Casein and Whey Protein in the Breast Milk Ratio: Could It Promote Protein Metabolism Enhancement in Physically Active Adults?

Bryan S Martinez Galan, Flavia Giolo De Carvalho, Simone C S Carvalho, Camila F Cunha Brandao, Sara I Morhy Terrazas, Gabriela Ferreira Abud, Monica S S Meirelles, Simone Sakagute, Gabriela Ueta Ortiz, Julio S Marchini, Juan C Aristizabal, Ellen Cristini de Freitas, Bryan S Martinez Galan, Flavia Giolo De Carvalho, Simone C S Carvalho, Camila F Cunha Brandao, Sara I Morhy Terrazas, Gabriela Ferreira Abud, Monica S S Meirelles, Simone Sakagute, Gabriela Ueta Ortiz, Julio S Marchini, Juan C Aristizabal, Ellen Cristini de Freitas

Abstract

Due to the utilization of milk proteins such as whey protein (WP) and casein as sports nutrition ergogenic aids, the present study investigated the effects of the association of WP and casein in a ratio of 80:20, a similar ratio of human breast milk, on blood branched-chain amino acid (BCAA) profiles, markers of protein metabolism and delayed onset muscle soreness (DOMS), after a single bout of resistance exercise. A double-blind, crossover and acute study was carried out with ten men (age 29 ± 8 years; BMI: 25.4 ± 2.9 kg/m2; 77 ± 12 kg; 1.74 ± 0.09 m); each one consumed the following supplements randomly, one per session: WP, CAS (casein), WP/CAS (80% WP/20% CAS), CAS/WP (80% CAS/20% WP) and PLA (placebo). They were also subjected to the following evaluations: the one repetition maximum (1RM) test; resistance training session; blood extraction during each session to determine the BCAA profile; two food records; 3-day evaluation of DOMS (24 h, 48 h and 72 h) and nitrogen balance in each treatment. The intervention resulted in similar nitrogen urinary, creatinine and urea plasma levels and showed a positive nitrogen balance in all the trials. Regarding the BCAAs, the peak occurred at 60 min post-ingestion and remained higher until 120 min for WP, WP/CAS and CAS/WP. The DOMS was significantly lower for WP, WP/CAS and CAS/WP compared to the CAS and PLA treatments. There were no advantages in the association of WP and CAS in the BCAAs profile when compared to WP itself, but it induced a lower DOMS compared to CAS and PLA (Clinical Trial registration number: clinicaltrials.gov, NCT04648384).

Keywords: DOMS; amino acids profile; nitrogen balance; resistance exercise.

Conflict of interest statement

The authors B.S.M.G., F.G.D.C., S.C.S.C., C.F.C.B., G.A., S.I.M.T., M.S.S.M., S.S., G.U.O., J.S.M., J.C.A., and E.C.d.F. declare that they have no conflict of interest.

Figures

Figure 1
Figure 1
Protocol used during the experiment period. An acute, randomized, and double-blind trial. 1RM: One (1) maximum repetition; DOMS: Delayed onset muscle soreness assessment. Washout: a period of at least of one week.
Figure 2
Figure 2
Delayed Onset Muscle Soreness (DOMS) post-treatments. (A) Down the stairs and (B) sitting. 0 immediately, 24 h, 48 h, and 72 h after the exercise protocol. a.u: Arbitrary Units. Values expressed as the mean ± SEM. * Significant differences between 0 h and 24 h, $ significant differences between PLA–WP/CAS and PLA–WP, # significant differences between 24 h and 72 h, and + significant differences between 48 h and 72 h. Significance level considered p < 0.05. n = 10. WP: Whey protein, CAS: casein. WP/CAS: 80% whey protein/20% casein. CAS/WP: 80% casein/20% whey protein. PLA: Placebo.

