Photoplethysmogram Analysis and Applications: An Integrative Review

Junyung Park, Hyeon Seok Seok, Sang-Su Kim, Hangsik Shin, Junyung Park, Hyeon Seok Seok, Sang-Su Kim, Hangsik Shin

Abstract

Beyond its use in a clinical environment, photoplethysmogram (PPG) is increasingly used for measuring the physiological state of an individual in daily life. This review aims to examine existing research on photoplethysmogram concerning its generation mechanisms, measurement principles, clinical applications, noise definition, pre-processing techniques, feature detection techniques, and post-processing techniques for photoplethysmogram processing, especially from an engineering point of view. We performed an extensive search with the PubMed, Google Scholar, Institute of Electrical and Electronics Engineers (IEEE), ScienceDirect, and Web of Science databases. Exclusion conditions did not include the year of publication, but articles not published in English were excluded. Based on 118 articles, we identified four main topics of enabling PPG: (A) PPG waveform, (B) PPG features and clinical applications including basic features based on the original PPG waveform, combined features of PPG, and derivative features of PPG, (C) PPG noise including motion artifact baseline wandering and hypoperfusion, and (D) PPG signal processing including PPG preprocessing, PPG peak detection, and signal quality index. The application field of photoplethysmogram has been extending from the clinical to the mobile environment. Although there is no standardized pre-processing pipeline for PPG signal processing, as PPG data are acquired and accumulated in various ways, the recently proposed machine learning-based method is expected to offer a promising solution.

Keywords: bio-signal processing; motion artifacts; noise reduction; photoplethysmography; physiological measurement; physiological signal; signal quality assessment.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2022 Park, Seok, Kim and Shin.

Figures

FIGURE 1
FIGURE 1
Light intensity change represented with the Beer–Lambert law in photoplethysmogram measurement, where Ak, εk, ck, and lk are the k-th layer absorbance, extinction coefficient, concentration, and optical path length, respectively.
FIGURE 2
FIGURE 2
Configuration for photoplethysmography measurement: (A) transmissive type and (B) reflective type.
FIGURE 3
FIGURE 3
Principle of phototoplethysmogram generation and waveform features.
FIGURE 4
FIGURE 4
Features of the photoplethysmogram waveform. PPIsystolic, interval between systolic peaks of adjacent pulse; PPIdV/dt, interval between maximum dV/dt of adjacent pulse; PPIonset, interval between pulse onsets of adjacent pulse; PWx, pulse width at x% of systolic amplitude; Asys, systolic area; Adia, diastolic area; Atotal, total pulse area.
FIGURE 5
FIGURE 5
Waveform and features of photoplethysmogram (PPG, top), derivative PPG (middle), and second derivative PPG (bottom). Crest time is the elapsed time from pulse onset to systolic peak. ΔT is the time interval between systolic peak and diastolic peak that is defined by the second downward zero-crossing time in derivative PPG. In the second derivative PPG, a, b, c, d, and e are the early systolic positive peak, early systolic negative peak, late systolic re-increasing peak, late systolic re-decreasing peak, and early diastolic positive peak, respectively.
FIGURE 6
FIGURE 6
Examples of representative PPG distortion due to motion artifact, baseline wandering, and hypoperfusion (from top to bottom).
FIGURE 7
FIGURE 7
Example of PPG waveform reconstruction. Dashed line is distorted PPG, while bold line is reconstructed PPG.
FIGURE 8
FIGURE 8
Example of signal quality assessment using signal quality index (SQI).

References

    1. Adler J. N., Hughes L. A., Vtvilecchia R., Camargo A. C., Jr. (1998). Effect of skin pigmentation on pulse oximetry accuracy in the emergency department. Acad. Emergency Med. 5 965–970. 10.1111/j.1553-2712.1998.tb02772.x
    1. Ahonen J., Jokela R., Uutela K., Huiku M. (2007). Surgical stress index reflects surgical stress in gynaecological laparoscopic day-case surgery. Br. J. Anaesthesia 98 456–461. 10.1093/bja/aem035
    1. Aiba Y., Ohshiba S., Horiguchi S. I., Morioka I., Miyashita K., Kiyota I., et al. (1999). Peripheral hemodynamics evaluated by acceleration plethysmography in workers exposed to lead. Industrial Health 37 3–8. 10.2486/indhealth.37.3
    1. Alian A. A., Shelley K. H. (2014). Photoplethysmography. Best Pract. Res. Clin. Anaesthesiol. 28 395–406.
    1. Allen J. (2007). Photoplethysmography and its application in clinical physiological measurement. Physiol. Meas. 28:R1. 10.1088/0967-3334/28/3/R01
    1. Allen J., Liu H., Iqbal S., Zheng D., Stansby G. (2021). Deep learning-based photoplethysmography classification for peripheral arterial disease detection: a proof-of-concept study. Physiol. Meas. 42:054002. 10.1088/1361-6579/abf9f3
    1. Allen J., Murray A. (1993). Development of a neural network screening aid for diagnosing lower limb peripheral vascular disease from photoelectric plethysmography pulse waveforms. Physiol. Meas. 14:13. 10.1088/0967-3334/14/1/003
    1. Allen J., Murray A. (2000a). Similarity in bilateral photoplethysmographic peripheral pulse wave characteristics at the ears, thumbs and toes. Physiol. Meas. 21:369. 10.1088/0967-3334/21/3/303
    1. Allen J., Murray A. (2000b). Variability of photoplethysmography peripheral pulse measurements at the ears, thumbs and toes. IEEE Proc.-Sci. Meas. Technol. 147 403–407.
    1. Allen J., Murray A. (2002). Age-related changes in peripheral pulse timing characteristics at the ears, fingers and toes. J. Hum. Hypertens. 16 711–717. 10.1038/sj.jhh.1001478
    1. Allen J., Murray A. (2004). “Effects of filtering on multisite photoplethysmography pulse waveform characteristics,” in Proceeding of the Computers in Cardiology, 2004, (IEEE; ), 485–488.
    1. Alnaeb M. E., Alobaid N., Seifalian A. M., Mikhailidis D. P., Hamilton G. (2007). Optical techniques in the assessment of peripheral arterial disease. Curr. Vasc. Pharmacol. 5 53–59. 10.2174/157016107779317242
    1. Alty S. R., Angarita-Jaimes N., Millasseau S. C., Chowienczyk P. J. (2007). Predicting arterial stiffness from the digital volume pulse waveform. IEEE Trans. Biomed. Eng. 54 2268–2275. 10.1109/tbme.2007.897805
    1. Asada H. H., Shaltis P., Reisner A., Rhee S., Hutchinson R. C. (2003). Mobile monitoring with wearable photoplethysmographic biosensors. IEEE Eng. Med. Biol. Magazine 22 28–40. 10.1109/memb.2003.1213624
    1. Aschbacher K., Yilmaz D., Kerem Y., Crawford S., Benaron D., Liu J., et al. (2020). Atrial fibrillation detection from raw photoplethysmography waveforms: a deep learning application. Heart Rhythm O2 1 3–9. 10.1016/j.hroo.2020.02.002
    1. Avram R., Tison G., Kuhar P., Marcus G., Pletcher M., Olgin J. E., et al. (2019). Predicting diabetes from photoplethysmography using deep learning. J. Am. Coll. Cardiol. 73 16–16. 10.3349/ymj.2022.63.S93
    1. Awad A. A., Haddadin A. S., Tantawy H., Badr T. M., Stout R. G., Silverman D. G., et al. (2007). The relationship between the photoplethysmographic waveform and systemic vascular resistance. J. Clin. Monit. Comput. 21 365–372. 10.1007/s10877-007-9097-5
    1. Ayata D., Yaslan Y., Kamasak M. E. (2018). Emotion based music recommendation system using wearable physiological sensors. IEEE Tran. Consumer Electron. 64 196–203. 10.1109/tce.2018.2844736
    1. Baek H. J., Kim J. S., Kim Y. S., Lee H. B., Park K. S. (2007). “Second derivative of photoplethysmography for estimating vascular aging,” in Proceeding of the 6th International Special Topic Conference on Information Technology Applications in Biomedicine, (IEEE; ), 70–72. 10.1371/journal.pone.0135659
    1. Baek H. J., Kim K. K., Kim J. S., Lee B., Park K. S. (2009). Enhancing the estimation of blood pressure using pulse arrival time and two confounding factors. Physiol. Meas. 31:145. 10.1088/0967-3334/31/2/002
    1. Bagha S., Shaw L. (2011). A real time analysis of PPG signal for measurement of SpO2 and pulse rate. Int. J. Comput. Appl. 36 45–50.
