contrast T1 image (e) as well as the b1000 DWI (f), since the brain is included in the WB-DWI/MRI
Fig. 2
Fig. 2
A patient with an age-range between 70 and 80 years old was diagnosed with primary gastric cancer, for which an endoluminal stent was placed. CT scan in the axial plane (a) with coronal reconstruction (b) did not show any metastases. WB-DWI/MRI was performed for operability assessment, revealing an adenopathy in the gastro-hepatic fat (c, arrowhead), as well as peritoneal metastasis in the falciform ligament and on the surface of the left liver lobe (ce, arrows)
Fig. 3
Fig. 3
A patient with an age-range between 70 and 80 years old was diagnosed with primary gastric cancer. CT scan in the axial plane (a) with coronal reconstruction (b) did not show distant metastases. However, a slightly thickened anterior pararenal fascia on the left side (a, arrow) was noticed. WB-DWI/MRI was performed for further investigation with coronal (c) and axial b1000 (d) as well as contrast-enhanced T1-weighted images (e), and revealed –apart from the primary tumor (circled)– mesenteric tumor spread along the mesenteric root (ce, arrows), as well as peritoneal tumor spread on the left anterior pararenal fascia (c, e, arrowheads)
Fig. 4
Fig. 4
A patient with an age-range between 60 and 70 years old with a primary gastric cancer, where CT did not show any distant metastases (a, b), underwent a WB-DWI/MRI for operability assessment. Axial b1000 DWI images revealed millimetric tumor implants on the pancreatic surface (c, arrowheads). At the same time, multiple bone metastases (arrows) could be seen on the coronal b1000 DWI (d), coronal T2-weighted images (e), axial b1000 DWI (f) and post-contrast T1-weighted images (g)

References

    1. Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence of mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;2018:394–424. doi: 10.3322/caac.21492.
    1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90. doi: 10.3322/caac.20107.
    1. Sarela AI, Miner TJ, Karpeh MS, Coit DG, Jaques DP, Brennan MF. Clinical outcomes with laparoscopic stage M1, unresected gastric adenocarcinoma. Ann Surg. 2006;243:189–195. doi: 10.1097/01.sla.0000197382.43208.a5.
    1. Maehara Y, Hasuda S, Koga T, Tokunaga E, Kakeji Y, Sugimachi K. Postoperative outcome and sites of recurrence in patients following curative resection of gastric cancer. Br J Surg. 2000;87(3):353–357. doi: 10.1046/j.1365-2168.2000.01358.x.
    1. Yoo CH, Noh SH, Shin DW, et al. Recurrence following curative resection for gastric carcinoma. Br J Surg. 2000;87:236–242. doi: 10.1046/j.1365-2168.2000.01360.x.
    1. Lerut T, Stordeur S, Verleye L et al. Clinical practice guidelines: upper gastrointestinal cancer—update. Report 179A. Brussels, Belgium: Belgian Health Care Knowledge Centre; 2012.
    1. Smyth EC, Verheij M, Allum W, Cunningham D, Cervantes A, Arnold D, on behalf of the ESMO Guidelines Committee Gastric cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2016;27(Supplement 5):v38–v49. doi: 10.1093/annonc/mdw350.
    1. Coburn N, Cosby R, Klein L, Knight G, Malthaner R, Mamazza J, Mercer CD, Ringash J. Staging and surgical approaches in gastric cancer: a clinical practice guideline. Curr Oncol. 2017;24(5):324–331. doi: 10.3747/co.24.3736.
    1. Kwee RM, Kwee TC. Imaging in assessing lymph node status in gastric cancer. Gastric Cancer. 2009;12:6–22. doi: 10.1007/s10120-008-0492-5.
    1. Choi JI, Joo I, Lee JM. State of the art preoperative staging of gastric cancer by MDCT and magnetic resonance imaging. World J Gastroenterol. 2014;20(16):4546–4557. doi: 10.3748/wjg.v20.i16.4546.
    1. Borggreve AS, Goense L, Brenkman H, Mook S, Meijer G, Wessels F, Verheij M, Jansen E, Van Hillegersberg R, Van Rossum P, Ruurda J. Imaging strategies in the management of gastric cancer: current role and future potential of MRI. Br J Radiol. 2019;92:20181044. doi: 10.1259/bjr.20181044.
