Effect of Teriflunomide and Dimethyl Fumarate on Cortical Atrophy and Leptomeningeal Inflammation in Multiple Sclerosis: A Retrospective, Observational, Case-Control Pilot Study

Robert Zivadinov, Niels Bergsland, Ellen Carl, Deepa P Ramasamy, Jesper Hagemeier, Michael G Dwyer, Alexis A Lizarraga, Channa Kolb, David Hojnacki, Bianca Weinstock-Guttman, Robert Zivadinov, Niels Bergsland, Ellen Carl, Deepa P Ramasamy, Jesper Hagemeier, Michael G Dwyer, Alexis A Lizarraga, Channa Kolb, David Hojnacki, Bianca Weinstock-Guttman

Abstract

Background: Pathologic changes in cortical gray matter (GM) and leptomeninges contribute to disability worsening in patients with multiple sclerosis (MS), but there is little evidence whether disease-modifying treatments can slow down cortical pathology in MS. Objectives: To investigate the effect of teriflunomide (TFM) and dimethyl fumarate (DMF) in reducing cortical pathology, as determined by percentage cortical volume change (PCVC) and leptomeningeal contrast enhancement (LMCE) on MRI. Methods: This was a retrospective, single-center, observational study that selected 60 TFM- and 60 DMF-treated MS patients over 24 months. Results: TFM had a lower rate of PCVC compared to DMF over 24 months (-0.2% vs. -2.94%, p = 0.004). Similar results were observed for percentage GM volume change over 0⁻12 (p = 0.044) and 0⁻24 (-0.44% vs. -3.12%, p = 0.015) months. No significant differences were found between the TFM and DMF groups in the frequency and number of LMCE foci over the follow-up. TFM showed a numerically lower rate of whole brain atrophy over 24 months (p = 0.077), compared to DMF. No significant clinical or MRI lesion differences between TFM and DMF were detected over follow-up. Conclusions: These findings suggest that TFM has a superior effect on the preservation of cortical GM volume, compared to DMF.

Keywords: brain atrophy; cortical atrophy; dimethyl fumarate; leptomeningeal enhancement; multiple sclerosis; teriflunomide.

Conflict of interest statement

R.Z. received personal compensation from EMD Serono, Genzyme-Sanofi, Celgene and Novartis for speaking and consultant fees. He received financial support for research activities from Genzyme-Sanofi, Novartis, Celgene, Mapi Pharma and Protembis. N.B., E.C., D.P.R., J.H., M.G.D. and A.A.L. have nothing to disclose. C.K. has received speaker honoraria and consultant fees from EMD Serono, Teva Pharmaceuticals, Acorda, Novartis, Genzyme and Biogen-Idec. D.H. has received speaker honoraria and consultant fees from Biogen Idec, Teva Pharmaceutical Industries Ltd., EMD Serono, Pfizer Inc, and Novartis. B.W.-G. received honoraria as a speaker and as a consultant for Biogen Idec, EMD Serono, Novartis and Mallinckrodt. B.W.-G. received research funds from Biogen Idec, Teva Pharmaceuticals, EMD Serono, Genzyme & Sanofi, Novartis.

