OHMI: the ontology of host-microbiome interactions

Yongqun He, Haihe Wang, Jie Zheng, Daniel P Beiting, Anna Maria Masci, Hong Yu, Kaiyong Liu, Jianmin Wu, Jeffrey L Curtis, Barry Smith, Alexander V Alekseyenko, Jihad S Obeid, Yongqun He, Haihe Wang, Jie Zheng, Daniel P Beiting, Anna Maria Masci, Hong Yu, Kaiyong Liu, Jianmin Wu, Jeffrey L Curtis, Barry Smith, Alexander V Alekseyenko, Jihad S Obeid

Abstract

Background: Host-microbiome interactions (HMIs) are critical for the modulation of biological processes and are associated with several diseases. Extensive HMI studies have generated large amounts of data. We propose that the logical representation of the knowledge derived from these data and the standardized representation of experimental variables and processes can foster integration of data and reproducibility of experiments and thereby further HMI knowledge discovery.

Methods: Through a multi-institutional collaboration, a community-based Ontology of Host-Microbiome Interactions (OHMI) was developed following the Open Biological/Biomedical Ontologies (OBO) Foundry principles. As an OBO library ontology, OHMI leverages established ontologies to create logically structured representations of (1) microbiomes, microbial taxonomy, host species, host anatomical entities, and HMIs under different conditions and (2) associated study protocols and types of data analysis and experimental results.

Results: Aligned with the Basic Formal Ontology, OHMI comprises over 1000 terms, including terms imported from more than 10 existing ontologies together with some 500 OHMI-specific terms. A specific OHMI design pattern was generated to represent typical host-microbiome interaction studies. As one major OHMI use case, drawing on data from over 50 peer-reviewed publications, we identified over 100 bacteria and fungi from the gut, oral cavity, skin, and airway that are associated with six rheumatic diseases including rheumatoid arthritis. Our ontological study identified new high-level microbiota taxonomical structures. Two microbiome-related competency questions were also designed and addressed. We were also able to use OHMI to represent statistically significant results identified from a large existing microbiome database data analysis.

Conclusion: OHMI represents entities and relations in the domain of HMIs. It supports shared knowledge representation, data and metadata standardization and integration, and can be used in formulation of advanced queries for purposes of data analysis.

Keywords: Host-microbiome interaction; Metadata; Microbiome; OBO Foundry; OHMI; Ontology; Ontology of host-microbiome interactions; Rheumatic disease; Rheumatoid arthritis.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Selected upper level terms and hierarchy of OHMI. OHMI terms are marked by red labels. The full names of listed ontologies are provided in the list of abbreviations at the end of this paper
Fig. 2
Fig. 2
Illustration of OHMI ontology design pattern for representing host-microbiome interactions. The red box represents different levels of host-microbiome interactions. A specific example is the OHMI representation of a human-microbiome interaction in which the human host has the disease ankylosing spondylitis (AS). The human and microbiome classes are duplicated in this figure for clarity. Note that not every organism has the ‘host role’, and the role is here assigned to a host organism only in the case of host-microbiome interactions
Fig. 3
Fig. 3
Ontological representation of the bacteria populations increased in the guts of patients with at least two different rheumatic diseases as compared with healthy controls. (a) Bacterial population increased in patient guts. (b) Bacterial population decreased in patient guts. Many increased and decreased bacterial populations are within the same genus. The red and blue circles represent increased and decreased profiles, respectively. Taxonomy terms without circle and label are used to generate ontological hierarchies
Fig. 4
Fig. 4
OHMI design pattern of key entities important for HMI investigation. Note that not every organism has the ‘host role’, and the role is here assigned to a host organism only in the case of host-microbiome interaction
Fig. 5
Fig. 5
Query of diseases associated with increased E. coli in human gut. (a) DL query based on the host-pathogen interaction classifications; (b) SPARQL query based on the linkage from organism to disease. The SPARQL query was conducted using the Ontobee SPARQL endpoint (http://www.ontobee.org/sparql)
Fig. 6
Fig. 6
The hierarchy of microbes associated with RA and their profiles. The red and blue circles represent the increased and decreased profiles, respectively. Labeled letters represent locations as follows: G – human gut, O – human oral cavity; R – human respiratory airway. Those taxonomy terms without circle and label are used only to generate the hierarchy
Fig. 7
Fig. 7
Data mining and ontology representation of microbiome profiles at different species level between diarrhea and health controls. (a) MicrobiomeDB data mining. (b) OHMI representation of the results

