High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study

Julie Helms, Charles Tacquard, François Severac, Ian Leonard-Lorant, Mickaël Ohana, Xavier Delabranche, Hamid Merdji, Raphaël Clere-Jehl, Malika Schenck, Florence Fagot Gandet, Samira Fafi-Kremer, Vincent Castelain, Francis Schneider, Lélia Grunebaum, Eduardo Anglés-Cano, Laurent Sattler, Paul-Michel Mertes, Ferhat Meziani, CRICS TRIGGERSEP Group (Clinical Research in Intensive Care and Sepsis Trial Group for Global Evaluation and Research in Sepsis), Julie Helms, Charles Tacquard, François Severac, Ian Leonard-Lorant, Mickaël Ohana, Xavier Delabranche, Hamid Merdji, Raphaël Clere-Jehl, Malika Schenck, Florence Fagot Gandet, Samira Fafi-Kremer, Vincent Castelain, Francis Schneider, Lélia Grunebaum, Eduardo Anglés-Cano, Laurent Sattler, Paul-Michel Mertes, Ferhat Meziani, CRICS TRIGGERSEP Group (Clinical Research in Intensive Care and Sepsis Trial Group for Global Evaluation and Research in Sepsis)

Abstract

Purpose: Little evidence of increased thrombotic risk is available in COVID-19 patients. Our purpose was to assess thrombotic risk in severe forms of SARS-CoV-2 infection.

Methods: All patients referred to 4 intensive care units (ICUs) from two centers of a French tertiary hospital for acute respiratory distress syndrome (ARDS) due to COVID-19 between March 3rd and 31st 2020 were included. Medical history, symptoms, biological data and imaging were prospectively collected. Propensity score matching was performed to analyze the occurrence of thromboembolic events between non-COVID-19 ARDS and COVID-19 ARDS patients.

Results: 150 COVID-19 patients were included (122 men, median age 63 [53; 71] years, SAPSII 49 [37; 64] points). Sixty-four clinically relevant thrombotic complications were diagnosed in 150 patients, mainly pulmonary embolisms (16.7%). 28/29 patients (96.6%) receiving continuous renal replacement therapy experienced circuit clotting. Three thrombotic occlusions (in 2 patients) of centrifugal pump occurred in 12 patients (8%) supported by ECMO. Most patients (> 95%) had elevated D-dimer and fibrinogen. No patient developed disseminated intravascular coagulation. Von Willebrand (vWF) activity, vWF antigen and FVIII were considerably increased, and 50/57 tested patients (87.7%) had positive lupus anticoagulant. Comparison with non-COVID-19 ARDS patients (n = 145) confirmed that COVID-19 ARDS patients (n = 77) developed significantly more thrombotic complications, mainly pulmonary embolisms (11.7 vs. 2.1%, p < 0.008). Coagulation parameters significantly differed between the two groups.

Conclusion: Despite anticoagulation, a high number of patients with ARDS secondary to COVID-19 developed life-threatening thrombotic complications. Higher anticoagulation targets than in usual critically ill patients should therefore probably be suggested.

Keywords: ARDS; COVID-19; Coagulopathy; Lupus anticoagulant; Thrombosis.

Conflict of interest statement

The authors have no conflicts of interest to declare.

Figures

Fig. 1
Fig. 1
66-year-old man at day 8 of ICU stay for ARDS secondary to Covid-19. CTPA demonstrating a proximal right pulmonary artery luminal defect and major bilateral alveolar consolidation
Fig. 2
Fig. 2
Coagulation parameters of the matched COVID-19 ARDS (n = 77 patients); and non-COVID-19 ARDS patients (n = 145 patients); aPTT: activated partial thromboplastin time, PT: prothrombin time