References

    1. Kutzelnigg A., Lucchinetti C.F., Stadelmann C., Bruck W., Rauschka H., Bergmann M., Schmidbauer M., Parisi J.E., Lassmann H. Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain. 2005;128:2705–2712. doi: 10.1093/brain/awh641.
    1. Absinta M., Vuolo L., Rao A., Nair G., Sati P., Cortese I.C., Ohayon J., Fenton K., Reyes-Mantilla M.I., Maric D., et al. Gadolinium-based MRI characterization of leptomeningeal inflammation in multiple sclerosis. Neurology. 2015;85:18–28. doi: 10.1212/WNL.0000000000001587.
    1. Serafini B., Rosicarelli B., Magliozzi R., Stigliano E., Aloisi F. Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol. 2004;14:164–174. doi: 10.1111/j.1750-3639.2004.tb00049.x.
    1. Zivadinov R., Ramasamy D.P., Vaneckova M., Gandhi S., Chandra A., Hagemeier J., Bergsland N., Polak P., Benedict R.H., Hojnacki D., et al. Leptomeningeal contrast enhancement is associated with progression of cortical atrophy in MS: A retrospective, pilot, observational longitudinal study. Mult. Scler. 2017;23:1336–1345. doi: 10.1177/1352458516678083.
    1. Harrison D.M., Wang K.Y., Fiol J., Naunton K., Royal W., 3rd, Hua J., Izbudak I. Leptomeningeal Enhancement at 7T in Multiple Sclerosis: Frequency, Morphology, and Relationship to Cortical Volume. J. Neuroimaging. 2017;27:461–468. doi: 10.1111/jon.12444.
    1. Calabrese M., Rinaldi F., Mattisi I., Bernardi V., Favaretto A., Perini P., Gallo P. The predictive value of gray matter atrophy in clinically isolated syndromes. Neurology. 2011;77:257–263. doi: 10.1212/WNL.0b013e318220abd4.
    1. Zivadinov R., Bergsland N., Dolezal O., Hussein S., Seidl Z., Dwyer M.G., Vaneckova M., Krasensky J., Potts J.A., Kalincik T., et al. Evolution of Cortical and Thalamus Atrophy and Disability Progression in Early Relapsing-Remitting MS during 5 Years. AJNR Am. J. Neuroradiol. 2013;34:1931–1939. doi: 10.3174/ajnr.A3503.
    1. Zivadinov R., Uher T., Hagemeier J., Vaneckova M., Ramasamy D.P., Tyblova M., Bergsland N., Seidl Z., Dwyer M.G., Krasensky J., et al. A serial 10-year follow-up study of brain atrophy and disability progression in RRMS patients. Mult. Scler. 2016;22:1709–1718. doi: 10.1177/1352458516629769.
    1. Fisher E., Lee J.C., Nakamura K., Rudick R.A. Gray matter atrophy in multiple sclerosis: A longitudinal study. Ann. Neurol. 2008;64:255–265. doi: 10.1002/ana.21436.
    1. Khan O., Rieckmann P., Boyko A., Selmaj K., Ashtamker N., Davis M.D., Kolodny S., Zivadinov R. Efficacy and safety of a three-times-weekly dosing regimen of glatiramer acetate in relapsing-remitting multiple sclerosis patients: 3-year results of the Glatiramer Acetate Low-Frequency Administration open-label extension study. Mult. Scler. 2017;23:818–829. doi: 10.1177/1352458516664033.
    1. Filippi M., Rocca M.A., Pagani E., De Stefano N., Jeffery D., Kappos L., Montalban X., Boyko A.N., Comi G., Group A.S. Placebo-controlled trial of oral laquinimod in multiple sclerosis: MRI evidence of an effect on brain tissue damage. J. Neurol. Neurosurg. Psychiatry. 2014;85:851–858. doi: 10.1136/jnnp-2013-306132.
    1. Yousuf F., Dupuy S.L., Tauhid S., Chu R., Kim G., Tummala S., Khalid F., Weiner H.L., Chitnis T., Healy B.C., et al. A two-year study using cerebral gray matter volume to assess the response to fingolimod therapy in multiple sclerosis. J. Neurol. Sci. 2017;383:221–229. doi: 10.1016/j.jns.2017.10.019.
    1. Zivadinov R., Bergsland N., Hagemeier J., Carl E., Kolb H., Hojnacki D., Weinstock-Guttman B. Effect of teriflunomide on gray and white matter brain pathology in multiple sclerosis using volumetric and diffusion-tensor imaging MRI measures. J. Neurol. Sci. 2018;388:175–181. doi: 10.1016/j.jns.2018.03.028.
    1. Gaetano L., Haring D.A., Radue E.W., Mueller-Lenke N., Thakur A., Tomic D., Kappos L., Sprenger T. Fingolimod effect on gray matter, thalamus, and white matter in patients with multiple sclerosis. Neurology. 2018;90:e1324–e1332. doi: 10.1212/WNL.0000000000005292.