References

    1. Group NHW. Peterson J, Garges S, Giovanni M, McInnes P, Wang L, Schloss JA, Bonazzi V, McEwen JE, Wetterstrand KA, et al. The NIH human microbiome project. Genome Res. 2009;19(12):2317–2323. doi: 10.1101/gr.096651.109.
    1. Marchesi JR, Ravel J. The vocabulary of microbiome research: a proposal. Microbiome. 2015;3:31. doi: 10.1186/s40168-015-0094-5.
    1. Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, Djahanschiri B, Zeller G, Mende DR, Alberti A, et al. Ocean plankton. Structure and function of the global ocean microbiome. Science. 2015;348(6237):1261359. doi: 10.1126/science.1261359.
    1. Shi N, Li N, Duan X, Niu H. Interaction between the gut microbiome and mucosal immune system. Military Medical Research. 2017;4:14. doi: 10.1186/s40779-017-0122-9.
    1. Rivera-Amill V. The Human Microbiome and the Immune System: An Ever Evolving Understanding. J Clin Cell Immunol. 2014;5(6).
    1. Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI. Human nutrition, the gut microbiome and the immune system. Nature. 2011;474(7351):327–336. doi: 10.1038/nature10213.
    1. Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak A, Blomberg N, Boiten JW, da Silva Santos LB, Bourne PE, et al. The FAIR guiding principles for scientific data management and stewardship. Scientific data. 2016;3:160018. doi: 10.1038/sdata.2016.18.
    1. Hur J, Ozgur A, He Y. Ontology-based literature mining of E. coli vaccine-associated gene interaction networks. J Biomed Semantics. 2017;8(1):12. doi: 10.1186/s13326-017-0122-4.
    1. NCBITaxon: An ontology representation of the NCBI organismal taxonomy. []. Accessed 10 Dec 2019.
    1. Mungall CJ, Torniai C, Gkoutos GV, Lewis SE, Haendel MA. Uberon, an integrative multi-species anatomy ontology. Genome Biol. 2012;13(1):R5. doi: 10.1186/gb-2012-13-1-r5.
    1. Buttigieg PL, Morrison N, Smith B, Mungall CJ, Lewis SE, Consortium E. The environment ontology: contextualising biological and biomedical entities. J Biomed Semantics. 2013;4(1):43. doi: 10.1186/2041-1480-4-43.
    1. Chibucos MC, Zweifel AE, Herrera JC, Meza W, Eslamfam S, Uetz P, Siegele DA, Hu JC, Giglio MG. An ontology for microbial phenotypes. BMC Microbiol. 2014;14:294. doi: 10.1186/s12866-014-0294-3.
    1. Blank CE, Cui H, Moore LR, Walls RL. MicrO: an ontology of phenotypic and metabolic characters, assays, and culture media found in prokaryotic taxonomic descriptions. J Biomed Semantics. 2016;7:18. doi: 10.1186/s13326-016-0060-6.
    1. PATO - Phenotypic Quality Ontology []. Accessed 14 Dec 2019.
    1. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene ontology: tool for the unification of biology. The gene ontology Consortium. Nat Genet. 2000;25(1):25–29. doi: 10.1038/75556.
    1. Hastings J, de Matos P, Dekker A, Ennis M, Harsha B, Kale N, Muthukrishnan V, Owen G, Turner S, Williams M, et al. The ChEBI reference database and ontology for biologically relevant chemistry: enhancements for 2013. Nucleic Acids Res. 2013;41(Database issue):D456–D463.