    1. Baker W. B., Parthasarathy A. B., Busch D. R., Mesquita R. C., Greenberg J. H., Yodh A. (2014). Modified Beer-Lambert law for blood flow. Biomed. Optics Express 5 4053–4075. 10.1364/BOE.5.004053
    1. Barnes R. W., Clayton J. M., Bone G. E., Slaymaker E. E., Reinertson J. (1977). Supraorbital photoplethysmography. Simple, accurate screening for carotid occlusive disease. J. Surgical Res. 22 319–327. 10.1016/0022-4804(77)90150-0
    1. Beer A. (1851). Versuch der absorptions-verhältnisse des cordierites für rothes licht zu bestimmen. Ann. Physik Chem. 84 37–52. 10.1002/andp.18511600904
    1. Behar J., Roebuck A., Shahid M., Daly J., Hallack A., Palmius N., et al. (2014). SleepAp: an automated obstructive sleep apnoea screening application for smartphones. IEEE J. Biomed. Health Inform. 19 325–331. 10.1109/JBHI.2014.2307913
    1. Bentham M., Stansby G., Allen J. (2018). Innovative multi-site photoplethysmography analysis for quantifying pulse amplitude and timing variability characteristics in peripheral arterial disease. Diseases 6:81. 10.3390/diseases6030081
    1. Biswas D., Everson L., Liu M., Panwar M., Verhoef B.-E., Patki S., et al. (2019). CorNET: deep learning framework for PPG-based heart rate estimation and biometric identification in ambulant environment. IEEE Trans. Biomed. Circuits Syst. 13 282–291. 10.1109/TBCAS.2019.2892297
    1. Bohusch T., Miller T., Kreamer W., Eisenhardt J. R., Foehl H. C. (1994). Correlation of photoplethysmography, doppler velocimetry, digital blood pressure and skin temperature in the hand under conditions of warming. Cardiopulmonary Phys. Ther. J. 5 15–18.
    1. Bortolotto L. A., Blacher J., Kondo T., Takazawa K., Safar M. E. (2000). Assessment of vascular aging and atherosclerosis in hypertensive subjects: second derivative of photoplethysmogram versus pulse wave velocity. Am. J. Hypertens. 13 165–171. 10.1016/s0895-7061(99)00192-2
    1. Brillante D. G., O’sullivan A. J., Howes L. G. (2008). Arterial stiffness indices in healthy volunteers using non-invasive digital photoplethysmography. Blood Pressure 17 116–123. 10.1080/08037050802059225
    1. Canac N., Ranjbaran M., O’brien M. J., Asgari S., Scalzo F., Thorpe S. G., et al. (2019). Algorithm for reliable detection of pulse onsets in cerebral blood flow velocity signals. Front. Neurol. 10:1072. 10.3389/fneur.2019.01072
    1. Cannesson M., Besnard C., Durand P. G., Bohé J., Jacques D. (2005). Relation between respiratory variations in pulse oximetry plethysmographic waveform amplitude and arterial pulse pressure in ventilated patients. Crit. Care 9:R562. 10.1186/cc3799
    1. Cannesson M., Desebbe O., Rosamel P., Delannoy B., Robin J., Bastien O., et al. (2008b). Pleth variability index to monitor the respiratory variations in the pulse oximeter plethysmographic waveform amplitude and predict fluid responsiveness in the operating theatre. Br. J. Anaesthesia 101 200–206. 10.1093/bja/aen133
    1. Cannesson M., Delannoy B., Morand A., Rosamel P., Attof Y., Bastien O., et al. (2008a). Does the pleth variability index indicate the respiratory-induced variation in the plethysmogram and arterial pressure waveforms? Anesthesia Analgesia 106 1189–1194. 10.1213/ane.0b013e318167ab1f
    1. Challoner A. (1979). Photoelectric plethysmography for estimating cutaneous blood flow. Non-Invasive Physiol. Meas. 1 125–151.
    1. Chang X., Li G., Xing G., Zhu K., Tu L. (2021). DeepHeart: a deep learning approach for accurate heart rate estimation from PPG signals. ACM Trans. Sensor Netw. (TOSN) 17 1–18.
    1. Charlton P. H., Celka P., Farukh B., Chowienczyk P., Alastruey J. (2018). Assessing mental stress from the photoplethysmogram: a numerical study. Physiol. Meas. 39:054001. 10.1088/1361-6579/aabe6a
    1. Chen W., Kobayashi T., Ichikawa S., Takeuchi Y., Togawa T. (2000). Continuous estimation of systolic blood pressure using the pulse arrival time and intermittent calibration. Med. Biol. Eng. Comput. 38 569–574. 10.1007/BF02345755
    1. Cheng P., Chen Z., Li Q., Gong Q., Zhu J., Liang Y. (2020). Atrial fibrillation identification with PPG signals using a combination of time-frequency analysis and deep learning. IEEE Access 8 172692–172706.
    1. Choi B., Park C., Lee Y., Shin H., Lee S., Jeong S., et al. (2018). Development of a new analgesic index using nasal photoplethysmography. Anaesthesia 73 1123–1130. 10.1111/anae.14327
    1. Choi J., Ahmed B., Gutierrez-Osuna R. (2011). Development and evaluation of an ambulatory stress monitor based on wearable sensors. IEEE Trans. Inform. Technol. Biomed. 16 279–286. 10.1109/TITB.2011.2169804
    1. Chu C. L., Huang Y. Y., Chen Y. H., Lai L. P., Yeh H. M. (2018). An observational study: the utility of perfusion index as a discharge criterion for pain assessment in the postanesthesia care unit. PLoS One 13:e0197630. 10.1371/journal.pone.0197630
    1. Chua C., Heneghan C. (2006). “Continuous blood pressure monitoring using ECG and finger photoplethysmogram,” in Proceeding of the International Conference of the IEEE Engineering in Medicine and Biology Society, (IEEE; ), 5117–5120. 10.1109/IEMBS.2006.259612
    1. Dahlgren G., Veintemilla F., Settergren G., Liska J. (1991). Left ventricular end-systolic pressure estimated from measurements in a peripheral artery. J. Cardiothor. Vasc. Anesthesia 5 551–553. 10.1016/1053-0770(91)90004-d
    1. Dall’Olio L., Curti N., Remondini D., Harb Y. S., Asselbergs F. W., Castellani G., et al. (2020). Prediction of vascular aging based on smartphone acquired PPG signals. Sci. Rep. 10:19756. 10.1038/s41598-020-76816-6
    1. De Trafford J., Lafferty K. (1984). What does photoplethysmography measure? Med. Biol. Eng. Comput. 22 479–480. 10.1007/BF02447713
    1. Dillon J. B., Hertzman A. B. (1941). The form of the volume pulse in the finger pad in health, arteriosclerosis, and hypertension. Am. Heart J. 21 172–190. 10.1016/s0002-8703(41)90966-3
    1. Ding X., Yan B. P., Zhang Y.-T., Liu J., Zhao N., Tsang H. K. (2017). Pulse transit time based continuous cuffless blood pressure estimation: a new extension and a comprehensive evaluation. Sci. Rep. 7:11554. 10.1038/s41598-017-11507-3
    1. Ding X.-R., Zhang Y.-T. (2015). “Photoplethysmogram intensity ratio: a potential indicator for improving the accuracy of PTT-based cuffless blood pressure estimation,” in Proceeding of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), (IEEE; ), 398–401. 10.1109/EMBC.2015.7318383
    1. Dorlas J., Nijboer J. (1985). Photo-electric plethysmography as a monitoring device in anaesthesia: application and interpretation. Br. J. Anaesthesia 57 524–530. 10.1093/bja/57.5.524
    1. Dresher R. P., Mendelson Y. (2006b). “Reflectance forehead pulse oximetry: effects of contact pressure during walking,” in Proceeding of the International Conference of the IEEE Engineering in Medicine and Biology Society, (IEEE; ), 3529–3532. 10.1109/IEMBS.2006.260136
    1. Dresher R. P., Mendelson Y. (2006a). “A new reflectance pulse oximeter housing to reduce contact pressure effects,” in Proceedings of the IEEE 32nd Annual Northeast Bioengineering Conference, (IEEE; ), 49–50.