    1. Bar-Or A. Teriflunomide (Aubagio(R)) for the treatment of multiple sclerosis. Pt AExp. Neurol. 2014;262:57–65. doi: 10.1016/j.expneurol.2014.06.005.
    1. Modica C.M., Schweser F., Sudyn M.L., Bertolino N., Preda M., Polak P., Siebert D.M., Krawiecki J.C., Sveinsson M., Hagemeier J., et al. Effect of teriflunomide on cortex-basal ganglia-thalamus (CxBGTh) circuit glutamatergic dysregulation in the Theiler’s Murine Encephalomyelitis Virus mouse model of multiple sclerosis. PLoS ONE. 2017;12:e0182729. doi: 10.1371/journal.pone.0182729.
    1. Pol S., Sveinsson M., Sudyn M., Babek N., Siebert D., Bertolino N., Modica C.M., Preda M., Schweser F., Zivadinov R. Teriflunomide’s Effect on Glia in Experimental Demyelinating Disease: A Neuroimaging and Histologic Study. J. Neuroimaging. 2019;29:52–61. doi: 10.1111/jon.12561.
    1. O’Connor P., Wolinsky J.S., Confavreux C., Comi G., Kappos L., Olsson T.P., Benzerdjeb H., Truffinet P., Wang L., Miller A., et al. Randomized trial of oral teriflunomide for relapsing multiple sclerosis. N. Engl. J. Med. 2011;365:1293–1303. doi: 10.1056/NEJMoa1014656.
    1. Confavreux C., O’Connor P., Comi G., Freedman M.S., Miller A.E., Olsson T.P., Wolinsky J.S., Bagulho T., Delhay J.L., Dukovic D., et al. Oral teriflunomide for patients with relapsing multiple sclerosis (TOWER): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Neurol. 2014;13:247–256. doi: 10.1016/S1474-4422(13)70308-9.
    1. Miller A.E., Wolinsky J.S., Kappos L., Comi G., Freedman M.S., Olsson T.P., Bauer D., Benamor M., Truffinet P., O’Connor P.W., et al. Oral teriflunomide for patients with a first clinical episode suggestive of multiple sclerosis (TOPIC): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Neurol. 2014;13:977–986. doi: 10.1016/S1474-4422(14)70191-7.
    1. Radue E.W., Sprenger T., Gaetano L., Mueller-Lenke N., Cavalier S., Thangavelu K., Panzara M.A., Donaldson J.E., Woodward F.M., Wuerfel J., et al. Teriflunomide slows BVL in relapsing MS: A reanalysis of the TEMSO MRI data set using SIENA. Neurol. Neuroimmunol. Neuroinflamm. 2017;4:e390. doi: 10.1212/NXI.0000000000000390.
    1. Zivadinov R., Dwyer M., Carl E., Thangavelu K., Cavalier S., Bergsland N. Evaluating the effect of teriflunomide on whole brain atrophy in the phase 3 TOPIC study; Proceedings of the 34th Congress of the European Committee for Treatment and Research in Multiple Sclerosis; Berlin, Germany. 10–12 October 2018; p. 870.
    1. Linker R.A., Gold R. Dimethyl fumarate for treatment of multiple sclerosis: Mechanism of action, effectiveness, and side effects. Curr. Neurol. Neurosci. Rep. 2013;13:394. doi: 10.1007/s11910-013-0394-8.
    1. Gold R., Kappos L., Arnold D.L., Bar-Or A., Giovannoni G., Selmaj K., Tornatore C., Sweetser M.T., Yang M., Sheikh S.I., et al. Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N. Engl. J. Med. 2012;367:1098–1107. doi: 10.1056/NEJMoa1114287.
    1. Fox R.J., Miller D.H., Phillips J.T., Hutchinson M., Havrdova E., Kita M., Yang M., Raghupathi K., Novas M., Sweetser M.T., et al. Placebo-controlled phase 3 study of oral BG-12 or glatiramer in multiple sclerosis. N. Engl. J. Med. 2012;367:1087–1097. doi: 10.1056/NEJMoa1206328.
    1. Arnold D.L., Gold R., Kappos L., Bar-Or A., Giovannoni G., Selmaj K., Yang M., Zhang R., Stephan M., Sheikh S.I., et al. Effects of delayed-release dimethyl fumarate on MRI measures in the Phase 3 DEFINE study. J. Neurol. 2014;261:1794–1802. doi: 10.1007/s00415-014-7412-x.
    1. Miller D.H., Fox R.J., Phillips J.T., Hutchinson M., Havrdova E., Kita M., Wheeler-Kingshott C.A., Tozer D.J., MacManus D.G., Yousry T.A., et al. Effects of delayed-release dimethyl fumarate on MRI measures in the phase 3 CONFIRM study. Neurology. 2015;84:1145–1152. doi: 10.1212/WNL.0000000000001360.