    1. Natale DA, Arighi CN, Blake JA, Bult CJ, Christie KR, Cowart J, D'Eustachio P, Diehl AD, Drabkin HJ, Helfer O, et al. Protein ontology: a controlled structured network of protein entities. Nucleic Acids Res. 2014;42(Database issue):D415–D421. doi: 10.1093/nar/gkt1173.
    1. Bandrowski A, Brinkman R, Brochhausen M, Brush MH, Bug B, Chibucos MC, Clancy K, Courtot M, Derom D, Dumontier M, et al. The ontology for biomedical investigations. PLoS One. 2016;11(4):e0154556. doi: 10.1371/journal.pone.0154556.
    1. Smith B, Ashburner M, Rosse C, Bard J, Bug W, Ceusters W, Goldberg LJ, Eilbeck K, Ireland A, Mungall CJ, et al. The OBO foundry: coordinated evolution of ontologies to support biomedical data integration. Nat Biotechnol. 2007;25(11):1251–1255. doi: 10.1038/nbt1346.
    1. He Y, Xiang Z, Zheng J, Lin Y, Overton JA, Ong E. The eXtensible ontology development (XOD) principles and tool implementation to support ontology interoperability. J Biomed Semantics. 2018;9(1):3. doi: 10.1186/s13326-017-0169-2.
    1. Arp R, Smith B, Spear AD. Building ontologies using basic formal ontology. Cambridge, MA, USA: MIT Press; 2015.
    1. Xiang Z, Courtot M, Brinkman RR, Ruttenberg A, He Y: OntoFox: web-based support for ontology reuse. BMC Res Notes 2010, 3:175:1–12.
    1. Xiang Zuoshuang, Zheng Jie, Lin Yu, He Yongqun. Ontorat: automatic generation of new ontology terms, annotations, and axioms based on ontology design patterns. Journal of Biomedical Semantics. 2015;6(1):4. doi: 10.1186/2041-1480-6-4.
    1. Rubin DL, Noy NF, Musen MA. Protege: a tool for managing and using terminology in radiology applications. J Digit Imaging. 2007;20(Suppl 1):34–46. doi: 10.1007/s10278-007-9065-0.
    1. Ong E, Xiang Z, Zhao B, Liu Y, Lin Y, Zheng J, Mungall C, Courtot M, Ruttenberg A, He Y. Ontobee: a linked ontology data server to support ontology term dereferencing, linkage, query and integration. Nucleic Acids Res. 2017;45(D1):D347–D352. doi: 10.1093/nar/gkw918.
    1. Harris S, Seaborne A: SPARQL 1.1 Query Language, W3C Recommendation 21 March 2013. 2013: URL: , accessed on December 23, 2018.
    1. Salvadores M, Alexander PR, Musen MA, Noy NF. BioPortal as a dataset of linked biomedical ontologies and terminologies in RDF. Semantic Web. 2013;4(3):277–284. doi: 10.3233/SW-2012-0086.
    1. Smith B, Ceusters W, Klagges B, Kohler J, Kumar A, Lomax J, Mungall C, Neuhaus F, Rector AL, Rosse C. Relations in biomedical ontologies. Genome Biol. 2005;6(5):R46. doi: 10.1186/gb-2005-6-5-r46.
    1. Gibofsky A. Overview of epidemiology, pathophysiology, and diagnosis of rheumatoid arthritis. Am J Manag Care. 2012;18(13 Suppl):S295–S302.
    1. Van de Wiele T, Van Praet JT, Marzorati M, Drennan MB, Elewaut D. How the microbiota shapes rheumatic diseases. Nat Rev Rheumatol. 2016;12(7):398–411. doi: 10.1038/nrrheum.2016.85.
    1. Stoll ML, Cron RQ. The microbiota in pediatric rheumatic disease: epiphenomenon or therapeutic target? Curr Opin Rheumatol. 2016;28(5):537–543. doi: 10.1097/BOR.0000000000000312.
