Ventilation with lower tidal volumes as compared with conventional tidal volumes for patients without acute lung injury: a preventive randomized controlled trial

Rogier M Determann, Annick Royakkers, Esther K Wolthuis, Alexander P Vlaar, Goda Choi, Frederique Paulus, Jorrit-Jan Hofstra, Mart J de Graaff, Johanna C Korevaar, Marcus J Schultz, Rogier M Determann, Annick Royakkers, Esther K Wolthuis, Alexander P Vlaar, Goda Choi, Frederique Paulus, Jorrit-Jan Hofstra, Mart J de Graaff, Johanna C Korevaar, Marcus J Schultz

Abstract

Introduction: Recent cohort studies have identified the use of large tidal volumes as a major risk factor for development of lung injury in mechanically ventilated patients without acute lung injury (ALI). We compared the effect of conventional with lower tidal volumes on pulmonary inflammation and development of lung injury in critically ill patients without ALI at the onset of mechanical ventilation.

Methods: We performed a randomized controlled nonblinded preventive trial comparing mechanical ventilation with tidal volumes of 10 ml versus 6 ml per kilogram of predicted body weight in critically ill patients without ALI at the onset of mechanical ventilation. The primary end point was cytokine levels in bronchoalveolar lavage fluid and plasma during mechanical ventilation. The secondary end point was the development of lung injury, as determined by consensus criteria for ALI, duration of mechanical ventilation, and mortality.

Results: One hundred fifty patients (74 conventional versus 76 lower tidal volume) were enrolled and analyzed. No differences were observed in lavage fluid cytokine levels at baseline between the randomization groups. Plasma interleukin-6 (IL-6) levels decreased significantly more strongly in the lower-tidal-volume group ((from 51 (20 to 182) ng/ml to 11 (5 to 20) ng/ml versus 50 (21 to 122) ng/ml to 21 (20 to 77) ng/ml; P = 0.01)). The trial was stopped prematurely for safety reasons because the development of lung injury was higher in the conventional tidal-volume group as compared with the lower tidal-volume group (13.5% versus 2.6%; P = 0.01). Univariate analysis showed statistical relations between baseline lung-injury score, randomization group, level of positive end-expiratory pressure (PEEP), the number of transfused blood products, the presence of a risk factor for ALI, and baseline IL-6 lavage fluid levels and the development of lung injury. Multivariate analysis revealed the randomization group and the level of PEEP as independent predictors of the development of lung injury.

Conclusions: Mechanical ventilation with conventional tidal volumes is associated with sustained cytokine production, as measured in plasma. Our data suggest that mechanical ventilation with conventional tidal volumes contributes to the development of lung injury in patients without ALI at the onset of mechanical ventilation.

Trial registration: ISRCTN82533884.

Figures

Figure 1
Figure 1
Flow diagram summarizing inclusion, allocation, and analysis. 347 patients were eligible for the study; 94 patients were excluded because of participation in another clinical trial (n = 49), use of immunosuppressive agents (n = 22), chronic obstructive pulmonary disease (n = 11), prior pneumectomy or lobectomy (n = 5), interstitial lung disease (n = 4), and pulmonary thromboembolism (n = 3); 93 patients refused informed consent, and in eight patients, participation in the trial was denied by the attending physician.
Figure 2
Figure 2
Serial data on mechanical ventilation parameters of patients ventilated with conventional tidal volume (solid circles) or lower tidal volumes (open circles). The number of patients was 74 versus 76 (conventional versus lower tidal volumes), 55 versus 63, and 34 versus 34, respectively, at T = 0, T = 2, and T = 4 days. *P < 0.05 (Interaction time × Group).
Figure 3
Figure 3
Serial data on respiratory values and lung-injury score of patients ventilated with conventional tidal volume (solid circles) or lower tidal volumes (open circles). PaO2 partial pressure of arterial oxygen; PaCO2 partial pressure of arterial carbon dioxide; PF = ratio of PaO2 to fraction of inspired oxygen; LIS lung injury score. The number of patients was 74 versus 76 (conventional versus lower tidal volumes), 55 versus 63, and 34 versus 34, respectively, at T = 0, T = 2, and T = 4 days. *P < 0.05; #P = 0.06 (Interaction time × Group).
Figure 4
Figure 4
Serial data on cytokine levels in bronchoalveolar lavage fluid of patients ventilated with conventional tidal volume (solid circles) or lower tidal volumes (open circles). TNF-α = tumor necrosis factor-α; IL-1β = interleukin-1β; IL-6 = interleukin-6. The number of patients was 74 versus 76 (conventional versus lower tidal volumes), 55 versus 63, and 34 versus 34, respectively, at T = 0, T = 2, and T = 4 days. *P < 0.05; #P = 0.06 (Interaction time × Group).
Figure 5
Figure 5
Serial data on cytokine levels in lavage fluid and plasma of patients in whom ALI/ARDS developed (solid circles) and of patients in whom it did not (open circles). The number of patients was 136 versus 12 (no lung injury versus lung injury), 106 versus 12, and 61 versus 8, respectively, at T = 0, T = 2, and T = 4 days. *P < 0.05.
Figure 6
Figure 6
Serial data on minute volume (left graph), oxygenation index (middle graph), and lung compliance (right graph) in patients in whom lung injury developed (solid circles) and in patients in whom it did not (open circles). The number of patients was 136 versus 12 (no ALI/ARDS versus ALI/ARDS), 106 versus 12, and 61 versus eight, respectively, at T = 0, T = 2, and T = 4 days. *P < 0.05.
Figure 7
Figure 7
Kaplan-Meier curve of incidence of acute lung injury (left graph), percentage of patients weaned from ventilator (middle graph), and mortality (right graph) in patients mechanically ventilated with conventional tidal volume (solid circles) or lower tidal volumes (open circles).