    1. Eerikäinen L. M., Bonomi A. G., Schipper F., Dekker L. R., De Morree H. M., Vullings R., et al. (2019). Detecting atrial fibrillation and atrial flutter in daily life using photoplethysmography data. IEEE J. Biomed. Health Inform. 24 1610–1618. 10.1109/JBHI.2019.2950574
    1. El Hajj C., Kyriacou P. A. (2020). “Cuffless and continuous blood pressure estimation from ppg signals using recurrent neural networks,” in Proceeding of the 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), (IEEE; ), 4269–4272. 10.1109/EMBC44109.2020.9175699
    1. Elgendi M. (2016). Optimal signal quality index for photoplethysmogram signals. Bioengineering 3:21. 10.3390/bioengineering3040021
    1. El-Hajj C., Kyriacou P.A. (2021a). Cuffless blood pressure estimation from PPG signals and its derivatives using deep learning models. Biomed. Signal Process. Control 70:102984.
    1. El-Hajj C., Kyriacou P. A. (2021b). Deep learning models for cuffless blood pressure monitoring from PPG signals using attention mechanism. Biomed. Signal Process. Control 65:102301.
    1. Fallow B. A., Tarumi T., Tanaka H. (2013). Influence of skin type and wavelength on light wave reflectance. J. Clin. Monit. Comput. 27 313–317. 10.1007/s10877-013-9436-7
    1. Ferro B. R., Aguilera A. R., De La Vara Prieto R. F. (2015). Automated detection of the onset and systolic peak in the pulse wave using Hilbert transform. Biomed. Signal Process. Control 20 78–84. 10.1016/j.bspc.2015.04.009
    1. Fischer C., Glos M., Penzel T., Fietze I. (2017). Extended algorithm for real-time pulse waveform segmentation and artifact detection in photoplethysmograms. Somnologie 21 110–120. 10.1109/JBHI.2016.2518202
    1. Foo J. Y. A. (2007). Development of a temperature-controlled miniature enclosure for monitoring poor perfusion photoplethysmographic signals. Physiol. Meas. 28:N67. 10.1088/0967-3334/28/9/N01
    1. Foo J. Y. A., Lim C. S., Wang P. (2006). Evaluation of blood pressure changes using vascular transit time. Physiol. Meas. 27:685. 10.1088/0967-3334/27/8/003
    1. Foo J. Y. A., Wilson S. J. (2006). A computational system to optimise noise rejection in photoplethysmography signals during motion or poor perfusion states. Med. Biol. Eng. Comput. 44 140–145. 10.1007/s11517-005-0008-y
    1. Freckmann G., Pleus S., Haug C., Bitton G., Nagar R. (2012). Increasing local blood flow by warming the application site: beneficial effects on postprandial glycemic excursions. J. Diabetes Sci. Technol. 6 780–785. 10.1177/193229681200600407
    1. Fu T.-H., Liu S.-H., Tang K.-T. (2008). Heart rate extraction from photoplethysmogram waveform using wavelet multi-resolution analysis. J. Med. Biol. Eng. 28 229–232.
    1. Fung P., Dumont G., Ries C., Mott C., Ansermino M. (2004). “Continuous noninvasive blood pressure measurement by pulse transit time,” in Proceeding of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, (IEEE; ), 738–741.
    1. Ganeshkumar M., Ravi V., Sowmya V., Gopalakrishnan E., Soman K. (2021). “Explainable deep learning-based approach for multilabel classification of electrocardiogram,” in Proceeding of the IEEE Transactions on Engineering Management, (IEEE; ).
    1. Gibbs P., Asada H. H. (2005). “Reducing motion artifact in wearable bio-sensors using MEMS accelerometers for active noise cancellation,” in Proceedings of the 2005, American Control Conference, 2005, (IEEE; ), 1581–1586.
    1. Gil E., Orini M., Bailón R., Vergara J. M., Mainardi L., Laguna P. (2010). Photoplethysmography pulse rate variability as a surrogate measurement of heart rate variability during non-stationary conditions. Physiol. Meas. 31 1271–1290. 10.1088/0967-3334/31/9/015
    1. Goshvarpour A., Goshvarpour A. (2018). Poincaré’s section analysis for PPG-based automatic emotion recognition. Chaos Solitons Fractals 114 400–407. 10.1016/j.chaos.2018.07.035
    1. Goshvarpour A., Goshvarpour A. (2020). Evaluation of novel entropy-based complex wavelet sub-bands measures of PPG in an emotion recognition system. J. Med. Biol. Eng. 40 451–461.
    1. Guo Y., Wang H., Zhang H., Liu T., Liang Z., Xia Y., et al. (2019). Mobile photoplethysmographic technology to detect atrial fibrillation. J. Am. College Cardiol. 74 2365–2375. 10.1016/j.jacc.2019.08.019
    1. Guo Z., Ding C., Hu X., Rudin C. (2021). A supervised machine learning semantic segmentation approach for detecting artifacts in plethysmography signals from wearables. Physiol. Meas. 42:125003. 10.1088/1361-6579/ac3b3d
    1. Han H., Kim M.-J., Kim J. (2007). “Development of real-time motion artifact reduction algorithm for a wearable photoplethysmography,” in Proceeding of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, (IEEE; ), 1538–1541. 10.1109/IEMBS.2007.4352596
    1. Hartmut Gehring M., Me H. M., Schmucker P. (2002). The effects of motion artifact and low perfusion on the performance of a new generation of pulse oximeters in volunteers undergoing hypoxemia. Respiratory Care 47 48–60. 10.1097/00132586-199802000-00051
    1. Hasanin A., Mohamed S. A. R., El-Adawy A. (2017). Evaluation of perfusion index as a tool for pain assessment in critically ill patients. J. Clin. Monit. Comput. 31 961–965. 10.1007/s10877-016-9936-3
    1. He J.-L., Lecarpentier Y., Zamani K., Coirault C., Daccache G., Chemla D., et al. (1995). Relation between aortic dicrotic notch pressure and mean aortic pressure in adults. Am. J. Cardiol. 76 301–306. 10.1016/s0002-9149(99)80086-1
    1. He X., Goubran R. A., Liu X. P. (2014). Secondary peak detection of PPG signal for continuous cuffless arterial blood pressure measurement. IEEE Trans. Instrument. Meas. 63 1431–1439. 10.1109/tim.2014.2299524
    1. Hertzman A. B. (1937). Observations on the finger volume pulse recorded photoelectrically. Am. J. Physiol. 119 334–335.
    1. Hertzman A. B. (1938). The blood supply of various skin areas as estimated by the photoelectric plethysmograph. Am. J. Physiol.-Legacy Content 124 328–340.
    1. Hertzman A. B., Dillon J. B. (1940). Applications of photoelectric plethysmography in peripheral vascular disease. Am. Heart J. 20 750–761. 10.1016/s0002-8703(40)90534-8
    1. Hertzman A. B., Roth L. W. (1942). The absence of vasoconstrictor reflexes in the forehead circulation. Effects of cold. Am. J. Physiol.-Legacy Content 136 692–697.
    1. Hilmisson H., Berman S., Magnusdottir S. (2020). Sleep apnea diagnosis in children using software-generated apnea-hypopnea index (AHI) derived from data recorded with a single photoplethysmogram sensor (PPG). Sleep Breath. 24 1739–1749. 10.1007/s11325-020-02049-6
    1. Hummler H. D., Engelmann A., Pohlandt F., Högel J., Franz A. R. (2006). Decreased accuracy of pulse oximetry measurements during low perfusion caused by sepsis: is the perfusion index of any value? Intensive Care Med. 32 1428–1431. 10.1007/s00134-006-0254-y
    1. Imanaga I., Hara H., Koyanagi S., Tanaka K. (1998). Correlation between wave components of the second derivative of plethysmogram and arterial distensibility. Japanese Heart J. 39 775–784. 10.1536/ihj.39.775
    1. Jang D.-G., Farooq U., Park S.-H., Hahn M. (2014). A robust method for pulse peak determination in a digital volume pulse waveform with a wandering baseline. IEEE Trans. Biomed. Circuits Syst. 8 729–737. 10.1109/TBCAS.2013.2295102
    1. Jo Y.-Y., Cho Y., Lee S. Y., Kwon J.-M., Kim K.-H., Jeon K.-H., et al. (2021). Explainable artificial intelligence to detect atrial fibrillation using electrocardiogram. Int. J. Cardiol. 328 104–110. 10.1016/j.ijcard.2020.11.053
    1. Jones D. P. (1987). Medical electro-optics: measurements in the human microcirculation. Phys. Technol. 18:79. 10.1515/jbcpp.1992.3.3.193
    1. Joseph G., Joseph A., Titus G., Thomas R. M., Jose D. (2014). “Photoplethysmogram (PPG) signal analysis and wavelet de-noising,” in Proceeding of the Annual International Conference on Emerging Research Areas: Magnetics, Machines and Drives (AICERA/iCMMD), (IEEE; ), 1–5.