    1. Caminer AC, Haberman R, Scher JU. Human microbiome, infections, and rheumatic disease. Clin Rheumatol. 2017;36(12):2645–2653. doi: 10.1007/s10067-017-3875-3.
    1. Ostrov BE, Amsterdam D. Immunomodulatory interplay of the microbiome and therapy of rheumatic diseases. Immunol Investig. 2017;46(8):769–792. doi: 10.1080/08820139.2017.1373828.
    1. Scher JU, Littman DR, Abramson SB. Microbiome in inflammatory arthritis and human rheumatic diseases. Arthritis Rheumatology. 2016;68(1):35–45. doi: 10.1002/art.39259.
    1. Coit P, Sawalha AH. The human microbiome in rheumatic autoimmune diseases: a comprehensive review. Clin Immunol. 2016;170:70–79. doi: 10.1016/j.clim.2016.07.026.
    1. Rosenbaum JT, Asquith MJ. The microbiome: a revolution in treatment for rheumatic diseases? Curr Rheumatol Rep. 2016;18(10):62. doi: 10.1007/s11926-016-0614-8.
    1. Zhang H, Liao X, Sparks JB, Luo XM. Dynamics of gut microbiota in autoimmune lupus. Appl Environ Microbiol. 2014;80(24):7551–7560. doi: 10.1128/AEM.02676-14.
    1. Costello ME, Ciccia F, Willner D, Warrington N, Robinson PC, Gardiner B, Marshall M, Kenna TJ, Triolo G, Brown MA. Brief report: intestinal Dysbiosis in Ankylosing spondylitis. Arthritis Rheumatol. 2015;67(3):686–691. doi: 10.1002/art.38967.
    1. Shao T, Shao L, Li H, Xie Z, He Z, Wen C. Combined signature of the fecal microbiome and Metabolome in patients with gout. Front Microbiol. 2017;8:268. doi: 10.3389/fmicb.2017.00268.
    1. Stoll ML, Kumar R, Morrow CD, Lefkowitz EJ, Cui X, Genin A, Cron RQ, Elson CO. Altered microbiota associated with abnormal humoral immune responses to commensal organisms in enthesitis-related arthritis. Arthritis Res Ther. 2014;16(6):486. doi: 10.1186/s13075-014-0486-0.
    1. Scher JU, Ubeda C, Artacho A, Attur M, Isaac S, Reddy SM, Marmon S, Neimann A, Brusca S, Patel T, et al. Decreased bacterial diversity characterizes the altered gut microbiota in patients with psoriatic arthritis, resembling dysbiosis in inflammatory bowel disease. Arthritis Rheumatol. 2015;67(1):128–139. doi: 10.1002/art.38892.
    1. He Z, Shao T, Li H, Xie Z, Wen C. Alterations of the gut microbiome in Chinese patients with systemic lupus erythematosus. Gut Pathogens. 2016;8:64. doi: 10.1186/s13099-016-0146-9.
    1. Zhang X, Zhang D, Jia H, Feng Q, Wang D, Liang D, Wu X, Li J, Tang L, Li Y, et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat Med. 2015;21(8):895–905. doi: 10.1038/nm.3914.
    1. Field D, Garrity G, Gray T, Morrison N, Selengut J, Sterk P, Tatusova T, Thomson N, Allen MJ, Angiuoli SV, et al. The minimum information about a genome sequence (MIGS) specification. Nat Biotechnol. 2008;26(5):541–547. doi: 10.1038/nbt1360.
    1. Yilmaz P, Kottmann R, Field D, Knight R, Cole JR, Amaral-Zettler L, Gilbert JA, Karsch-Mizrachi I, Johnston A, Cochrane G, et al. Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x) sequence (MIxS) specifications. Nat Biotechnol. 2011;29(5):415–420. doi: 10.1038/nbt.1823.
