BIOKID: randomized controlled trial comparing bicarbonate and lactate buffer in biocompatible peritoneal dialysis solutions in children [ISRCTN81137991]

Barbara Nau, Claus P Schmitt, Margarida Almeida, Klaus Arbeiter, Gianluigi Ardissino, Klaus E Bonzel, Alberto Edefonti, Michel Fischbach, Karin Haluany, Joachim Misselwitz, Markus J Kemper, Kai Rönnholm, Simone Wygoda, Franz Schaefer, European Pediatric Peritoneal Dialysis Study Group, Barbara Nau, Claus P Schmitt, Margarida Almeida, Klaus Arbeiter, Gianluigi Ardissino, Klaus E Bonzel, Alberto Edefonti, Michel Fischbach, Karin Haluany, Joachim Misselwitz, Markus J Kemper, Kai Rönnholm, Simone Wygoda, Franz Schaefer, European Pediatric Peritoneal Dialysis Study Group

Abstract

Background: Peritoneal dialysis (PD) is the preferred dialysis modality in children. Its major drawback is the limited technique survival due to infections and progressive ultrafiltration failure. Conventional PD solutions exert marked acute and chronic toxicity to local tissues. Prolonged exposure is associated with severe histopathological alterations including vasculopathy, neoangiogenesis, submesothelial fibrosis and a gradual loss of the mesothelial cell layer. Recently, more biocompatible PD solutions containing reduced amounts of toxic glucose degradation products (GDPs) and buffered at neutral pH have been introduced into clinical practice. These solutions contain lactate, bicarbonate or a combination of both as buffer substance. Increasing evidence from clinical trials in adults and children suggests that the new PD fluids may allow for better long-term preservation of peritoneal morphology and function. However, the relative importance of the buffer in neutral-pH, low-GDP fluids is still unclear. In vitro, lactate is cytotoxic and vasoactive at the concentrations used in PD fluids. The BIOKID trial is designed to clarify the clinical significance of the buffer choice in biocompatible PD fluids.

Methods/design: The objective of the study is to test the hypothesis that bicarbonate based PD solutions may allow for a better preservation of peritoneal transport characteristics in children than solutions containing lactate buffer. Secondary objectives are to assess any impact of the buffer system on acid-base status, peritoneal tissue integrity and the incidence and severity of peritonitis. After a run-in period of 2 months during which a targeted cohort of 60 patients is treated with a conventional, lactate buffered, acidic, GDP containing PD fluid, patients will be stratified according to residual renal function and type of phosphate binding medication and randomized to receive either the lactate-containing Balance solution or the bicarbonate-buffered Bicavera solution for a period of 10 months. Patients will be monitored by monthly physical and laboratory examinations. Peritoneal equilibration tests, 24-h dialysate and urine collections will be performed 4 times. Peritoneal biopsies will be obtained on occasion of intraabdominal surgery. Changes in small solute transport rates, markers of peritoneal tissue turnover in the effluent, acid-base status and peritonitis rates and severity will be analyzed.