    1. Seevaratnam R, Cardoso R, McGregor C, et al. How useful is preoperative imaging for tumor, node, metastasis (TNM) staging of gastric cancer? A meta-analysis. Gastric Cancer. 2012;15(suppl 1):S3–18. doi: 10.1007/s10120-011-0069-6.
    1. Kwee RM, Kwee TC. Modern imaging techniques for preoperative detection of distant metastases in gastric cancer. World J Gastroenterol. 2015;21:10502–10509. doi: 10.3748/wjg.v21.i37.10502.
    1. Kim SJ, Kim H-H, Kim YH, Hwang SH, Lee HS, Park DJ, et al. Peritoneal metastasis: detection with 16- or 64-detector row CT in patients undergoing surgery for gastric cancer. Radiology. 2009;253:407–415. doi: 10.1148/radiol.2532082272.
    1. Koh JL, Yan TD, Glenn D, Morris DL. Evaluation of preoperative computed tomography in estimating peritoneal cancer index in colorectal peritoneal carcinomatosis. Ann Surg Oncol. 2009;16(2):327–333. doi: 10.1245/s10434-008-0234-2.
    1. Rivard JD, Temple WJ, McConnell YJ, Sultan H, Mack LA. Preoperative computed tomography does not predict resectability in peritoneal carcinomatosis. AM J Surg. 2014;207(5):760–764. doi: 10.1016/j.amjsurg.2013.12.024.
    1. Kim EY, Lee WJ, Choi D, Lee SJ, Choi JY, Kim BT, Kim HS. The value of PET/CT for preoperative staging of advanced gastric cancer: comparison with contrast-enhanced CT. Eur J Radiol. 2011;79:183–188. doi: 10.1016/j.ejrad.2010.02.005.
    1. Park K, Jang G, Baek S, Song H. Usefulness of combined PET/CT to assess regional lymph node involvement in gastric cancer. Tumori. 2014;100:201–206. doi: 10.1177/030089161410000214.
    1. Lopez-Lopez V, Cascales-Campos PA, Gil J, Frutos L, Andrade RJ, Fuster-Quinonero M, et al. Use of 18F-FDG PET/CT in the preoperative evaluation of patients diagnosed with peritoneal carcinomatosis of ovarian origin, candidatest o cytoreduction and hipec. A pending issue. Eur J Radiol. 2016;85(10):1824–1828. doi: 10.1016/j.ejrad.2016.08.006.
    1. Dromain C, Leboulleux S, Auperin A, Goere D, Malka D, Lumbroso J, et al. Staging of peritoneal carcinomatos: enhanced CT vs PET/CT. Abdom Imaging. 2008;33(1):87–93. doi: 10.1007/s00261-007-9211-7.
    1. Pasqual EM, Bacchetti S, Bertozzi S, et al. Diagnostic accuracy of preoperative CT scan and 18F-FDG PET/CT in patients with peritoneal carcinomatosis undergoing hyperthermic intraperitoneal chemotherapy (HIPEC) following cytoreductive surgery. Eur J Cancer. 2013;49:S264. doi: 10.1016/j.ejca.2012.06.001.
    1. Leake P-A, Cardoso R, Seevaratnam R, Lourenco L, Helyer I, Mahar A, et al. A systematic review of the accuracy and indications for diagnostic laparoscopy prior to curative-intent resection of gastric cancer. Gastric Cancer. 2012;15(S1):38–47. doi: 10.1007/s10120-011-0047-z.
    1. Low RN, Barone R, Lucero J. Comparison of MRI and CT for predicting the peritoneal cancer index (PCI) preoperatively in patients being considered for cytoreductive surgical procedures. ANN Surg Oncol. 2015;22(5):1708–1715. doi: 10.1245/s10434-014-4041-7.
    1. Low RN. Preoperative and surveillance MR imaging of patients undergoing cytoreductive surgery and heated intraperitoneal chemotherapy. J Gastrointest Oncol. 2016;7(1):58–71.
    1. Michielsen K, Vergote I, Op De Beeck K, Amant F, Leunen K, Moerman P, et al. Whole-body MRI with diffusion-weighted sequence for staging of patients with suspected ovarian cancer: a clinical feasibility study in comparison to CT and FDG-PET/CT. Eur Radiol. 2014;24(4):889–901. doi: 10.1007/s00330-013-3083-8.
    1. Michielsen K, Dresen R, Vanslembrouck R, De Kezer F, Amant F, Mussen E, et al. Diagnostic value of whole body diffusion-weighted MRI compared to computed tomography for pre-operative assessment of patients suspected for ovarian cancer. Eur J Cancer. 2017;83:88–98. doi: 10.1016/j.ejca.2017.06.010.