References

    1. Dreyfuss D, Saumon G. Ventilator-induced lung injury: lessons from experimental studies. Am J Respir Crit Care Med. 1998;157:294–323.
    1. Carney D, DiRocco J, Nieman G. Dynamic alveolar mechanics and ventilator-induced lung injury. Crit Care Med. 2005;33:S122–128. doi: 10.1097/01.CCM.0000155928.95341.BC.
    1. Plotz FB, Slutsky AS, van Vught AJ, Heijnen CJ. Ventilator-induced lung injury and multiple system organ failure: a critical review of facts and hypotheses. Intensive Care Med. 2004;30:1865–1872. doi: 10.1007/s00134-004-2363-9.
    1. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome: the Acute Respiratory Distress Syndrome Network. N Engl J Med. 2000;342:1301–1308. doi: 10.1056/NEJM200005043421801.
    1. Amato MB, Barbas CS, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi-Filho G, Kairalla RA, Deheinzelin D, Munoz C, Oliveira R, Takagaki TY, Carvalho CR. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med. 1998;338:347–354. doi: 10.1056/NEJM199802053380602.
    1. Villar J, Kacmarek RM, Perez-Mendez L, Aguirre-Jaime A. for the ARIES Network. A high positive end-expiratory pressure, low tidal volume ventilatory strategy improves outcome in persistent acute respiratory distress syndrome: a randomized, controlled trial. Crit Care Med. 2006;34:1311–1318. doi: 10.1097/01.CCM.0000215598.84885.01.
    1. Dellinger RP, Carlet JM, Masur H, Gerlach H, Calandra T, Cohen J, Gea-Banacloche J, Keh D, Marshall JC, Parker MM, Ramsay G, Zimmerman JL, Vincent JL, Levy MM. Surviving Sepsis Campaign Management Guidelines Committee: surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med. 2008;36:296–327. doi: 10.1097/01.CCM.0000298158.12101.41.
    1. Schultz MJ, Haitsma JJ, Slutsky AS, Gajic O. What tidal volumes should be used in patients without ALI/ARDS? Anesthesiology. 2007;106:1226–1231. doi: 10.1097/01.anes.0000267607.25011.e8.
    1. Hudson LD, Milberg JA, Anardi D, Maunder RJ. Clinical risks for development of the acute respiratory distress syndrome. Am J Respir Crit Care Med. 1995;151:293–301.
    1. Stewart TE, Meade MO, Cook DJ, Granton JT, Hodder RV, Lapinsky SE, Mazer CD, McLean RF, Rogovein TS, Schouten BD, Todd TRJ, Slutsky AS. Evaluation of a ventilation strategy to prevent barotraumas in patients at high risk for acute respiratory distress syndrome. N Engl J Med. 1998;338:355–361. doi: 10.1056/NEJM199802053380603.
    1. Choi G, Wolthuis EK, Bresser P, Levi M, Poll T van der, Dzoljic M, Vroom MB, Schultz MJ. Mechanical ventilation with lower tidal volumes and positive end-expiratory pressure prevents alveolar coagulation in patients without acute lung injury. Anesthesiology. 2006;105:689–695. doi: 10.1097/00000542-200610000-00013.
    1. Michelet P, D'Journo XB, Roch A, Doddoli C, Marin V, Papazian L, Decamps I, Bregeon F, Thomas P, Auffray JP. Protective ventilation influences systemic inflammation after esophagectomy: a randomized controlled study. Anesthesiology. 2006;105:911–919. doi: 10.1097/00000542-200611000-00011.
    1. Wrigge H, Uhlig U, Baumgarten G, Menzenbach J, Zinserling J, Ernst M, Dromann D, Welz A, Uhlig S, Putensen C. Mechanical ventilation strategies and inflammatory responses to cardiac surgery: a prospective randomized clinical trial. Intensive Care Med. 2005;31:1379–1387. doi: 10.1007/s00134-005-2767-1.