    1. Jubadi W. M., Sahak S. F. A. M. (2009). “Heartbeat monitoring alert via SMS,” in Proceeding of the IEEE Symposium on Industrial Electronics & Applications, (IEEE; ), 1–5. 10.9734/bjast/2016/28453
    1. Kallio H., Lindberg L., Majander A., Uutela K., Niskanen M., Paloheimo M. (2008). Measurement of surgical stress in anaesthetized children. Br. J. Anaesthesia 101 383–389. 10.1093/bja/aen204
    1. Kamal A., Harness J., Irving G., Mearns A. (1989). Skin photoplethysmography—a review. Comput. Methods Programs Biomed. 28 257–269. 10.1016/0169-2607(89)90159-4
    1. Karlen W., Kobayashi K., Ansermino J. M., Dumont G. (2012). Photoplethysmogram signal quality estimation using repeated Gaussian filters and cross-correlation. Physiol. Meas. 33:1617. 10.1088/0967-3334/33/10/1617
    1. Karlen W., Raman S., Ansermino J. M., Dumont G. A. (2013). Multiparameter respiratory rate estimation from the photoplethysmogram. IEEE Trans. Biomed. Eng. 60 1946–1953. 10.1109/TBME.2013.2246160
    1. Kavsaoğlu A. R., Polat K., Bozkurt M. R. (2016). An innovative peak detection algorithm for photoplethysmography signals: an adaptive segmentation method. Turkish J. Electrical Eng. Comput. Sci. 24 1782–1796. 10.3906/elk-1310-177
    1. Khan M., Pretty C. G., Amies A. C., Elliott R., Chiew Y. S., Shaw G. M., et al. (2016). Analysing the effects of cold, normal, and warm digits on transmittance pulse oximetry. Biomed. Signal Process. Control 26 34–41. 10.1016/j.bspc.2015.12.006
    1. Kim B. S., Yoo S. K. (2006). Motion artifact reduction in photoplethysmography using independent component analysis. IEEE Trans. Biomed. Eng. 53 566–568. 10.1109/TBME.2005.869784
    1. Kim J., Kim J., Ko H. (2016). Low-power photoplethysmogram acquisition integrated circuit with robust light interference compensation. Sensors 16:46. 10.3390/s16010046
    1. Kim J., Lee J.-W., Shin H. (2019). Pre-processing of photoplethysmographic waveform for amplitude regularization. J. Electrical Eng. Technol. 14 1741–1748.
    1. Kim J., Lee T., Kim J., Ko H. (2015). “Ambient light cancellation in photoplethysmogram application using alternating sampling and charge redistribution technique,” in Proceeding of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), (IEEE; ), 6441–6444. 10.1109/EMBC.2015.7319867
    1. Korhonen I., Yli-Hankala A. (2009). Photoplethysmography and nociception. Acta Anaesthesiol. Scandinavica 53 975–985. 10.1111/j.1399-6576.2009.02026.x
    1. Korkalainen H., Aakko J., Duce B., Kainulainen S., Leino A., Nikkonen S., et al. (2020). Deep learning enables sleep staging from photoplethysmogram for patients with suspected sleep apnea. Sleep 43:zsaa098. 10.1093/sleep/zsaa098
    1. Krishnan R., Natarajan B., Warren S. (2008). “Motion artifact reduction in photopleythysmography using magnitude-based frequency domain independent component analysis,” in Proceedings of the 17th International Conference on Computer Communications and Networks, (IEEE; ), 1–5.
    1. Krishnaswamy A., Baranoski G. V. (2004). A biophysically-based spectral model of light interaction with human skin. Comput. Graphics Forum 23 331–340. 10.1111/j.1467-8659.2004.00764.x
    1. Kwon S., Hong J., Choi E.-K., Lee E., Hostallero D. E., Kang W. J., et al. (2019). Deep learning approaches to detect atrial fibrillation using photoplethysmographic signals: algorithms development study. JMIR mHealth uHealth 7:e12770. 10.2196/12770
    1. Kyriacou P., Powell S., Langford R., Jones D. (2002). Investigation of oesophageal photoplethysmographic signals and blood oxygen saturation measurements in cardiothoracic surgery patients. Physiol. Meas. 23:533. 10.1088/0967-3334/23/3/305
    1. Lakshmanan S., Chatterjee D., Muniyandi M. (2018). “Noninvasive assistive method to diagnose arterial disease-takayasu’s arteritis,” in Computational Vision and Bio Inspired Computing, eds Hemanth D. J., Smys S. (Berlin: Springer; ), 384–398. 10.1007/978-3-319-71767-8_32
    1. Landsverk S. A., Hoiseth L. O., Kvandal P., Hisdal J., Skare O., Kirkeboen K. A. (2008). Poor agreement between respiratory variations in pulse oximetry photoplethysmographic waveform amplitude and pulse pressure in intensive care unit patients. Anesthesiol.: J. Am. Soc. Anesthesiol. 109 849–855. 10.1097/ALN.0b013e3181895f9f
    1. Lazazzera R., Deviaene M., Varon C., Buyse B., Testelmans D., Laguna P., et al. (2020). Detection and classification of sleep apnea and hypopnea using PPG and SpO $ _2 $ signals. IEEE Trans. Biomed. Eng. 68 1496–1506. 10.1109/tbme.2020.3028041
    1. Lee C., Shin H. S., Lee M. (2011a). Relations between ac-dc components and optical path length in photoplethysmography. J. Biomed. Optics 16:077012. 10.1117/1.3600769
    1. Lee C., Shin H. S., Park J., Lee M. (2011b). The optimal attachment position for a fingertip photoplethysmographic sensor with low DC. IEEE Sensors J. 12 1253–1254.
    1. Lee Q. Y., Chan G. S., Redmond S. J., Middleton P. M., Steel E., Malouf P., et al. (2011c). Multivariate classification of systemic vascular resistance using photoplethysmography. Physiol. Meas. 32:1117. 10.1088/0967-3334/32/8/008
    1. Lee J., Kim M., Park H.-K., Kim I. Y. (2020). Motion artifact reduction in wearable photoplethysmography based on multi-channel sensors with multiple wavelengths. Sensors 20:1493. 10.3390/s20051493
    1. Lee M. S., Lee Y. K., Pae D. S., Lim M. T., Kim D. W., Kang T. K. (2019). Fast emotion recognition based on single pulse PPG signal with convolutional neural network. Appl. Sci. 9:3355. 10.3390/app9163355
    1. Lee Q. Y., Redmond S. J., Chan G. S., Middleton P. M., Steel E., Malouf P., et al. (2013). Estimation of cardiac output and systemic vascular resistance using a multivariate regression model with features selected from the finger photoplethysmogram and routine cardiovascular measurements. Biomed. Eng. Online 12:19. 10.1186/1475-925X-12-19
    1. Li Q., Clifford G. D. (2012). Dynamic time warping and machine learning for signal quality assessment of pulsatile signals. Physiol. Meas. 33:1491. 10.1088/0967-3334/33/9/1491
    1. Li S., Liu L., Wu J., Tang B., Li D. (2018). Comparison and noise suppression of the transmitted and reflected photoplethysmography signals. BioMed. Res. Int. 2018:4523593. 10.1155/2018/4523593
    1. Li X., Chen J., Zhao G., Pietikainen M. (2014). “Remote heart rate measurement from face videos under realistic situations,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (IEEE; ), 4264–4271.
