Questa pagina è stata tradotta automaticamente e l'accuratezza della traduzione non è garantita. Si prega di fare riferimento al Versione inglese per un testo di partenza.

The Role of Cerebellar Hyperactivity in Parkinson's Disease

1 ottobre 2018 aggiornato da: Amy J. Bastian, Ph.D., Hugo W. Moser Research Institute at Kennedy Krieger, Inc.

Stimulating the Little Brain to Make Big Steps: Improving Gait in Parkinson's Disease Patients by Non-invasive Electrical Stimulation of the Cerebellum.

Gait and balance disturbances are one of the most incapacitating symptoms of Parkinson's disease (PD) (Boonstra et al. 2008). They can cause falls and are therefore associated with the negative spiral of (near) falls, fear of falling, fractures, reduced mobility and social isolation; hence, having a profound negative impact on quality of life (Lin et al. 2012). Originally, symptoms of PD were ascribed to dopamine deficiency and basal ganglia dysfunction (Wu et al. 2013). However, in the last decades it has become clear that other brain structures are also involved in the pathophysiology of PD (Snijders et al. 2011; Stefani et al. 2007). An intriguing, emerging insight is that the cerebellum may be involved in the pathophysiology of PD (Wu et al. 2013). That is, the cerebellum is hyperactive in PD patients during different motor tasks (Yu et al. 2007; Hanakawa et al. 1999; del Olmo et al. 2006). However, whether cerebellar hyperactivity is pathological or compensatory and how it affects gait and balance in PD patients remain open questions. Here, the investigators aim to elucidate the role of the hyperactive cerebellum in gait dysfunction in PD patients by modulating cerebellar excitability with state-of-the-art non-invasive brain stimulation techniques and investigate the effects on gait.

Panoramica dello studio

Stato

Completato

Condizioni

Descrizione dettagliata

The cerebellum plays an important role in generating well-coordinated locomotion, voluntary limb movements and eye movements (Morton et al. 2004). It is particularly important for balance and limb coordination needed to generate a stable gait pattern (Morton et al. 2006). Specific roles of the cerebellum for gait include coordinating the two legs to produce a stable rhythmic pattern, dynamic regulation of balance, and adaptation of the pattern through practice (Morton et al. 2004). Though the core deficits of PD patients are largely different than those of cerebellar patients, they do show decreased bilateral coordination (Plotnik et al. 2008) and a fundamental disturbance in stride length regulation (Morris et al. 1998) during walking.

Recent work has shown that the cerebellum is hyperactive in PD patients, though it is not known whether this activity is compensatory (i.e. reduces motor impairments) or pathological (i.e. causes motor impairments). One idea is that increased cerebellar activity, affecting cerebral motor areas, compensates for the reduced drive from the basal ganglia (Wu et al. 2013). Alternatively, it is possible that cerebellar hyperactivity is pathological, as recent work suggests that cerebellar activity may be partially responsible for the generation of Parkinsonian tremor (Helmich et al. 2012). One approach to answer this question is to use non-invasive brain stimulation techniques to decrease the activity of the cerebellum in PD patients and determine if they improve or worsen their gait pattern.

Non-invasive brain stimulation techniques, such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) are able to alter the excitability of brain pathways. Applying these techniques over the motor cortex, improved motor function in different patient groups, including stroke and PD (Benninger et al. 2010). Only two studies have investigated the effect of modulation of cerebellar-motor cortex excitability on motor function in PD patients. That is, 1 Hz repetitive TMS (inhibitory rTMS) over the cerebellum improved gross arm movements, but worsened fine motor skills17. Furthermore, a two-week continuous theta burst stimulation TMS protocol decreased levodopa-induced dyskinesias (Koch et al. 2009). These studies only investigated the effects on the upper extremities. The cerebellum is also hyperactive during gait (Hanakawa et al. 1999; del Olmo et al. 2006), but whether modulation of cerebellar excitability can improve gait deficits in PD patients is currently unknown.

Non-invasive brain stimulation can also be used to study the connection between the cerebellum and the motor cortex via using paired-pulse TMS. Specifically, cerebellar stimulation 5 ms before motor cortex stimulation leads to a reduction in the amplitude of motor-evoked potentials (MEPs), a phenomenon referred to as cerebellar-brain inhibition (CBI) (Pinto et al. 2001). This measure of CBI is abnormal in PD patients-it is reduced at rest, but increases with muscle contraction (Ni et al. 2010).

Gait impairments in PD are often resistant to treatment, particularly as the disease progresses. Therefore, insight in the pathophysiology of gait disturbances is essential for improving treatment options and quality of life for PD patients. This study will answer the question of whether cerebellar hyperactivity alleviates or worsens gait deficits in PD patients. If cerebellar hyperactivity in PD is compensatory, anodal (i.e. excitatory) tDCS should improve gait in PD patients, whereas cathodal (i.e. inhibitory) tDCS will make matters worse. In contrast, if cerebellar hyperactivity is pathological, cathodal tDCS will improve gait and anodal tDCS will worsen it. Hence, this study will improve the fundamental understanding of gait pathophysiology in PD patients. The investigators will focus on the aspects of gait that are particularly affected in PD and associated with fall risk, such as stride length and gait speed (Paul et al. 2013). In this way, this study may identify the cerebellum as a potential new target for treatment, opening up new possibilities improving gait and balance disturbances in PD.