References

    1. Melnik B.C. Milk signalling in the pathogenesis of type 2 diabetes. Med. Hypotheses. 2011;76:553–559. doi: 10.1016/j.mehy.2010.12.017.
    1. Carpinelli A.R., Curi R., Malaisse W.J. Long-term regulation of pancreatic B-cell responsiveness to D-glucose by food availability, feeding schedule, and diet composition. Physiol. Behav. 1992;52:1193–1196. doi: 10.1016/0031-9384(92)90481-G.
    1. Kwon G., Marshall C.A., Pappan K.L., Remedi M.S., McDaniel M.L. Signaling elements involved in the metabolic regulation of mTOR by nutrients, incretins, and growth factors in islets. Diabetes. 2004;53(Suppl. 3):S225–S232. doi: 10.2337/diabetes.53.suppl_3.S225.
    1. Devries M.C., Phillips S.M. Supplemental protein in support of muscle mass and health: Advantage whey. J. Food Sci. 2015;80(Suppl. 1):A8–A15. doi: 10.1111/1750-3841.12802.
    1. Morton R.W., Murphy K.T., McKellar S.R., Schoenfeld B.J., Henselmans M., Helms E., Aragon A.A., Devries M.C., Banfield L., Krieger J.W., et al. A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults. Br. J. Sports Med. 2018;52:376–384. doi: 10.1136/bjsports-2017-097608.
    1. Huecker M., Sarav M., Pearlman M., Laster J. Protein Supplementation in Sport: Source, Timing, and Intended Benefits. Curr. Nutr. Rep. 2019;8:382–396. doi: 10.1007/s13668-019-00293-1.
    1. Boirie Y., Guillet C. Fast digestive proteins and sarcopenia of aging. Curr. Opin. Clin. Nutr. Metab. Care. 2018;21:37–41. doi: 10.1097/MCO.0000000000000427.
    1. Campbell B., Kreider R.B., Ziegenfuss T., La Bounty P., Roberts M., Burke D., Landis J., Lopez H., Antonio J. International Society of Sports Nutrition position stand: Protein and exercise. J. Int. Soc. Sports Nutr. 2007;4:8. doi: 10.1186/1550-2783-4-8.
    1. Kreider R.B., Earnest C.P., Lundberg J., Rasmussen C., Greenwood M., Cowan P., Almada A.L. Effects of ingesting protein with various forms of carbohydrate following resistance-exercise on substrate availability and markers of anabolism, catabolism, and immunity. J. Int. Soc. Sports Nutr. 2007;4:18. doi: 10.1186/1550-2783-4-18.
    1. Hayes A., Cribb P.J. Effect of whey protein isolate on strength, body composition and muscle hypertrophy during resistance training. Curr. Opin. Clin. Nutr. Metab. Care. 2008;11:40–44. doi: 10.1097/MCO.0b013e3282f2a57d.
    1. Jäger R., Kerksick C.M., Campbell B.I., Cribb P.J., Wells S.D., Skwiat T.M., Purpura M., Ziegenfuss T.N., Ferrando A.A., Arent S.M., et al. International Society of Sports Nutrition Position Stand: Protein and exercise. J. Int. Soc. Sports Nutr. 2017;14:20. doi: 10.1186/s12970-017-0177-8.
    1. Wilborn C.D., Taylor L.W., Outlaw J., Williams L., Campbell B., Foster C.A., Smith-Ryan A., Urbina S., Hayward S. The Effects of Pre- and Post-Exercise Whey vs. Casein Protein Consumption on Body Composition and Performance Measures in Collegiate Female Athletes. J. Sports Sci. Med. 2013;12:74–79. doi: 10.1249/01.MSS.0000386243.94827.4e.
    1. Heavens K.R., Szivak T.K., Hooper D.R., Dunn-Lewis C., Comstock B.A., Flanagan S.D., Looney D.P., Kupchak B.R., Maresh C.M., Volek J.S., et al. The effects of high intensity short rest resistance exercise on muscle damage markers in men and women. J. Strength Cond. Res. 2014;28:1041–1049. doi: 10.1097/JSC.0000000000000236.
    1. Maughan R.J. Nutritional ergogenic aids and exercise performance. Nutr. Res. Rev. 1999;12:255–280. doi: 10.1079/095442299108728956.
    1. Smith T.J., Montain S.J., Anderson D., Young A.J. Plasma amino acid responses after consumption of beverages with varying protein type. Int. J. Sport Nutr. Exerc. Metab. 2009;19:1–17. doi: 10.1123/ijsnem.19.1.1.
    1. Walrand S., Gryson C., Salles J., Giraudet C., Migné C., Bonhomme C., Le Ruyet P., Boirie Y. Fast-digestive protein supplement for ten days overcomes muscle anabolic resistance in healthy elderly men. Clin. Nutr. 2016;35:660–668. doi: 10.1016/j.clnu.2015.04.020.