References

    1. Glass WG, Subbarao K, Murphy B, Murphy PM. Mechanisms of host defense following severe acute respiratory syndrome-coronavirus (SARS-CoV) pulmonary infection of mice. J Immunol. 2004;173:4030–4039. doi: 10.4049/jimmunol.173.6.4030.
    1. Emanuel EJ, Persad G, Upshur R, Thome B, Parker M, Glickman A, Zhang C, Boyle C, Smith M, Phillips JP (2020) Fair allocation of scarce medical resources in the time of Covid-19. N Engl J Med. 10.1056/NEJMsb2005114
    1. Tang N, Li D, Wang X, Sun Z (2020) Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 10.1111/jth.14820
    1. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, Xia J, Yu T, Zhang X, Zhang L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395:507–513. doi: 10.1016/S0140-6736(20)30211-7.
    1. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, Wang B, Xiang H, Cheng Z, Xiong Y, Zhao Y, Li Y, Wang X, Peng Z (2020) Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 10.1001/jama.2020.1585
    1. Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, Kumar A, Sevransky JE, Sprung CL, Nunnally ME, Rochwerg B, Rubenfeld GD, Angus DC, Annane D, Beale RJ, Bellinghan GJ, Bernard GR, Chiche JD, Coopersmith C, De Backer DP, French CJ, Fujishima S, Gerlach H, Hidalgo JL, Hollenberg SM, Jones AE, Karnad DR, Kleinpell RM, Koh Y, Lisboa TC, Machado FR, Marini JJ, Marshall JC, Mazuski JE, McIntyre LA, McLean AS, Mehta S, Moreno RP, Myburgh J, Navalesi P, Nishida O, Osborn TM, Perner A, Plunkett CM, Ranieri M, Schorr CA, Seckel MA, Seymour CW, Shieh L, Shukri KA, Simpson SQ, Singer M, Thompson BT, Townsend SR, Van der Poll T, Vincent JL, Wiersinga WJ, Zimmerman JL, Dellinger RP. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensiv Care Med. 2017;43:304–377. doi: 10.1007/s00134-017-4683-6.
    1. Thachil J, Tang N, Gando S, Falanga A, Cattaneo M, Levi M, Clark C, Iba T (2020) ISTH interim guidance on recognition and management of coagulopathy in COVID‐19. J Thromb Haemost. 10.1111/jth.14860
    1. Tang N, Bai H, Chen X, Gong J, Li D, Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost JTH. 2020 doi: 10.1111/JTH.14817.
    1. Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, Camporota L, Slutsky AS. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012;307:2526–2533.
    1. Iba T, Di Nisio M, Thachil J, Wada H, Asakura H, Sato K, Kitamura N, Saitoh D. Revision of the Japanese Association for Acute Medicine (JAAM) disseminated intravascular coagulation (DIC) diagnostic criteria using antithrombin activity. Crit Care. 2016;20:287. doi: 10.1186/s13054-016-1468-1.
    1. Taylor FB, Jr, Toh CH, Hoots WK, Wada H, Levi M, Scientific Subcommittee on Disseminated Intravascular Coagulation of the International Society on T, Haemostasis Towards definition, clinical and laboratory criteria, and a scoring system for disseminated intravascular coagulation. Thromb Haemost. 2001;86:1327–1330. doi: 10.1055/s-0037-1616068.
    1. Delabranche X, Boisrame-Helms J, Asfar P, Berger A, Mootien Y, Lavigne T, Grunebaum L, Lanza F, Gachet C, Freyssinet JM, Toti F, Meziani F. Microparticles are new biomarkers of septic shock-induced disseminated intravascular coagulopathy. Intensiv Care Med. 2013;39:1695–1703. doi: 10.1007/s00134-013-2993-x.
    1. Delabranche X, Quenot JP, Lavigne T, Mercier E, Francois B, Severac F, Grunebaum L, Mehdi M, Zobairi F, Toti F, Meziani F, Boisrame-Helms J, Clinical Research in Intensive C, Sepsis N Early detection of disseminated intravascular coagulation during septic shock: a multicenter prospective study. Crit Care Med. 2016;44:e930–e939. doi: 10.1097/CCM.0000000000001836.
    1. Miyakis S, Lockshin MD, Atsumi T, Branch DW, Brey RL, Cervera RH, Derksen RH, de Groot PG, Koike T, Meroni PL, Reber G, Shoenfeld Y, Tincani A, Vlachoyiannopoulos PG, Krilis SA. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS) J Thromb Haemost JTH. 2006;4:295–306. doi: 10.1111/j.1538-7836.2006.01753.x.
    1. Gershom ES, Sutherland MR, Lollar P, Pryzdial EL. Involvement of the contact phase and intrinsic pathway in herpes simplex virus-initiated plasma coagulation. J Thromb Haemost JTH. 2010;8:1037–1043.
    1. Oudemans-van Straaten HM. Hemostasis and thrombosis in continuous renal replacement treatment. Semin Thromb Hemost. 2015;41:91–98. doi: 10.1055/s-0034-1398384.