    1. Oliveira FS, Brestelli J, Cade S, Zheng J, Iodice J, Fischer S, Aurrecoechea C, Kissinger JC, Brunk BP, Stoeckert CJ, Jr, et al. MicrobiomeDB: a systems biology platform for integrating, mining and analyzing microbiome experiments. Nucleic Acids Res. 2018;46(D1):D684–D691. doi: 10.1093/nar/gkx1027.
    1. Duvallet C, Gibbons SM, Gurry T, Irizarry RA, Alm EJ. Meta-analysis of gut microbiome studies identifies disease-specific and shared responses. Nat Commun. 2017;8(1):1784. doi: 10.1038/s41467-017-01973-8.
    1. Crane JK, Naeher TM, Broome JE, Boedeker EC. Role of host xanthine oxidase in infection due to enteropathogenic and Shiga-toxigenic Escherichia coli. Infect Immun. 2013;81(4):1129–1139. doi: 10.1128/IAI.01124-12.
    1. Crane JK. Role of host xanthine oxidase in infection due to enteropathogenic and Shiga-toxigenic Escherichia coli. Gut Microbes. 2013;4(5):388–391. doi: 10.4161/gmic.25584.
    1. Feng Q, Liang S, Jia H, Stadlmayr A, Tang L, Lan Z, Zhang D, Xia H, Xu X, Jie Z, et al. Gut microbiome development along the colorectal adenoma-carcinoma sequence. Nat Commun. 2015;6:6528. doi: 10.1038/ncomms7528.
    1. Nougayrede JP, Homburg S, Taieb F, Boury M, Brzuszkiewicz E, Gottschalk G, Buchrieser C, Hacker J, Dobrindt U, Oswald E. Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science. 2006;313(5788):848–851. doi: 10.1126/science.1127059.
    1. Marietta EV, Murray JA, Luckey DH, Jeraldo PR, Lamba A, Patel R, Luthra HS, Mangalam A, Taneja V. Suppression of inflammatory arthritis by human gut-derived Prevotella histicola in humanized mice. Arthritis Rheumatol. 2016;68(12):2878–2888. doi: 10.1002/art.39785.
    1. The Sixth Annual Workshop of the Clinical and Translational Science Ontology Group, Ann Arbor, MI, USA, October 25-27, 2017 [].
    1. Delahoy MJ, Omore R, Ayers TL, Schilling KA, Blackstock AJ, Ochieng JB, Moke F, Jaron P, Awuor A, Okonji C, et al. Clinical, environmental, and behavioral characteristics associated with Cryptosporidium infection among children with moderate-to-severe diarrhea in rural western Kenya, 2008-2012: the global enteric multicenter study (GEMS) PLoS Negl Trop Dis. 2018;12(7):e0006640. doi: 10.1371/journal.pntd.0006640.
    1. Kotloff KL, Blackwelder WC, Nasrin D, Nataro JP, Farag TH, van Eijk A, Adegbola RA, Alonso PL, Breiman RF, Faruque AS, et al. The Global Enteric Multicenter Study (GEMS) of diarrheal disease in infants and young children in developing countries: epidemiologic and clinical methods of the case/control study. Clin Infect Dis. 2012;55(Suppl 4):S232–S245. doi: 10.1093/cid/cis753.
    1. Huang da W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37(1):1–13. doi: 10.1093/nar/gkn923.
    1. Badal VD, Wright D, Katsis Y, Kim HC, Swafford AD, Knight R, Hsu CN. Challenges in the construction of knowledge bases for human microbiome-disease associations. Microbiome. 2019;7(1):129. doi: 10.1186/s40168-019-0742-2.

Source: PubMed

3
Iratkozz fel