    1. Lima A., Bakker J. (2006). “Noninvasive monitoring of peripheral perfusion,” in Applied Physiology in Intensive Care Medicine, eds Pinsky M. R., Brochard L., Mancebo J. (Berlin: Springer; ), 131–141. 10.1007/3-540-37363-2_26
    1. Lin Y.-H., Lin C.-F., You H.-Z. (2011). “A driver’s physiological monitoring system based on a wearable PPG sensor and a smartphone,” in Proceeding of the International Conference on Security-Enriched Urban Computing and Smart Grid, (Springer; ), 326–335. 10.1007/978-3-642-23948-9_36
    1. Lindberg L.-G., Oberg P. A. (1993). Optical properties of blood in motion. Optical Eng. 32 253–258. 10.1117/12.60688
    1. Linder S. P., Wendelken S. M., Wei E., Mcgrath S. P. (2006). Using the morphology of photoplethysmogram peaks to detect changes in posture. J. Clin. Monitor. Comput. 20 151–158. 10.1007/s10877-006-9015-2
    1. Liu J., Li Y., Ding X.-R., Dai W.-X., Zhang Y.-T. (2015). “Effects of cuff inflation and deflation on pulse transit time measured from ECG and multi-wavelength PPG,” in Proceeding of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), (IEEE; ), 5973–5976. 10.1109/EMBC.2015.7319752
    1. Liu J., Yan B. P., Zhang Y.-T., Ding X.-R., Su P., Zhao N. (2018). Multi-wavelength photoplethysmography enabling continuous blood pressure measurement with compact wearable electronics. IEEE Trans. Biomed. Eng. 66 1514–1525. 10.1109/TBME.2018.2874957
    1. Liu J., Yan B. P.-Y., Dai W.-X., Ding X.-R., Zhang Y.-T., Zhao N. (2016a). Multi-wavelength photoplethysmography method for skin arterial pulse extraction. Biomed. Optics Express 7 4313–4326. 10.1364/BOE.7.004313
    1. Liu J., Zhang Y.-T., Ding X.-R., Dai W.-X., Zhao N. (2016b). “A preliminary study on multi-wavelength PPG based pulse transit time detection for cuffless blood pressure measurement,” in Proceeding of the 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), (IEEE; ), 615–618. 10.1109/EMBC.2016.7590777
    1. Liu S.-H., Li R.-X., Wang J.-J., Chen W., Su C.-H. (2020a). Classification of photoplethysmographic signal quality with deep convolution neural networks for accurate measurement of cardiac stroke volume. Appl. Sci. 10:4612.
    1. Liu S.-H., Wang J.-J., Chen W., Pan K.-L., Su C.-H. (2020b). Classification of photoplethysmographic signal quality with fuzzy neural network for improvement of stroke volume measurement. Appl. Sci. 10:1476. 10.3390/app10041476
    1. Lu S., Zhao H., Ju K., Shin K., Lee M., Shelley K., et al. (2008). Can photoplethysmography variability serve as an alternative approach to obtain heart rate variability information? J. Clin. Monit. Comput. 22 23–29. 10.1007/s10877-007-9103-y
    1. Ma H. T. (2014). A blood pressure monitoring method for stroke management. BioMed Res. Int. 2014:571623. 10.1155/2014/571623
    1. Madhav K. V., Ram M. R., Krishna E. H., Komalla N. R., Reddy K. A. (2011). “Estimation of respiration rate from ECG, BP and PPG signals using empirical mode decomposition,” in Proceeding of the IEEE International Instrumentation and Measurement Technology Conference, (IEEE; ), 1–4.
    1. Mase M., Mattei W., Cucino R., Faes L., Nollo G. (2011). Feasibility of cuff-free measurement of systolic and diastolic arterial blood pressure. J. Electrocardiol. 44 201–207. 10.1016/j.jelectrocard.2010.11.019
    1. Matsumura K., Toda S., Kato Y. (2020). RGB and near-infrared light reflectance/transmittance photoplethysmography for measuring heart rate during motion. IEEE Access 8 80233–80242. 10.1109/access.2020.2990438
    1. Maweu B. M., Dakshit S., Shamsuddin R., Prabhakaran B. (2021). CEFEs: a CNN explainable framework for ECG signals. Artif. Intell. Med. 115:102059. 10.1016/j.artmed.2021.102059
    1. McCombie D., Asada H., Reisner A. (2005). “Identification of vascular dynamics and estimation of the cardiac output waveform from wearable PPG sensors,” in Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference (Piscataway, NJ: IEEE; ), 3490–3493. 10.1109/IEMBS.2005.1617231
    1. McKay N. D., Griffiths B., Di Maria C., Hedley S., Murray A., Allen J. (2014). Novel photoplethysmography cardiovascular assessments in patients with Raynaud’s phenomenon and systemic sclerosis: a pilot study. Rheumatology 53 1855–1863. 10.1093/rheumatology/keu196
    1. Mehrgardt P., Khushi M., Poon S., Withana A. (2021). Deep learning fused wearable pressure and PPG data for accurate heart rate monitoring. IEEE Sens. J. 21 27106–27115.
    1. Mejía-Mejía E., Budidha K., Abay T. Y., May J. M., Kyriacou P. A. (2020). Heart rate variability (HRV) and pulse rate variability (PRV) for the assessment of autonomic responses. Front. Physiol. 11:779. 10.3389/fphys.2020.00779
    1. Millasseau S. C., Kelly R., Ritter J., Chowienczyk P. (2002). Determination of age-related increases in large artery stiffness by digital pulse contour analysis. Clin. Sci. 103 371–377. 10.1042/cs1030371
    1. Millasseau S. C., Kelly R. P., Ritter J. M., Chowienczyk P. J. (2003). The vascular impact of aging andvasoactive drugs: comparison of two digital volume pulse measurements. Am. J. Hypertens. 16 467–472. 10.1016/s0895-7061(03)00569-7
    1. Millasseau S. C., Ritter J. M., Takazawa K., Chowienczyk P. J. (2006). Contour analysis of the photoplethysmographic pulse measured at the finger. J. Hypertens. 24 1449–1456. 10.1097/01.hjh.0000239277.05068.87
    1. Monnet X., Lamia B., Teboul J.-L. (2005). Pulse oximeter as a sensor of fluid responsiveness: do we have our finger on the best solution? Crit. Care 9:429. 10.1186/cc3876
    1. Mousavi S. S., Firouzmand M., Charmi M., Hemmati M., Moghadam M., Ghorbani Y. (2019). Blood pressure estimation from appropriate and inappropriate PPG signals using A whole-based method. Biomed. Signal Process. Control 47 196–206. 10.1016/j.bspc.2018.08.022
    1. Mowafi H. A., Arab S. A., Ismail S. A., Al-Ghamdi A. A., Al-Metwalli R. R. (2008). Plethysmographic pulse wave amplitude is an effective indicator for intravascular injection of epinephrine-containing epidural test dose in sevoflurane-anesthetized pediatric patients. Anesthesia Analgesia 107 1536–1541. 10.1213/ane.0b013e3181844d08
    1. Mowafi H. A., Ismail S. A., Shafi M. A., Al-Ghamdi A. A. (2009). The efficacy of perfusion index as an indicator for intravascular injection of epinephrine-containing epidural test dose in propofol-anesthetized adults. Anesthesia Analgesia 108 549–553. 10.1213/ane.0b013e31818fc35b
    1. Muehlsteff J., Aubert X., Schuett M. (2006). “Cuffless estimation of systolic blood pressure for short effort bicycle tests: the prominent role of the pre-ejection period,” in International Conference of the IEEE Engineering in Medicine and Biology Society, (IEEE; ), 5088–5092. 10.1109/IEMBS.2006.260275
    1. Murray W. B., Foster P. A. (1996). The peripheral pulse wave: information overlooked. J. Clin. Monit. 12 365–377. 10.1007/BF02077634
    1. Nabeel P., Jayaraj J., Mohanasankar S. (2017). Single-source PPG-based local pulse wave velocity measurement: a potential cuffless blood pressure estimation technique. Physiol. Meas. 38:2122. 10.1088/1361-6579/aa9550
    1. Naeini E. K., Azimi I., Rahmani A. M., Liljeberg P., Dutt N. (2019). A Real-time PPG quality assessment approach for healthcare internet-of-things. Procedia Comput. Sci. 151 551–558. 10.1016/j.procs.2019.04.074
    1. Nilsson L., Johansson A., Kalman S. (2003a). Macrocirculation is not the sole determinant of respiratory induced variations in the reflection mode photoplethysmographic signal. Physiol. Meas. 24:925. 10.1088/0967-3334/24/4/009
    1. Nilsson L., Johansson A., Kalman S. (2003b). Respiratory variations in the reflection mode photoplethysmographic signal. Relationships to peripheral venous pressure. Med. Biol. Eng. Comput. 41 249–254. 10.1007/BF02348428
    1. Nitzan M., Babchenko A., Faib I., Davidson E., Adler D. (2000). “Assessment of changes in arterial compliance by photoplethysmography,” in Proceeding of the 21st IEEE Convention of the Electrical and Electronic Engineers in Israel. Proceedings (Cat. No. 00EX377), (IEEE; ), 351–354.