    1. Garwolińska D., Namieśnik J., Kot-Wasik A., Hewelt-Belka W. Chemistry of Human Breast Milk-A Comprehensive Review of the Composition and Role of Milk Metabolites in Child Development. J. Agric. Food Chem. 2018;66:11881–11896. doi: 10.1021/acs.jafc.8b04031.
    1. Perrin M.T., Fogleman A.D., Newburg D.S., Allen J.C. A longitudinal study of human milk composition in the second year postpartum: Implications for human milk banking. Matern. Child Nutr. 2017;13:e12239. doi: 10.1111/mcn.12239.
    1. Meng X., Dunsmore G., Koleva P., Elloumi Y., Wu R.Y., Sutton R.T., Ambrosio L., Hotte N., Nguyen V., Madsen K.L., et al. The Profile of Human Milk Metabolome, Cytokines, and Antibodies in Inflammatory Bowel Diseases Versus Healthy Mothers, and Potential Impact on the Newborn. J. Crohn’s Colitis. 2019;13:431–441. doi: 10.1093/ecco-jcc/jjy186.
    1. Lowenfeld M.F., Widdows S.T., Bond M., Taylor E.I. A Study of the Variations in the Chemical Composition of Normal Human Colostrum and Early Milk. Biochem. J. 1927;21:1–15. doi: 10.1042/bj0210001.
    1. Liao Y., Weber D., Xu W., Durbin-Johnson B.P., Phinney B.S., Lönnerdal B. Absolute quantification of human milk caseins and the whey/casein ratio during the first year of lactation. J. Proteome Res. 2017;16:4113–4121. doi: 10.1021/acs.jproteome.7b00486.
    1. Boirie Y., Dangin M., Gachon P., Vasson M.P., Maubois J.L., Beaufrère B. Slow and fast dietary proteins differently modulate postprandial protein accretion. Proc. Natl. Acad. Sci. USA. 1997;94:14930–14935. doi: 10.1073/pnas.94.26.14930.
    1. Dangin M., Boirie Y., Guillet C., Beaufrère B. Influence of the protein digestion rate on protein turnover in young and elderly subjects. J. Nutr. 2002;132:3228S–3233S. doi: 10.1093/jn/131.10.3228S.
    1. Phillips S.M. Protein requirements and supplementation in strength sports. Nutrition. 2004;20:689–695. doi: 10.1016/j.nut.2004.04.009.
    1. Tipton K.D., Elliott T.A., Cree M.G., Wolf S.E., Sanford A.P., Wolfe R.R. Ingestion of casein and whey proteins result in muscle anabolism after resistance exercise. Med. Sci. Sports Exerc. 2004;36:2073–2081. doi: 10.1249/01.MSS.0000147582.99810.C5.
    1. Neis E.P., Dejong C.H., Rensen S.S. The role of microbial amino acid metabolism in host metabolism. Nutrients. 2015;7:2930–2946. doi: 10.3390/nu7042930.
    1. Cynober L.A. Plasma amino acid levels with a note on membrane transport: Characteristics, regulation, and metabolic significance. Nutrition. 2002;18:761–766. doi: 10.1016/S0899-9007(02)00780-3.
    1. Décombaz J., Reinhardt P., Anantharaman K., von Glutz G., Poortmans J.R. Biochemical changes in a 100 km run: Free amino acids, urea, and creatinine. Eur. J. Appl. Physiol. Occup. Physiol. 1979;41:61–72. doi: 10.1007/BF00424469.
    1. Lehmann M., Huonker M., DiMeo F., Heinz N., Gastmann U., Treis N., Steinacker J.M., Keul J., Kajewski R., Häussinger D. Serum amino acid concentrations in nine athletes before and after the 1993 Colmar ultra triathlon. Int. J. Sports Med. 1995;16:155–159. doi: 10.1055/s-2007-972984.
    1. Nebl J., Drabert K., Haufe S., Wasserfurth P., Eigendorf J., Tegtbur U., Hahn A., Tsikas D. Exercise-Induced Oxidative Stress, Nitric Oxide and Plasma Amino Acid Profile in Recreational Runners with Vegetarian and Non-Vegetarian Dietary Patterns. Nutrients. 2019;11:1875. doi: 10.3390/nu11081875.
    1. Waskiw-Ford M., Hannaian S., Duncan J., Kato H., Sawan S.A., Locke M., Kumbhare D., Moore D. Leucine-Enriched Essential Amino Acids Improve Recovery from Post-Exercise Muscle Damage Independent of Increases in Integrated Myofibrillar Protein Synthesis in Young Men. Nutrients. 2020;12:1061. doi: 10.3390/nu12041061.
