Intra-operative assessment of the vascularisation of a cross section of the meniscus using near-infrared fluorescence imaging

Peter van Schie, Thies J N van der Lelij, Maxime Gerritsen, Ruben P J Meijer, Ewoud R A van Arkel, Marta Fiocco, Jan-Willem A Swen, Alexander L Vahrmeijer, Hans Marten Hazelbag, Stijn Keereweer, Pieter B A A van Driel, Peter van Schie, Thies J N van der Lelij, Maxime Gerritsen, Ruben P J Meijer, Ewoud R A van Arkel, Marta Fiocco, Jan-Willem A Swen, Alexander L Vahrmeijer, Hans Marten Hazelbag, Stijn Keereweer, Pieter B A A van Driel

Abstract

Purpose: The purpose of this study was to assess whether the vascularisation of the meniscus could be visualised intra-operatively using near-infrared fluorescence (NIRF) imaging with indocyanine green (ICG) in patients undergoing total knee arthroplasty (TKA).

Methods: The anterior horn (i.e., Cooper classification: zones C and D) of the meniscus that was least affected (i.e., least degenerative) was removed during TKA surgery in ten patients to obtain a cross section of the inside of the meniscus. Thereafter, 10 mg of ICG was injected intravenously, and vascularisation of the cross section of the meniscus was assessed using the Quest spectrum NIRF camera system. We calculated the percentage of patients in whom vascularisation was observed intra-operatively using NIRF imaging compared to immunohistochemistry.

Results: Meniscal vascularisation using NIRF imaging was observed in six out of eight (75%) patients in whom vascularisation was demonstrated with immunohistochemistry. The median extent of vascularisation was 13% (interquartile range (IQR) 3-28%) using NIRF imaging and 15% (IQR 11-23%) using immunohistochemistry.

Conclusion: This study shows the potential of NIRF imaging to visualise vascularisation of the meniscus, as vascularisation was observed in six out of eight patients with histologically proven meniscal vascularisation.

Level of evidence: IV.

Keywords: Indocyanine green; Intraoperative imaging; Meniscal vascularisation; Near-infrared fluorescence imaging; Total Knee Arthroplasty.

Conflict of interest statement

The authors declare that they have no conflict of interest.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
Schematic drawing of the human meniscus demonstrating the different vascular zone
Fig. 2
Fig. 2
Overview of the NIRF-imaging setup
Fig. 3
Fig. 3
Measurements on intra-operative images of the meniscus
Fig. 4
Fig. 4
Intra-operative imaging
Fig. 5
Fig. 5
Immunohistochemistry of the meniscus