    1. Nitzan M., Faib I., Friedman H. (2006). Respiration-induced changes in tissue blood volume distal to occluded artery, measured by photoplethysmography. J. Biomed. Optics 11:040506. 10.1117/1.2236285
    1. Nitzan M., Romem A., Koppel R. (2014). Pulse oximetry: fundamentals and technology update. Med. Devices (Auckland, NZ) 7:231. 10.2147/MDER.S47319
    1. Orjuela-Cañón A. D., Delisle-Rodríguez D., López-Delis A., De La Vara-Prieto R. F., Cuadra-Sanz M. B. (2013). “Onset and peak pattern recognition on photoplethysmographic signals using neural networks,” in Proceeding of the Iberoamerican Congress on Pattern Recognition, (Springer; ), 543–550.
    1. Orphanidou C., Bonnici T., Charlton P., Clifton D., Vallance D., Tarassenko L. (2014). Signal-quality indices for the electrocardiogram and photoplethysmogram: derivation and applications to wireless monitoring. IEEE J. Biomed. Health Inform. 19 832–838. 10.1109/JBHI.2014.2338351
    1. Otsuka T., Kawada T., Katsumata M., Ibuki C. (2006). Utility of second derivative of the finger photoplethysmogram for the estimation of the risk of coronary heart disease in the general population. Circulation J. 70 304–310. 10.1253/circj.70.304
    1. Panwar M., Gautam A., Biswas D., Acharyya A. (2020). PP-Net: a deep learning framework for PPG-based blood pressure and heart rate estimation. IEEE Sens. J. 20 10000–10011. 10.1109/jsen.2020.2990864
    1. Papini G. B., Fonseca P., Eerikäinen L. M., Overeem S., Bergmans J. W., Vullings R. (2018). Sinus or not: a new beat detection algorithm based on a pulse morphology quality index to extract normal sinus rhythm beats from wrist-worn photoplethysmography recordings. Physiol. Meas. 39:115007. 10.1088/1361-6579/aae7f8
    1. Parak J., Korhonen I. (2014). “Evaluation of wearable consumer heart rate monitors based on photopletysmography,” in Proceeding of the 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, (IEEE; ), 3670–3673. 10.1109/EMBC.2014.6944419
    1. Park K. S., Choi S. H. (2019). Smart technologies toward sleep monitoring at home. Biomed. Eng. Lett. 9 73–85. 10.1007/s13534-018-0091-2
    1. Patterson J. A., Yang G.-Z. (2011). Ratiometric artifact reduction in low power reflective photoplethysmography. IEEE Trans. Biomed. Circuits Syst. 5 330–338. 10.1109/TBCAS.2011.2161304
    1. Pereira T., Tran N., Gadhoumi K., Pelter M. M., Do D. H., Lee R. J., et al. (2020). Photoplethysmography based atrial fibrillation detection: a review. NPJ Digital Med. 3 1–12. 10.1038/s41746-019-0207-9
    1. Pimentel M. A., Charlton P. H., Clifton D. A. (2015). “Probabilistic estimation of respiratory rate from wearable sensors,” in Wearable Electronics Sensors, ed. Mukhopadhyay S. C. (Berlin: Springer; ), 241–262. 10.1007/s41669-021-00290-7
    1. Pintavirooj C., Ni B., Chatkobkool C., Pinijkij K. (2021). Noninvasive portable hemoglobin concentration monitoring system using optical sensor for anemia disease. Healthcare 9:647. 10.3390/healthcare9060647
    1. Poh M.-Z., Poh Y. C., Chan P.-H., Wong C.-K., Pun L., Leung W. W.-C., et al. (2018). Diagnostic assessment of a deep learning system for detecting atrial fibrillation in pulse waveforms. Heart 104 1921–1928. 10.1136/heartjnl-2018-313147
    1. Poh M.-Z., Swenson N. C., Picard R. W. (2010). Motion-tolerant magnetic earring sensor and wireless earpiece for wearable photoplethysmography. IEEE Trans. Inform. Technol. Biomed. 14 786–794. 10.1109/TITB.2010.2042607
    1. Poon C., Zhang Y. (2005). “Cuff-less and noninvasive measurements of arterial blood pressure by pulse transit time,” in Proceeding of the IEEE Engineering in Medicine and Biology 27th Annual Conference, (IEEE; ), 5877–5880. 10.1109/IEMBS.2005.1615827
    1. Poon C. C. Y., Teng X. F., Wong Y. M., Zhang C., Zhang Y. T. (2004). “Changes in the photoplethysmogram waveform after exercise,” in Proceeding of the 2nd IEEE/EMBS International Summer School on Medical Devices and Biosensors, (IEEE; ), 115–118.
    1. Pradhan N., Rajan S., Adler A. (2019). Evaluation of the signal quality of wrist-based photoplethysmography. Physiol. Meas. 40:065008. 10.1088/1361-6579/ab225a
    1. Proesmans T., Mortelmans C., Van Haelst R., Verbrugge F., Vandervoort P., Vaes B. (2019). Mobile phone–based use of the photoplethysmography technique to detect atrial fibrillation in primary care: diagnostic accuracy study of the FibriCheck app. JMIR mHealth uHealth 7:e12284. 10.2196/12284
    1. Rakshit R., Reddy V. R., Deshpande P. (2016). “Emotion detection and recognition using HRV features derived from photoplethysmogram signals,” in Proceedings of the 2nd workshop on Emotion Representations and Modelling for Companion Systems (New York, NY: Association for Computing Machinery; ), 1–6.
    1. Ravichandran V., Murugesan B., Balakarthikeyan V., Ram K., Preejith S., Joseph J., et al. (2019). “RespNet: a deep learning model for extraction of respiration from photoplethysmogram,” in Proceeding of the 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), (IEEE; ), 5556–5559. 10.1109/EMBC.2019.8856301
    1. Raza A., Tran K. P., Koehl L., Li S. (2021). Designing ECG monitoring healthcare system with federated transfer learning and explainable AI. arXiv Preprint ISBN:2105.12497
    1. Reddy K. A., George B., Kumar V. J. (2008). Use of fourier series analysis for motion artifact reduction and data compression of photoplethysmographic signals. IEEE Trans. Instrument. Meas. 58 1706–1711.
    1. Reisner A., Shaltis P. A., Mccombie D., Asada H. H. (2008). Utility of the photoplethysmogram in circulatory monitoring. Anesthesiol.: J. Am. Soc. Anesthesiol. 108 950–958. 10.1097/ALN.0b013e31816c89e1
    1. Reiss A., Indlekofer I., Schmidt P., Van Laerhoven K. (2019). Deep PPG: large-scale heart rate estimation with convolutional neural networks. Sensors 19:3079. 10.3390/s19143079
    1. Reynolds K., De Kock J., Tarassenko L., Moyle J. (1991). Temperature dependence of LED and its theoretical effect on pulse oximetry. Br. J. Anaesthesia 67 638–643. 10.1093/bja/67.5.638
    1. Rojano J. F., Isaza C. V. (2016). Singular value decomposition of the time-frequency distribution of PPG signals for motion artifact reduction. Int. J. Signal Process. Syst. 4 475–482. 10.18178/ijsps.4.6.475-482
    1. Roy M. S., Bag P., Gupta R. (2019). “Reconstruction of corrupted and lost segments from photoplethysmographic data using recurrent neural network,” in Proceeding of the IEEE Region 10 Symposium (TENSYMP), (IEEE; ), 214–219.