    1. Lim W, Meade M, Lauzier F, Zarychanski R, Mehta S, Lamontagne F, Dodek P, McIntyre L, Hall R, Heels-Ansdell D, Fowler R, Pai M, Guyatt G, Crowther MA, Warkentin TE, Devereaux PJ, Walter SD, Muscedere J, Herridge M, Turgeon AF, Geerts W, Finfer S, Jacka M, Berwanger O, Ostermann M, Qushmaq I, Friedrich JO, Cook DJ, Investigators PRfTiCCT Failure of anticoagulant thromboprophylaxis: risk factors in medical-surgical critically ill patients. Crit Care Med. 2015;43:401–410. doi: 10.1097/CCM.0000000000000713.
    1. Grimmer B, Kuebler WM. The endothelium in hypoxic pulmonary vasoconstriction. J Appl Physiol. 2017;123:1635–1646. doi: 10.1152/japplphysiol.00120.2017.
    1. Yan SF, Mackman N, Kisiel W, Stern DM, Pinsky DJ. Hypoxia/hypoxemia-induced activation of the procoagulant pathways and the pathogenesis of ischemia-associated thrombosis. Arterioscler Thromb Vasc Biol. 1999;19:2029–2035. doi: 10.1161/01.ATV.19.9.2029.
    1. Gupta N, Zhao YY, Evans CE. The stimulation of thrombosis by hypoxia. Thromb Res. 2019;181:77–83. doi: 10.1016/j.thromres.2019.07.013.
    1. Hattori N, Sisson TH, Xu Y, Desai TJ, Simon RH. Participation of urokinase-type plasminogen activator receptor in the clearance of fibrin from the lung. Am J Physiol. 1999;277:L573–L579.
    1. Bertozzi P, Astedt B, Zenzius L, Lynch K, LeMaire F, Zapol W, Chapman HA., Jr Depressed bronchoalveolar urokinase activity in patients with adult respiratory distress syndrome. N Engl J Med. 1990;322:890–897. doi: 10.1056/NEJM199003293221304.
    1. Idell S, James KK, Levin EG, Schwartz BS, Manchanda N, Maunder RJ, Martin TR, McLarty J, Fair DS. Local abnormalities in coagulation and fibrinolytic pathways predispose to alveolar fibrin deposition in the adult respiratory distress syndrome. J Clin Investig. 1989;84:695–705. doi: 10.1172/JCI114217.
    1. Wu YP, Wei R, Liu ZH, Chen B, Lisman T, Ren DL, Han JJ, Xia ZL, Zhang FS, Xu WB, Preissner KT, de Groot PG. Analysis of thrombotic factors in severe acute respiratory syndrome (SARS) patients. Thromb Haemost. 2006;96:100–101. doi: 10.1160/TH06-04-0219.
    1. Hoste EA, Roosens CD, Bracke S, Decruyenaere JM, Benoit DD, Vandewoude KH, Colardyn FA. Acute effects of upright position on gas exchange in patients with acute respiratory distress syndrome. J Intensiv Care Med. 2005;20:43–49. doi: 10.1177/0885066604271616.
    1. Gralinski LE, Bankhead A, 3rd, Jeng S, Menachery VD, Proll S, Belisle SE, Matzke M, Webb-Robertson BJ, Luna ML, Shukla AK, Ferris MT, Bolles M, Chang J, Aicher L, Waters KM, Smith RD, Metz TO, Law GL, Katze MG, McWeeney S, Baric RS. Mechanisms of severe acute respiratory syndrome coronavirus-induced acute lung injury. mBio. 2013;4:e00271. doi: 10.1128/mBio.00271-13.
    1. Giannakopoulos B, Krilis SA. The pathogenesis of the antiphospholipid syndrome. N Engl J Med. 2013;368:1033–1044. doi: 10.1056/NEJMra1112830.
    1. Goldman-Mazur S, Wypasek E, Karpinski M, Stanisz A, Undas A. High detection rates of antithrombin deficiency and antiphospholipid syndrome in outpatients aged over 50 years using the standardized protocol for thrombophilia screening. Thromb Res. 2019;176:67–73. doi: 10.1016/j.thromres.2019.02.008.
    1. Bautista E, Arcos M, Jimenez-Alvarez L, Garcia-Sancho MC, Vazquez ME, Pena E, Higuera A, Ramirez G, Fernandez-Plata R, Cruz-Lagunas A, Garcia-Moreno SA, Urrea F, Ramirez R, Correa-Rotter R, Perez-Padilla JR, Zuniga J. Angiogenic and inflammatory markers in acute respiratory distress syndrome and renal injury associated to A/H1N1 virus infection. Exp Mol Pathol. 2013;94:486–492. doi: 10.1016/j.yexmp.2013.03.007.
    1. Seeley EJ. Updates in the management of acute lung injury: a focus on the overlap between AKI and ARDS. Adv Chronic Kidney Dis. 2013;20:14–20. doi: 10.1053/j.ackd.2012.10.001.
    1. Malek M, Hassanshahi J, Fartootzadeh R, Azizi F, Shahidani S. Nephrogenic acute respiratory distress syndrome: a narrative review on pathophysiology and treatment. Chin J Traumatol. 2018;21:4–10. doi: 10.1016/j.cjtee.2017.07.004.
    1. Antoniak S, Mackman N. Multiple roles of the coagulation protease cascade during virus infection. Blood. 2014;123:2605–2613. doi: 10.1182/blood-2013-09-526277.
    1. Basler CF. Molecular pathogenesis of viral hemorrhagic fever. Semin Immunopathol. 2017;39:551–561. doi: 10.1007/s00281-017-0637-x.

Source: PubMed

3
Iratkozz fel