References

    1. Alander JT, Kaartinen I, Laakso A, Pätilä T, Spillmann T, Tuchin VV, et al. A review of indocyanine green fluorescent imaging in surgery. Int J Biomed Imaging. 2012;2012:940585. doi: 10.1155/2012/940585.
    1. Arnoczky SP, Warren RF. Microvasculature of the human meniscus. Am J Sports Med. 1982;10:90–95. doi: 10.1177/036354658201000205.
    1. Boni L, David G, Mangano A, Dionigi G, Rausei S, Spampatti S, et al. Clinical applications of indocyanine green (ICG) enhanced fluorescence in laparoscopic surgery. Surg Endosc. 2015;29:2046–2055. doi: 10.1007/s00464-014-3895-x.
    1. Clark CR, Ogden JA. Development of the menisci of the human knee joint. Morphological changes and their potential role in childhood meniscal injury. J Bone Jt Surg Am. 1983;65:538–547. doi: 10.2106/00004623-198365040-00018.
    1. Cooper DE, Arnoczky SP, Warren RF. Meniscal repair. Clin Sports Med. 1991;10:529–548. doi: 10.1016/S0278-5919(20)30608-6.
    1. Crawford MD, Hellwinkel JE, Aman Z, Akamefula R, Singleton JT, Bahney C, et al. Microvascular anatomy and intrinsic gene expression of menisci from young adults. Am J Sports Med. 2020;48:3147–3153. doi: 10.1177/0363546520961555.
    1. Danzig L, Resnick D, Gonsalves M, Akeson WH. Blood supply to the normal and abnormal menisci of the human knee. Clin Orthop Relat Res. 1983;172:271–276. doi: 10.1097/00003086-198301000-00043.
    1. Doi N, Izaki T, Miyake S, Shibata T, Ishimatsu T, Shibata Y, et al. Intraoperative evaluation of blood flow for soft tissues in orthopaedic surgery using indocyanine green fluorescence angiography: a pilot study. Bone Jt Res. 2019;8:118–125. doi: 10.1302/2046-3758.83.BJR-2018-0151.R1.
    1. Keereweer S, Van Driel PB, Snoeks TJ, Kerrebijn JD, Baatenburg de Jong RJ, Vahrmeijer AL, et al. Optical image-guided cancer surgery: challenges and limitations. Clin Cancer Res. 2013;19:3745–3754. doi: 10.1158/1078-0432.CCR-12-3598.
    1. Kopf S, Beaufils P, Hirschmann MT, Rotigliano N, Ollivier M, Pereira H, et al. Management of traumatic meniscus tears: the 2019 ESSKA meniscus consensus. Knee Surg Sports Traumatol Arthrosc. 2020;28:1177–1194. doi: 10.1007/s00167-020-05847-3.
    1. Nepple JJ, Dunn WR, Wright RW. Meniscal repair outcomes at greater than five years: a systematic literature review and meta-analysis. J Bone Jt Surg Am. 2012;94:2222–2227. doi: 10.2106/JBJS.K.01584.
    1. Paxton ES, Stock MV, Brophy RH. Meniscal repair versus partial meniscectomy: a systematic review comparing reoperation rates and clinical outcomes. Arthroscopy. 2011;27:1275–1288. doi: 10.1016/j.arthro.2011.03.088.
    1. Taylor R. Interpretation of the correlation coefficient: a basic review. JDSM. 1990;6:35–39.
    1. Tsujii A, Amano H, Tanaka Y, Kita K, Uchida R, Shiozaki Y, et al. Second look arthroscopic evaluation of repaired radial/oblique tears of the midbody of the lateral meniscus in stable knees. J Orthop Sci. 2018;23:122–126. doi: 10.1016/j.jos.2017.09.023.
    1. Vahrmeijer AL, Hutteman M, van der Vorst JR, van de Velde CJ, Frangioni JV. Image-guided cancer surgery using near-infrared fluorescence. Nat Rev Clin Oncol. 2013;10:507–518. doi: 10.1038/nrclinonc.2013.123.
    1. van den Bos J, Al-Taher M, Schols RM, van Kuijk S, Bouvy ND, Stassen LPS. Near-infrared fluorescence imaging for real-time intraoperative guidance in anastomotic colorectal surgery: a systematic review of literature. J Laparoendosc Adv Surg Tech A. 2018;28:157–167. doi: 10.1089/lap.2017.0231.
    1. van den Hoven P, Ooms S, van Manen L, van der Bogt KEA, van Schaik J, Hamming JF, et al. A systematic review of the use of near-infrared fluorescence imaging in patients with peripheral artery disease. J Vasc Surg. 2019;70:286–297.e281. doi: 10.1016/j.jvs.2018.11.023.
    1. van der Vorst JR, Schaafsma BE, Hutteman M, Verbeek FP, Liefers GJ, Hartgrink HH, et al. Near-infrared fluorescence-guided resection of colorectal liver metastases. Cancer. 2013;119:3411–3418. doi: 10.1002/cncr.28203.
    1. van Driel PB, van de Giessen M, Boonstra MC, Snoeks TJ, Keereweer S, Oliveira S, et al. Characterization and evaluation of the artemis camera for fluorescence-guided cancer surgery. Mol Imaging Biol. 2015;17:413–423. doi: 10.1007/s11307-014-0799-z.
    1. van Manen L, Handgraaf HJM, Diana M, Dijkstra J, Ishizawa T, Vahrmeijer AL, et al. A practical guide for the use of indocyanine green and methylene blue in fluorescence-guided abdominal surgery. J Surg Oncol. 2018;118:283–300. doi: 10.1002/jso.25105.
    1. Vaquero-Picado A, Rodríguez-Merchán EC. Arthroscopic repair of the meniscus: surgical management and clinical outcomes. EFORT Open Rev. 2018;3:584–594. doi: 10.1302/2058-5241.3.170059.
    1. Woodmass JM, LaPrade RF, Sgaglione NA, Nakamura N, Krych AJ. Meniscal repair: reconsidering indications, techniques, and biologic augmentation. J Bone Jt Surg Am. 2017;99:1222–1231. doi: 10.2106/JBJS.17.00297.
    1. Zhu B, Sevick-Muraca EM. A review of performance of near-infrared fluorescence imaging devices used in clinical studies. Br J Radiol. 2015;88:20140547. doi: 10.1259/bjr.20140547.

Source: PubMed

3
Iratkozz fel