    1. Rubins U., Grabovskis A., Grube J., Kukulis I. (2008). “Photoplethysmography Analysis of Artery Properties in Patients with Cardiovascular Diseases,” in Proceeding of the 14th Nordic-Baltic Conference on Biomedical Engineering and Medical Physics, (Berlin: Springer; ), 319–322. 10.1007/978-3-540-69367-3_85
    1. Ruggiero E., Alonso-De Castro S., Habtemariam A., Salassa L. (2016). Upconverting nanoparticles for the near infrared photoactivation of transition metal complexes: new opportunities and challenges in medicinal inorganic photochemistry. Dalton Trans. 45 13012–13020. 10.1039/c6dt01428c
    1. Rybynok V., Kyriacou P. (2010). “Beer-lambert law along non-linear mean light pathways for the rational analysis of photoplethysmography,” in Proceeding of the Journal of Physics: Conference Series, (IOP Publishing; ), 012061. 10.1088/1742-6596/238/1/012061
    1. Saganowski S., Kazienko P., Dzieżyc M., Jakimów P., Komoszyńska J., Michalska W., et al. (2020). Review of consumer wearables in emotion, stress, meditation, sleep, and activity detection and analysis. arXiv preprint ISBN:2005.00093
    1. Salehizadeh S., Dao D. K., Chong J. W., Mcmanus D., Darling C., Mendelson Y., et al. (2014). Photoplethysmograph signal reconstruction based on a novel motion artifact detection-reduction approach. Part II: motion and noise artifact removal. Ann. Biomed. Eng. 42 2251–2263. 10.1007/s10439-014-1030-8
    1. Sanjana K., Sowmya V., Gopalakrishnan E., Soman K. (2020). Explainable artificial intelligence for heart rate variability in ECG signal. Healthcare Technol. Lett. 7:146. 10.1049/htl.2020.0033
    1. Sañudo B., De Hoyo M., Muñoz-López A., Perry J., Abt G. (2019). Pilot study assessing the influence of skin type on the heart rate measurements obtained by photoplethysmography with the apple watch. J. Med. Syst. 43 1–8. 10.1007/s10916-019-1325-2
    1. Schäfer A., Vagedes J. (2013). How accurate is pulse rate variability as an estimate of heart rate variability?: a review on studies comparing photoplethysmographic technology with an electrocardiogram. Int. J. Cardiol. 166 15–29. 10.1016/j.ijcard.2012.03.119
    1. Scholkmann F., Boss J., Wolf M. (2012). An efficient algorithm for automatic peak detection in noisy periodic and quasi-periodic signals. Algorithms 5 588–603.
    1. Schrumpf F., Frenzel P., Aust C., Osterhoff G., Fuchs M. (2021a). “Assessment of deep learning based blood pressure prediction from PPG and rPPG signals,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, (IEEE; ), 3820–3830.
    1. Schrumpf F., Frenzel P., Aust C., Osterhoff G., Fuchs M. (2021b). Assessment of non-invasive blood pressure prediction from PPG and rPPG Signals Using Deep Learning. Sensors 21:6022. 10.3390/s21186022
    1. Seitsonen E. R. J., Korhonen I. K. J., Van Gils M. J., Huiku M., Lötjönen J. M. P., Korttila K. T., et al. (2005). EEG spectral entropy, heart rate, photoplethysmography and motor responses to skin incision during sevoflurane anaesthesia. Acta Anaesthesiol. Scandinavica 49 284–292. 10.1111/j.1399-6576.2005.00654.x
    1. Selvaraj N., Mendelson Y., Shelley K. H., Silverman D. G., Chon K. H. (2011). “Statistical approach for the detection of motion/noise artifacts in Photoplethysmogram,” in Proceeding of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, (IEEE; ), 4972–4975. 10.1109/IEMBS.2011.6091232
    1. Senay L. C., Jr., Prokop L. D., Cronau L., Hertzman A. B. (1963). Relation of local skin temperature and local sweating to cutaneous blood flow. J. Appl. Physiol. 18 781–785. 10.1152/jappl.1963.18.4.781
    1. Seok H. S., Choi B.-M., Noh G.-J., Shin H. (2019). Postoperative pain assessment model based on pulse contour characteristics analysis. IEEE J. Biomed. Health Inform. 23 2317–2324. 10.1109/JBHI.2018.2890482
    1. Seyedtabaii S., Seyedtabaii L. (2008). Kalman filter based adaptive reduction of motion artifact from photoplethysmographic signal. World Acad. Sci. Eng. Technol.. 37 173–176.
    1. Shafique M., Kyriacou P. A., Pal S. (2012). Investigation of photoplethysmographic signals and blood oxygen saturation values on healthy volunteers during cuff-induced hypoperfusion using a multimode PPG/SpO 2 sensor. Med. Biol. Eng. Comput. 50 575–583. 10.1007/s11517-012-0910-z
    1. Shan S.-M., Tang S.-C., Huang P.-W., Lin Y.-M., Huang W.-H., Lai D.-M., et al. (2016). “Reliable PPG-based algorithm in atrial fibrillation detection,” in Proceeding of the IEEE Biomedical Circuits and Systems Conference (BioCAS), (IEEE; ), 340–343.
    1. Shelley K. H. (2007). Photoplethysmography: beyond the calculation of arterial oxygen saturation and heart rate. Anesthesia Analgesia 105 S31–S36. 10.1213/01.ane.0000269512.82836.c9
    1. Shelley K. H., Jablonka D. H., Awad A. A., Stout R. G., Rezkanna H., Silverman D. G. (2006). What is the best site for measuring the effect of ventilation on the pulse oximeter waveform? Anesthesia Analgesia 103 372–377. 10.1213/01.ane.0000222477.67637.17
    1. Shelley K. H., Murray W. B., Chang D. (1997). Arterial–pulse oximetry loops: a new method of monitoring vascular tone. J. Clin. Monit. 13 223–228. 10.1023/a:1007361020825
    1. Shelley K. H., Silverman D. G., Shelley A. J. (2014). Volume Status Monitor: Peripheral Venous Pressure, Hypervolemia and Coherence Analysis. U.S. Patent No. 8,727,997. Washington, DC: U.S. Patent and Trademark Office.
    1. Shi P., Hu S., Zhu Y., Zheng J., Qiu Y., Cheang P. (2009). Insight into the dicrotic notch in photoplethysmographic pulses from the finger tip of young adults. J. Med. Eng. Technol. 33 628–633. 10.3109/03091900903150980
    1. Shin H., Min S. D. (2017). Feasibility study for the non-invasive blood pressure estimation based on ppg morphology: normotensive subject study. Biomed. Eng. Online 16:10. 10.1186/s12938-016-0302-y
    1. Shin H. S., Lee C., Lee M. (2009). Adaptive threshold method for the peak detection of photoplethysmographic waveform. Comput. Biol. Med. 39 1145–1152. 10.1016/j.compbiomed.2009.10.006
    1. Shin H. S., Lee C., Lee M. (2010). Ideal filtering approach on DCT domain for biomedical signals: index blocked DCT filtering method (IB-DCTFM). J. Med. Syst. 34 741–753. 10.1007/s10916-009-9289-2
    1. Sim J. K., Ahn B., Doh I. (2018). A contact-force regulated photoplethysmography (PPG) platform. AIP Adv. 8:045210. 10.1063/1.5020914
    1. Simek J., Wichterle D., Melenovsky V., Malik J., Svacina S., Widimsky J. (2005). Second derivative of the finger arterial pressure waveform: an insight into dynamics of the peripheral arterial pressure pulse. Physiol. Res. 54:505.
    1. Sinex J. E. (1999). Pulse oximetry: principles and limitations. Am. J. Emergency Med. 17 59–66.
    1. Song J., Li D., Ma X., Teng G., Wei J. (2019). PQR signal quality indexes: a method for real-time photoplethysmogram signal quality estimation based on noise interferences. Biomed. Signal Process. Control 47 88–95. 10.1016/j.bspc.2018.05.020
    1. Spigulis J., Gailite L., Lihachev A. (2007a). “Multi-wavelength photoplethysmography for simultaneous recording of skin blood pulsations at different vascular depths,” in Proceedings of the Advanced Biomedical and Clinical Diagnostic Systems V, eds Raghavachari R., Vo-Dinh T., Grundfest W. S., Benaron D. A., Cohn G. E. (Bellingham, WA: International Society for Optics and Photonics; ), 64301.
    1. Spigulis J., Gailite L., Lihachev A., Erts R. (2007b). Simultaneous recording of skin blood pulsations at different vascular depths by multiwavelength photoplethysmography. Appl. Optics 46 1754–1759. 10.1364/ao.46.001754
    1. Stern R. M. (1974). Ear lobe photoplethysmography. Psychophysiology 11 73–75.
    1. Struys M., Vanpeteghem C., Huiku M., Uutela K., Blyaert N., Mortier E. (2007). Changes in a surgical stress index in response to standardized pain stimuli during propofol–remifentanil infusion. Br. J. Anaesthesia 99 359–367. 10.1093/bja/aem173
    1. Sukor J. A., Redmond S., Lovell N. (2011). Signal quality measures for pulse oximetry through waveform morphology analysis. Physiol. Meas. 32:369. 10.1088/0967-3334/32/3/008
    1. Takazawa K. (1993). Clinical usefulness of the second derivative of a plethysmogram (acceleration plethysmogram). J. Cardiol. 23 207–217.