    1. Koh D-M, Takahara T, Imai Y, Collins DJ. Practical aspects of assessing tumors using clinical diffusion-weighted imaging in the body. Magn Reson Med Sci. 2007;6:211–224. doi: 10.2463/mrms.6.211.
    1. Dresen RC, De Vuysere S, De Keyzer F, Van Cutsem E, Prenen H, Vanslembrouck R, De Hertogh G, Wolthuis A, D’Hoore A, Vandecaveye V. Whole-body diffusion-weighted MRI for operability assessment in patients with colorectal cancer and peritoneal metastases. Cancer Imaging (2019); 19(1):1
    1. Giganti F, Tang L, Baba H. Gastric cancer and imaging biomarkers: part 1—a critical review of DW-MR and CE-MDCT findings. Eur Radiol. 2019;29:1743–1753. doi: 10.1007/s00330-018-5732-4.
    1. Tang L, Wang XJ, Baba H, Giganti F. Gastric cancer and image-derived quantitative parameters: part 2—a critical review of DCE-MRI and 18F-FDG PET/CT findings. Eur Radiol. 2019;30:247–260. doi: 10.1007/s00330-019-06370-x.
    1. De Cobelli F, Palumbo D, Albarello L, Rosati R, Giganti F. Esophagus and stomach: is there a role for MR imaging? Magn Reson Imaging Clin N Am. 2020;28:1–15. doi: 10.1016/j.mric.2019.08.001.
    1. Borggreve AS, Goense L, Brenkman H, Mook S, Meijer G, Wessels F, Verhey M, Jansen E, Van Hillegersberg R, Van Rossum P, Ruurda J. Review Article: Imaging strategies in the management of gastric cancer: current role and future potential of MRI. Br J Radiol. 2019;92:20181044. doi: 10.1259/bjr.20181044.
    1. Joo I, Lee JM, Kim JH, Shin D-I, Han JK, Choi BI. Prospective comparison of 3T MRI with diffusion-weighted imaging and MDCT for the preoperative TNM staging of gastric cancer. J Magn Reson Imaging. 2015;41:814–821. doi: 10.1002/jmri.24586.
    1. Soussan M, Des Guetz G, Barrau V, Aflalo-Hazan V, Pop G, Mehanna Z, et al. Comparison of FDG-PET/CT and MR with diffusion-weighted imaging for assessing peritoneal carcinomatosis from gastrointestinal malignancy. Eur Radiol. 2012;22:1479–1487. doi: 10.1007/s00330-012-2397-2.
    1. Chua T, Al-Zahrini A, Saxena A, Glenn D, Liauw W, Zhao J, et al. Determining the association between preoperative computed tomografphy findings and postoperative outcomes after cytoreductive surgery and perioperative intraperitoneal chemotherapy for pseudomyxoma peritonei. Ann Surg Oncol. 2011;18(6):1582–1589. doi: 10.1245/s10434-010-1492-3.
    1. Mazzei M, Khader L, Cirigliano A, Cioffi Squitieri N, Guerrini S, Forzoni B, et al. Accuracy of MDCT in the preoperative definition of peritoneal cancer index (PCI) in patients with advanced ovarian cancer who underwent peritonectomy and hyperthermic intraperitoneal chemotherapy (HIPEC) Abdom Imaging. 2013;38(6):1422–1430. doi: 10.1007/s00261-013-0013-9.
    1. Yang HL, Liu T, Wang XM, Xu Y, Deng SM. Diagnosis of bone metastases: a meta-analysis. Eur Radiol. 2011;21(12):2604–2617. doi: 10.1007/s00330-011-2221-4.
    1. Liu T, Wang S, Liu H, Meng B, Zhou F, He F, Shi X, Yang H. Detection of vertebral metastases: a meta-analysis comparing MRI, CT, PET, BS and BS with SPECT. J Cancer Res Clin Oncol. 2017;143(3):457–465. doi: 10.1007/s00432-016-2288-z.
    1. Tunariu N, Blackledge M, Messiou C, Petralia G, Padhani A, Curcean S, et al. What’s new for clinical whole-body MRI (WB-MRI) in the 21st century. Br J Radiol. 2020;93:20200562. doi: 10.1259/bjr.20200562.

Source: PubMed

3
Iratkozz fel