    1. Zivadinov R., Kresa-Reahl K., Weinstock-Guttman B., Edwards K., Burudpakdee C., Bergsland N., Dwyer M., Khatri B., Thangavelu K., Chavin J., et al. Comparative effectiveness of teriflunomide and dimethyl fumarate in patients with relapsing forms of MS in the retrospective real-world Teri-RADAR study. J. Comp. Effect. 2019 doi: 10.2217/cer-2018-0135.
    1. Polman C.H., Reingold S.C., Banwell B., Clanet M., Cohen J.A., Filippi M., Fujihara K., Havrdova E., Hutchinson M., Kappos L., et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann. Neurol. 2011;69:292–302. doi: 10.1002/ana.22366.
    1. Polak P., Magnano C., Zivadinov R., Poloni G. 3D FLAIRED: 3D fluid attenuated inversion recovery for enhanced detection of lesions in multiple sclerosis. Magn. Reson. Med. 2012;68:874–881. doi: 10.1002/mrm.23289.
    1. Smith S.M., Zhang Y., Jenkinson M., Chen J., Matthews P.M., Federico A., De Stefano N. Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. Neuroimage. 2002;17:479–489. doi: 10.1006/nimg.2002.1040.
    1. Gelineau-Morel R., Tomassini V., Jenkinson M., Johansen-Berg H., Matthews P.M., Palace J. The effect of hypointense white matter lesions on automated gray matter segmentation in multiple sclerosis. Hum. Brain Mapp. 2012;33:2802–2814. doi: 10.1002/hbm.21402.
    1. Patenaude B., Smith S.M., Kennedy D.N., Jenkinson M. A Bayesian model of shape and appearance for subcortical brain segmentation. Neuroimage. 2011;56:907–922. doi: 10.1016/j.neuroimage.2011.02.046.
    1. Dwyer M.G., Bergsland N., Zivadinov R. Improved longitudinal gray and white matter atrophy assessment via application of a 4-dimensional hidden Markov random field model. Neuroimage. 2014;90:207–217. doi: 10.1016/j.neuroimage.2013.12.004.
    1. Vrenken H., Vos E.K., van der Flier W.M., Sluimer I.C., Cover K.S., Knol D.L., Barkhof F. Validation of the automated method VIENA: An accurate, precise, and robust measure of ventricular enlargement. Hum. Brain Mapp. 2014;35:1101–1110. doi: 10.1002/hbm.22237.
    1. Zivadinov R., Ramasamy D.P., Hagemeier J., Kolb C., Bergsland N., Schweser F., Dwyer M.G., Weinstock-Guttman B., Hojnacki D. Evaluation of Leptomeningeal Contrast Enhancement Using Pre-and Postcontrast Subtraction 3D-FLAIR Imaging in Multiple Sclerosis. AJNR Am. J. Neuroradiol. 2018;39:642–647. doi: 10.3174/ajnr.A5541.
    1. Zivadinov R., Dwyer M., Carl E., Thangavelu K., Cavalier S., Bergsland N. Evaulating the effect of teriflunomide on cortical gray matter atrophy in Phase 3 TOPIC study; Proceedings of the 69th Annual Meeting of American Academy of Neurology; Boston, MA, USA. 22–28 April 2017; p. 1481.
    1. Zivadinov R., Cerza N., Hagemeier J., Carl E., Badgett D., Ramasamy D.P., Weinstock-Guttman B., Ramanathan M. Humoral response to EBV is associated with cortical atrophy and lesion burden in patients with, M.S. Neurol. Neuroimmunol. Neuroinflamm. 2016;3:e190. doi: 10.1212/NXI.0000000000000190.
    1. Zivadinov R., Weinstock-Guttman B., Hagemeier J., Kolb C., Modi N., Carl J., Bergsland N., Ramasamy D., Durfee J., Ramanathan M. Teriflunomide (Aubagio®) effect on gray matter pathology in multiple sclerosis is associated with the change in humoral response to Epstein-Barr Virus; Proceedings of the 32nd Congress of the European Committee for Treatment and Research in Multiple Sclerosis; London, UK. 14–17 September 2016; p. 1140.
    1. Bilger A., Plowshay J., Ma S., Nawandar D., Barlow E.A., Romero-Masters J.C., Bristol J.A., Li Z., Tsai M.H., Delecluse H.J., et al. Leflunomide/teriflunomide inhibit Epstein-Barr virus (EBV)- induced lymphoproliferative disease and lytic viral replication. Oncotarget. 2017;8:44266–44280. doi: 10.18632/oncotarget.17863.
    1. Zivadinov R., Reder A.T., Filippi M., Minagar A., Stuve O., Lassmann H., Racke M.K., Dwyer M.G., Frohman E.M., Khan O. Mechanisms of action of disease-modifying agents and brain volume changes in multiple sclerosis. Neurology. 2008;71:136–144. doi: 10.1212/01.wnl.0000316810.01120.05.