    1. Wrigge H, Uhlig U, Zinserling J, Behrends-Callsen E, Ottersbach G, Fischer M, Uhlig S, Putensen C. The effects of different ventilatory settings on pulmonary and systemic inflammatory responses during major surgery. Anesth Analg. 2004;98:775–781. doi: 10.1213/.
    1. Gajic O, Dara SI, Mendez JL, Adesanya AO, Festic E, Caples SM, Rana R, St Sauver JL, Lymp JF, Afessa B, Hubmayr RD. Ventilator-associated lung injury in patients without acute lung injury at the onset of mechanical ventilation. Crit Care Med. 2004;32:1817–1824. doi: 10.1097/01.CCM.0000133019.52531.30.
    1. Gajic O, Frutos-Vivar F, Esteban A, Hubmayr RD, Anzueto A. Ventilator settings as a risk factor for acute respiratory distress syndrome in mechanically ventilated patients. Intensive Care Med. 2005;31:922–926. doi: 10.1007/s00134-005-2625-1.
    1. Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, Lamy M, Legall JR, Morris A, Spragg R. The American-European Consensus Conference on ARDS: definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med. 1994;149:818–824.
    1. Trachsel D, McCrindle BW, Nakagawa S, Bohn D. Oxygenation index predicts outcome in children with acute hypoxemic respiratory failure. Am J Respir Crit Care Med. 2005;172:206–211. doi: 10.1164/rccm.200405-625OC.
    1. Millo JL, Schultz MJ, Williams C, Weverling GJ, Ringrose T, Mackinlay CI, Poll T van der, Garrard CS. Compartmentalisation of cytokines and cytokine inhibitors in ventilator-associated pneumonia. Intensive Care Med. 2004;30:68–74. doi: 10.1007/s00134-003-2060-0.
    1. Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, Cohen J, Opal SM, Vincent JL, Ramsay G. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit Care Med. 2003;31:1250–1256. doi: 10.1097/01.CCM.0000050454.01978.3B.
    1. Rello J. Demographics, guidelines, and clinical experience in severe community-acquired pneumonia. Crit Care. 2008;12:S2. doi: 10.1186/cc7025.
    1. Thakur L, Kojicic M, Thakur SJ, Pieper MS, Kashyap R, Trillo-Alvarez CA, Javier F, Cartin-Ceba R, Gajic O. Alcohol consumption and development of acute respiratory distress syndrome: a population-based study. Int J Environ Res Public Health. 2009;6:2426–2435. doi: 10.3390/ijerph6092426.
    1. Ranieri VM, Suter PM, Tortorella C, de Tullio R, Dayer JM, Brienza A, Bruno F, Slutsky AS. Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA. 1999;282:54–61. doi: 10.1001/jama.282.1.54.
    1. Iscimen R, Cartin-Ceba R, Yilmaz M, Khan H, Hubmayr RD, Afessa B, Gajic O. Risk factors for the development of acute lung injury in patients with septic shock: an observational cohort study. Crit Care Med. 2008;36:1518–1522. doi: 10.1097/CCM.0b013e31816fc2c0.
    1. Yilmaz M, Keegan MT, Iscimen R, Afessa B, Buck CF, Hubmayr RD, Gajic O. Toward the prevention of acute lung injury: protocol-guided limitation of large tidal volume ventilation and inappropriate transfusion. Crit Care Med. 2007;35:1660–1666. doi: 10.1097/01.CCM.0000269037.66955.F0.
    1. Ferguson ND, Frutos-Vivar F, Esteban A, Fernández-Segoviano P, Aramburu JA, Nájera L, Stewart TE. Acute respiratory distress syndrome: underrecognition by clinicians and diagnostic accuracy of three clinical definitions. Crit Care Med. 2005;33:2228–2234. doi: 10.1097/01.CCM.0000181529.08630.49.
    1. Fartoukh M, Maitre B, Honore S, Cerf C, Zahar JR, Brun-Buisson C. Diagnosing pneumonia during mechanical ventilation: the clinical pulmonary infection score revisited. Am J Respir Crit Care Med. 2003;168:173–179. doi: 10.1164/rccm.200212-1449OC.

Source: PubMed

3
Iratkozz fel