    1. Takazawa K., Tanaka N., Fujita M., Matsuoka O., Saiki T., Aikawa M., et al. (1998). Assessment of vasoactive agents and vascular aging by the second derivative of photoplethysmogram waveform. Hypertension 32 365–370. 10.1161/01.hyp.32.2.365
    1. Tang S.-C., Huang P.-W., Hung C.-S., Shan S.-M., Lin Y.-H., Shieh J.-S., et al. (2017). Identification of atrial fibrillation by quantitative analyses of fingertip photoplethysmogram. Sci. Rep. 7:45644. 10.1038/srep45644
    1. Tang S. D., Goh Y. S., Wong M. D., Lew Y. E. (2016). “PPG signal reconstruction using a combination of discrete wavelet transform and empirical mode decomposition,” in Proceeding of the 6th International Conference on Intelligent and Advanced Systems (ICIAS), (IEEE; ), 1–4.
    1. Taniguchi H., Takata T., Takechi M., Furukawa A., Iwasawa J., Kawamura A., et al. (2021). Explainable artificial intelligence model for diagnosis of atrial fibrillation using holter electrocardiogram waveforms. Int. Heart J. 62 534–539. 10.1536/ihj.21-094
    1. Tarvirdizadeh B., Golgouneh A., Tajdari F., Khodabakhshi E. (2018). A novel online method for identifying motion artifact and photoplethysmography signal reconstruction using artificial neural networks and adaptive neuro-fuzzy inference system. Neural Comput. Appl. 32 3549–3566. 10.1007/s00521-018-3767-8
    1. Tazarv A., Levorato M. (2021). A deep learning approach to predict blood pressure from ppg signals. arXiv Preprint 10.1109/EMBC46164.2021.9629687 ISBN:2108.00099
    1. Temko A. (2017). Accurate heart rate monitoring during physical exercises using PPG. IEEE Trans. Biomed. Eng. 64 2016–2024. 10.1109/TBME.2017.2676243
    1. Teng X., Zhang Y.-T. (2006). The effect of applied sensor contact force on pulse transit time. Physiol. Meas. 27:675. 10.1088/0967-3334/27/8/002
    1. Timimi A. A., Ali M. M., Chellappan K. (2017). A novel AMARS technique for baseline wander removal applied to photoplethysmogram. IEEE Trans. Biomed. Circuits Syst. 11 627–639. 10.1109/TBCAS.2017.2649940
    1. Uçar M. K., Bozkurt M. R., Polat K., Bilgin C. (2015). “Investigation of effects of time domain features of the photoplethysmography (PPG) signal on sleep respiratory arrests,” in Proceeding of the 23nd Signal Processing and Communications Applications Conference (SIU), (IEEE; ), 124–127.
    1. Ushiroyama T. (2005). Assessment of chilly sensation in Japanese women with lasor Doppler fluxmetry and acceleration plethysmogram with respect to peripheral circulation. Bull. Osaka Med. Coll. 51 76–84.
    1. Vadrevu S., Manikandan M. S. (2018). A robust pulse onset and peak detection method for automated PPG signal analysis system. IEEE Trans. Instrument. Meas. 68 807–817.
    1. Valencell T. (2015). Optical Heart Rate Monitoring: What You Need to Know. Raleigh: Valencell. Diakses Dari.
    1. Venema B., Blanik N., Blazek V., Gehring H., Opp A., Leonhardt S. (2012). Advances in reflective oxygen saturation monitoring with a novel in-ear sensor system: results of a human hypoxia study. IEEE Trans. Biomed. Eng. 59 2003–2010. 10.1109/TBME.2012.2196276
    1. Wang C., Huang C., Ye S. (2014). “Noninvasive cardiac output monitoring system based on photoplethysmography,” in Proceedings of the 2014 IEEE International Conference on Progress in Informatics and Computing (Piscataway, NJ: IEEE; ), 669–673.
    1. Wang L., Poon C., Zhang Y. (2010). The non-invasive and continuous estimation of cardiac output using a photoplethysmogram and electrocardiogram during incremental exercise. Physiol. Meas. 31 715–726. 10.1088/0967-3334/31/5/008
    1. Wang G., Atef M., Lian Y. (2018). Towards a continuous non-invasive cuffless blood pressure monitoring system using PPG: systems and circuits review. IEEE Circuits Syst. Magazine 18 6–26. 10.1109/mcas.2018.2849261
    1. Wang K., Xu L., Wang L., Li Z., Li Y. (2003). “Pulse baseline wander removal using wavelet approximation,” in Proceeding of the Computers in Cardiology, (IEEE; ), 605–608.
    1. Wang L., Pickwell-Macpherson E., Liang Y. P., Zhang Y. T. (2009). “Noninvasive cardiac output estimation using a novel photoplethysmogram index,” in Proceeding of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, (Piscataway, NJ: IEEE; ), 1746–1749. 10.1109/IEMBS.2009.5333091
    1. Wannenburg J., Malekian R. (2015). Body sensor network for mobile health monitoring, a diagnosis and anticipating system. IEEE Sens. J. 15 6839–6852.
    1. Webster J. G. (1997). Design of Pulse Oximeters. Boca Raton, FL: CRC Press.
    1. Widrow B., Glover J. R., Mccool J. M., Kaunitz J., Williams C. S., Hearn R. H., et al. (1975). Adaptive noise cancelling: principles and applications. Proc. IEEE 63 1692–1716. 10.1109/proc.1975.10036
    1. Wong M. Y.-M., Poon C. C.-Y., Zhang Y.-T. (2009). An evaluation of the cuffless blood pressure estimation based on pulse transit time technique: a half year study on normotensive subjects. Cardiovasc. Eng. 9 32–38. 10.1007/s10558-009-9070-7
    1. Xu L., Cheng J., Chen X. (2017). Illumination variation interference suppression in remote PPG using PLS and MEMD. Electron. Lett. 53 216–218.
    1. Xu L., Meng M. Q.-H., Liu R., Wang K. (2008). “Robust peak detection of pulse waveform using height ratio,” in Proceeding of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, (IEEE; ), 3856–3859. 10.1109/IEMBS.2008.4650051
    1. Yan L., Hu S., Alzahrani A., Alharbi S., Blanos P. (2017). A multi-wavelength opto-electronic patch sensor to effectively detect physiological changes against human skin types. Biosensors 7:22. 10.3390/bios7020022
    1. Yang C., Veiga C., Rodriguez-Andina J. J., Farina J., Iniguez A., Yin S. (2019). Using PPG signals and wearable devices for atrial fibrillation screening. IEEE Trans. Industrial Electron. 66 8832–8842.
    1. Yang Y. L., Seok H. S., Noh G.-J., Choi B.-M., Shin H. (2018). Postoperative pain assessment indices based on photoplethysmography waveform analysis. Front. Physiol. 9:1199. 10.3389/fphys.2018.01199
    1. Yousef Q., Reaz M., Ali M. A. M. (2012). The analysis of PPG morphology: investigating the effects of aging on arterial compliance. Meas. Sci. Rev. 12 266–271.
    1. Yuan H., Memon S. F., Newe T., Lewis E., Leen G. (2018). Motion artefact minimization from photoplethysmography based non-invasive hemoglobin sensor based on an envelope filtering algorithm. Measurement 115 288–298. 10.1016/j.measurement.2017.10.060
    1. Zangróniz R., Martínez-Rodrigo A., López M. T., Pastor J. M., Fernández-Caballero A. (2018). Estimation of mental distress from photoplethysmography. Appl. Sci. 8:69. 10.3390/app8010069
    1. Zhang Q., Lindberg L.-G., Kadefors R., Styf J. (2001). A non-invasive measure of changes in blood flow in the human anterior tibial muscle. Eur. J. Appl. Physiol. 84 448–452. 10.1007/s004210100413
    1. Zhang X.-Y., Zhang Y.-T. (2006). The effect of local mild cold exposure on pulse transit time. Physiol. Meas. 27:649. 10.1088/0967-3334/27/7/008
    1. Zhu Q., Tian X., Wong C.-W., Wu M. (2021). Learning your heart actions from pulse: ECG waveform reconstruction from PPG. IEEE Internet Things J. 8 16734–16748.
    1. Zijlstra W., Buursma A., Meeuwsen-Van Der Roest W. (1991). Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin. Clin. Chem. 37 1633–1638. 10.1093/clinchem/37.9.1633
    1. Zimmermann M., Feibicke T., Keyl C., Prasser C., Moritz S., Graf B. M., et al. (2010). Accuracy of stroke volume variation compared with pleth variability index to predict fluid responsiveness in mechanically ventilated patients undergoing major surgery. Eur. J. Anaesthesiol. (EJA) 27 555–561. 10.1097/EJA.0b013e328335fbd1

Source: PubMed

3
Iratkozz fel