    1. Portaccio E., Stromillo M.L., Goretti B., Hakiki B., Giorgio A., Rossi F., De Leucio A., De Stefano N., Amato M.P. Natalizumab may reduce cognitive changes and brain atrophy rate in relapsing-remitting multiple sclerosis—A prospective, non-randomized pilot study. Eur. J. Neurol. 2013;20:986–990. doi: 10.1111/j.1468-1331.2012.03882.x.
    1. Sastre-Garriga J., Tur C., Pareto D., Vidal-Jordana A., Auger C., Rio J., Huerga E., Tintore M., Rovira A., Montalban X. Brain atrophy in natalizumab-treated patients: A 3-year follow-up. Mult. Scler. 2014;21:749–756. doi: 10.1177/1352458514556300.
    1. Vidal-Jordana A., Sastre-Garriga J., Perez-Miralles F., Tur C., Tintore M., Horga A., Auger C., Rio J., Nos C., Edo M.C., et al. Early brain pseudoatrophy while on natalizumab therapy is due to white matter volume changes. Mult. Scler. 2013;19:1175–1181. doi: 10.1177/1352458512473190.
    1. Zivadinov R., Jakimovski D., Gandhi S., Ahmed R., Dwyer M.G., Horakova D., Weinstock-Guttman B., Benedict R.R., Vaneckova M., Barnett M., et al. Clinical relevance of brain atrophy assessment in multiple sclerosis. Implications for its use in a clinical routine. Expert Rev. Neurother. 2016;16:1–17. doi: 10.1080/14737175.2016.1181543.
    1. Weideman A.M., Tapia-Maltos M.A., Johnson K., Greenwood M., Bielekova B. Meta-analysis of the Age-Dependent Efficacy of Multiple Sclerosis Treatments. Front. Neurol. 2017;8:577. doi: 10.3389/fneur.2017.00577.
    1. Opfer R., Ostwaldt A.C., Sormani M.P., Gocke C., Walker-Egger C., Manogaran P., De Stefano N., Schippling S. Estimates of age-dependent cutoffs for pathological brain volume loss using SIENA/FSL-a longitudinal brain volumetry study in healthy adults. Neurobiol. Aging. 2018;65:1–6. doi: 10.1016/j.neurobiolaging.2017.12.024.
    1. Schippling S., Ostwaldt A.C., Suppa P., Spies L., Manogaran P., Gocke C., Huppertz H.J., Opfer R. Global and regional annual brain volume loss rates in physiological aging. J. Neurol. 2017;264:520–528. doi: 10.1007/s00415-016-8374-y.
    1. D’Amico E., Zanghi A., Callari G., Borriello G., Gallo A., Graziano G., Valentino P., Buccafusca M., Cottone S., Salemi G., et al. Comparable efficacy and safety of dimethyl fumarate and teriflunomide treatment in Relapsing-Remitting Multiple Sclerosis: An Italian real-word multicenter experience. Ther. Adv. Neurol. Disord. 2018;11:1756286418796404. doi: 10.1177/1756286418796404.
    1. Kalincik T., Kubala Havrdova E., Horakova D., Izquierdo G., Prat A., Girard M., Duquette P., Grammond P., Onofrj M., Lugaresi A., et al. Comparison of fingolimod, dimethyl fumarate and teriflunomide for multiple sclerosis. J. Neurol. Neurosurg. Psychiatry. 2019 doi: 10.1136/jnnp-2018-319831.
    1. Braune S., Grimm S., van Hovell P., Freudensprung U., Pellegrini F., Hyde R., Bergmann A., Group NTDS Comparative effectiveness of delayed-release dimethyl fumarate versus interferon, glatiramer acetate, teriflunomide, or fingolimod: Results from the German NeuroTransData registry. J. Neurol. 2018;265:2980–2992. doi: 10.1007/s00415-018-9083-5.
    1. Conde S., Moisset X., Pereira B., Zuel M., Colamarino R., Maillet-Vioud M., Lauxerois M., Taithe F., Clavelou P. Reseau Neuro SEPA. Dimethyl fumarate and teriflunomide for multiple sclerosis in a real-life setting: A French retrospective cohort study. Eur. J. Neurol. 2018 doi: 10.1111/ene.13839.
    1. D’Amico E., Zanghi A., Sciandra M., Borriello G., Callari G., Gallo A., Salemi G., Cottone S., Buccafusca M., Valentino P., et al. Discontinuation of teriflunomide and dimethyl fumarate in a large Italian multicentre population: A 24-month real-world experience. J. Neurol. 2018;266:411–416. doi: 10.1007/s00415-018-9144-9.

Source: PubMed

3
Iratkozz fel