References

    1. Davies SJ, Phillips L, Griffiths SM, Russell LH, Naish PF, Russell GI. What really happens to people on long-term peritoneal dialysis? Kidney International. 1998;54:2207–2217. doi: 10.1046/j.1523-1755.1998.00180.x.
    1. Schaefer F, Klaus G, Müller-Wiefel DE, Mehls O, (MEPPS) Mid European Pediatric Peritoneal Dialysis Study Group. Current practice of peritoneal dialysis in children: results of a longitudinal survey. Perit Dial Int. 1999;19 Suppl.2:S445–S449.
    1. Williams JD, Craig KJ, Topley N, Von Ruhland C, Fallon M, Newman GR, Mackenzie RK, Williams GT. Morphologic changes in the peritoneal membrane of patients with renal disease. J Am Soc Nephrol. 2002;13:470–479.
    1. Schneble F, Bonzel KE, Waldherr R, Bachmann S, Roth H, Scharer K. Peritoneal morphology in children treated by continuous ambulatory peritoneal dialysis. Pediatr Nephrol. 1992;6:542–546.
    1. Dobbie JW, Anderson JD, Hind C. Long term effects of peritoneal dialysis on peritoneal morphology. Perit Dial Int. 1994;14 Suppl S3:16–20.
    1. Witowski J, Topley N, Jorres A, Liberek T, Coles GA, Williams JD. Effect of lactate-buffered peritoneal dialysis fluids on human peritoneal mesothelial cell interleukin-6 and prostaglandin synthesis. Kidney Int. 1995;47:282–293.
    1. Davies SJ, Phillips L, Naish PF, Russell GI. Peritoneal glucose exposure and changes in membrane solute transport with time on peritoneal dialysis. J Am Soc Nephrol. 2001;12:1046–1051.
    1. Krediet RT, Lindholm B, Rippe B. Pathophysiology of peritoneal membrane failure. Perit Dial Int. 2000;20:S22–42.
    1. Yanez-Mo M, Lara-Pezzi E, Selgas R, Ramirez-Huesca M, Dominguez-Jimenez C, Jimenez-Heffernan JA, Aguilera A, Sanchez-Tomero JA, Bajo MA, Alvarez V, Castro MA, del Peso G, Cirujeda A, Gamallo C, Sanchez-Madrid F, Lopez-Cabrera M. Peritoneal dialysis and epithelial-to-mesenchymal transition of mesothelial cells. N Engl J Med. 2003;348:401–413. doi: 10.1056/NEJMoa020809.
    1. Witowski J, Wisniewska J, Korybalska K, Bender TO, Breborowicz A, Gahl GM, Frei U, Passlick-Deetjen J, Jorres A. Prolonged exposure to glucose degradation products impairs viability and function of human peritoneal mesothelial cells. J Am Soc Nephrol. 2001;12:2434–2441.
    1. Inagi R, Miyata T, Yamamoto T, Suzuki D, Urakami K, Saito A, van Ypersele de Strihou C, Kurokawa K. Glucose degradation product methylglyoxal enhances the production of vascular endothelial growth factor in peritoneal cells: role in the functional and morphological alterations of peritoneal membranes in peritoneal dialysis. FEBS Lett. 1999;463:260–264. doi: 10.1016/S0014-5793(99)01642-7.
    1. Kang DH, Hong YS, Lim HJ, Choi JH, Han DS, Yoon KI. High glucose solution and spent dialysate stimulate the synthesis of transforming growth factor-beta1 of human peritoneal mesothelial cells: effect of cytokine costimulation. Perit Dial Int. 1999;19:221–230.
    1. Haas S, Schmitt CP, Bonzel KE, Pieper AK, Fischbach M, John U, Arbeiter K, Schaup TP, Passlick-Deetjen J, Mehls O, Schaefer F. Improved acidosis correction and recovery of mesothelial cell mass with neutral-pH bicarbonate dialysis solution among children undergoing automated peritoneal dialysis. J Am Soc Nephrol. 2003;14:2632–2638. doi: 10.1097/01.ASN.0000086475.83211.DF.
    1. Jones S, Holmes CJ, Krediet RT, Mackenzie R, Faict D, Tranaeus A, Williams JD, Coles GA, Topley N. Bicarbonate/lactate-based peritoneal dialysis solution increases cancer antigen 125 and decreases hyaluronic acid levels. Kidney Int. 2001;59:1529–1538. doi: 10.1046/j.1523-1755.2001.0590041529.x.
    1. Rippe B, Simonsen O, Heimbürger O, Christensson A, Haraldsson B, Stelin G, Weiss J, Nielsen FD, Bro S, Friedberg M, Wieslander A. Long-term clinical effects of a peritoneal dialysis fluid with less glucose degradation products. Kidney Int. 2001;59:348–357. doi: 10.1046/j.1523-1755.2001.00497.x.
    1. Wang T, Cheng HH, Liu SM, Wang Y, Wu JL, Peng WX, Zhong JH, Lindholm B. Increased peritoneal membrane permeability is associated with abnormal peritoneal surface layer. Perit Dial Int. 2001;21 Suppl 3:S345–348.
    1. Schmitt CP, Haraldsson B, Doetschmann R, Zimmering M, Greiner C, Böswald M, Klaus G, Passlick-Deetjen J, Schaefer F. Effects of pH-neutral, bicarbonate-buffered dialysis fluid on peritoneal transport kinetics in children. Kidney Int. 2002;61:1527–1536. doi: 10.1046/j.1523-1755.2002.00255.x.
    1. Fischbach M, Terzic J, Chauvé S, Laugel V, Muller A, Haraldsson B. Effect of peritoneal dialysis fluid composition on peritoneal area available for exchange in children. Nephrol Dial Transplant. 2004;19:925–932. doi: 10.1093/ndt/gfg518.
    1. Fischbach M, Haraldsson B, Helms P, Danner S, Laugel V, Terzic J. The peritoneal membrane: a dynamic dialysis membrane in children. Adv Perit Dial. 2003;19:265–268.
    1. Breborowicz A, Rodela H, Martis L, Oreopoulos DG. Intracellular glutathione in human peritoneal mesothelial cells exposed in vitro to dialysis fluid. Int J Artif Organs. 1996;19:268–275.
    1. Liberek T, Topley N, Jorres A, Petersen MM, Coles GA, Gahl GM, Williams JD. Peritoneal dialysis fluid inhibition of polymorphonuclear leukocyte respiratory burst activation is related to the lowering of intracellular pH. Nephron. 1993;65(2):260–265.
    1. Plum J, Rezeghi P, Lordnejad RM, Perniok A, Fleisch M, Fussholler A, Schneider M, Grabensee B. Peritoneal dialysis fluids with a physiologic pH based on either lactate or bicarbonate buffer-effects on human mesothelial cells. Am J Kidney Dis. 2001;38:867–875.
    1. Mortier S, De Vriese AS, Van de Voorde J, Schaub TP, Passlick-Deetjen J, Lameire NH. Hemodynamic effects of peritoneal dialysis solutions on the rat peritoneal membrane: role of acidity, buffer choice, glucose concentration, and glucose degradation products. J Am Soc Nephrol. 2002;13:480–489.
    1. Warady BA, Schaefer F, Holloway M, Alexander S, Kandert M, Piraino B, Salusky I, Tranaeus A, Divino J, Honda M, Mujais S, Verrina E. Consensus guidelines for the treatment of peritonitis in pediatric patients receiving peritoneal dialysis. Perit Dial Int. 2000;20:610–624.

Source: PubMed

3
Iratkozz fel