Tipo di studio

Osservativo

Iscrizione (Effettivo)

11

Contatti e Sedi

Questa sezione fornisce i recapiti di coloro che conducono lo studio e informazioni su dove viene condotto lo studio.

Luoghi di studio

    • Maryland
      • Baltimore, Maryland, Stati Uniti, 21211
        • Kennedy Krieger Institute

Criteri di partecipazione

I ricercatori cercano persone che corrispondano a una certa descrizione, chiamata criteri di ammissibilità. Alcuni esempi di questi criteri sono le condizioni generali di salute di una persona o trattamenti precedenti.

Criteri di ammissibilità

Età idonea allo studio

18 anni e precedenti (Adulto, Adulto più anziano)

Accetta volontari sani

No

Sessi ammissibili allo studio

Tutto

Metodo di campionamento

Campione di probabilità

Popolazione di studio

People with Parkinson's disease

Descrizione

Inclusion Criteria:

  • Mild-moderate (Hoehn and Yahr scale: 1.5-3) idiopathic, akinetic-rigid type Parkinson's disease.
  • Capable of walking for 5 minutes.

Exclusion Criteria:

  • Severe dyskinesia
  • Congestive heart failure.
  • Peripheral artery disease with claudication.
  • Cancer. Pulmonary or renal failure. Unstable angina. Uncontrolled hypertension (> 190/110 mmHg). Brain injury. History of seizure or a family history of epilepsy. Metal anywhere in the head except the mouth. Cardiac pacemakers. Cochlear implants. Implanted medication pump. Heart disease. Intracardiac lines. Increased intracranial pressure, such as after infarctions or trauma. Currently taking tricyclic anti-depressants or neuroleptic medication. History of head trauma. History of respiratory disease. Dementia (Montreal Cognitive Assessment < 26; Frontal Assessment Battery < 13). Orthopedic or pain conditions. Pregnancy.

Piano di studio

Questa sezione fornisce i dettagli del piano di studio, compreso il modo in cui lo studio è progettato e ciò che lo studio sta misurando.

Come è strutturato lo studio?

Dettagli di progettazione

Cosa sta misurando lo studio?

Misure di risultato primarie

Misura del risultato
Misura Descrizione
Lasso di tempo
Change in Gait Speed- Sham_On
Lasso di tempo: One session
Change in overground walking speed (10 meter walk test) after Sham transcranial direct current stimulation, participants on medication.
One session
Change in Gait Speed- Sham_Off
Lasso di tempo: One session
Change in overground walking speed (10 meter walk test) after Sham transcranial direct current stimulation, participants off medication.
One session
Change in Gait Speed- Anodal_On
Lasso di tempo: One session
Change in overground walking speed (10 meter walk test) after Anodal transcranial direct current stimulation, participants on medication.
One session
Change in Gait Speed- Anodal_Off
Lasso di tempo: One session
Change in overground walking speed (10 meter walk test) after Anodal transcranial direct current stimulation, participants off medication.
One session
Change in Gait Speed- Cathodal_On
Lasso di tempo: One session
Change in overground walking speed (10 meter walk test) after Cathodal transcranial direct current stimulation, participants on medication.
One session
Change in Gait Speed- Cathodal_Off
Lasso di tempo: One session
Change in overground walking speed (10 meter walk test) after cathodal transcranial direct current stimulation, participants off medication.
One session

Collaboratori e investigatori

Qui è dove troverai le persone e le organizzazioni coinvolte in questo studio.

Investigatori

  • Investigatore principale: Amy Bastian, PT, PhD, Hugo W. Moser Research Institute at Kennedy Krieger, Inc.

Studiare le date dei record

Queste date tengono traccia dell'avanzamento della registrazione dello studio e dell'invio dei risultati di sintesi a ClinicalTrials.gov. I record degli studi e i risultati riportati vengono esaminati dalla National Library of Medicine (NLM) per assicurarsi che soddisfino specifici standard di controllo della qualità prima di essere pubblicati sul sito Web pubblico.

Studia le date principali

Inizio studio (Effettivo)

28 gennaio 2015

Completamento primario (Effettivo)

4 ottobre 2016

Completamento dello studio

1 settembre 2017

Date di iscrizione allo studio

Primo inviato

26 gennaio 2015

Primo inviato che soddisfa i criteri di controllo qualità

26 gennaio 2015

Primo Inserito (Stima)

29 gennaio 2015

Aggiornamenti dei record di studio

Ultimo aggiornamento pubblicato (Effettivo)

15 febbraio 2019

Ultimo aggiornamento inviato che soddisfa i criteri QC

1 ottobre 2018

Ultimo verificato

1 dicembre 2017

Maggiori informazioni

Queste informazioni sono state recuperate direttamente dal sito web clinicaltrials.gov senza alcuna modifica. In caso di richieste di modifica, rimozione o aggiornamento dei dettagli dello studio, contattare register@clinicaltrials.gov. Non appena verrà implementata una modifica su clinicaltrials.gov, questa verrà aggiornata automaticamente anche sul nostro sito web .

3
Sottoscrivi