    1. Nakayama K., Sanbongi C., Ikegami S. Effects of whey protein hydrolysate ingestion on postprandial aminoacidemia compared with a free amino acid mixture in young men. Nutrients. 2018;10:507. doi: 10.3390/nu10040507.
    1. Fabre M., Hausswirth C., Tiollier E., Molle O., Louis J., Durguerian A., Neveux N., Bigard X., Neuveux N. Effects of postexercise protein intake on muscle mass and strength during resistance training: Is there an optimal ratio between fast and slow proteins? Int. J. Sport Nutr. Exerc. Metab. 2017;27:448–457. doi: 10.1123/ijsnem.2016-0333.
    1. Seo D.-I., Kim E., Fahs C.A., Rossow L., Young K., Ferguson S.L., Thiebaud R., Sherk V.D., Loenneke J.P., Kim D., et al. Reliability of the one-repetition maximum test based on muscle group and gender. J. Sports Sci. Med. 2012;11:221–225.
    1. Foster C. Monitoring training in athletes with reference to overtraining syndrome. Med. Sci. Sports Exerc. 1998;30:1164–1168. doi: 10.1097/00005768-199807000-00023.
    1. Foster C., Florhaug J.A., Franklin J., Gottschall L., Hrovatin L.A., Parker S., Doleshal P., Dodge C. A new approach to monitoring exercise training. J. Strength Cond. Res. 2001;15:109–115.
    1. Banister E.W. Physiological Testing of Elite Athletes. Human Kinetics; Champaign, IL, USA: 1991. Modeling elite athletic performance.
    1. Foster C., Rodriguez-Marroyo J.A., de Koning J.J. Monitoring Training Loads: The Past, the Present, and the Future. Int. J. Sports Physiol. Perform. 2017;12(Suppl. 2):S2-2–S2-8. doi: 10.1123/IJSPP.2016-0388.
    1. Ainsworth B.E., Haskell W.L., Herrmann S.D., Meckes N., Bassett D.R., Tudor-Locke C., Greer J.L., Vezina J., Whitt-Glover M.C., Leon A.S. 2011 Compendium of Physical Activities: A second update of codes and MET values. Med. Sci. Sports Exerc. 2011;43:1575–1581. doi: 10.1249/MSS.0b013e31821ece12.
    1. Kinnunen H., Häkkinen K., Schumann M., Karavirta L., Westerterp K.R., Kyröläinen H. Training-induced changes in daily energy expenditure: Methodological evaluation using wrist-worn accelerometer, heart rate monitor, and doubly labeled water technique. PLoS ONE. 2019;14:e0219563. doi: 10.1371/journal.pone.0219563.
    1. Ra S.-G., Miyazaki T., Ishikura K., Nagayama H., Komine S., Nakata Y., Maeda S., Matsuzaki Y., Ohmori H. Combined effect of branched-chain amino acids and taurine supplementation on delayed onset muscle soreness and muscle damage in high-intensity eccentric exercise. J. Int. Soc. Sports Nutr. 2013;10:51. doi: 10.1186/1550-2783-10-51.
    1. Deyl Z., Hyanek J., Horakova M. Profiling of amino acids in body fluids and tissues by means of liquid chromatography. J. Chromatogr. 1986;379:177–250. doi: 10.1016/S0378-4347(00)80685-4.
    1. Padovan G.J., Arruda Leme I., Giacomo Fassini P., Iucif Junior N., Marchini J.S. A New O-phthaldialdeyde (OPA) Solution for Fluorescence HPLC Amine Group Detection without Boric Acid Preparation. J. Chromatogr. Sep. Tech. 2014;5:1.
    1. Grimble G.K., West M.F., Acuti A.B., Rees R.G., Hunjan M.K., Webster J.D., Frost P.G., Silk D.B. Assessment of an automated chemiluminescence nitrogen analyzer for routine use in clinical nutrition. JPEN J. Parenter. Enter. Nutr. 1988;12:100–106. doi: 10.1177/0148607188012001100.
    1. Motta V. Bioquímica Clínica para o Laboratório: Princípios e Interpretações. Médica Missau; São Paulo, Brazil: 2003.
    1. Scagliusi F.B., Ferriolli E., Pfrimer K., Laureano C., Cunha C.S., Gualano B., Lourenço B., Lancha A.H., Jr. Under-reporting of energy intake is more prevalent in a healthy dietary pattern cluster. Br. J. Nutr. 2008;100:1060–1068. doi: 10.1017/S0007114508971300.
    1. Cohen A., Hall M.N. An amino acid shuffle activates mTORC1. Cell. 2009;136:399–400. doi: 10.1016/j.cell.2009.01.021.
    1. Phillips S.M., Tipton K.D., Aarsland A., Wolf S.E., Wolfe R.R. Mixed muscle protein synthesis and breakdown after resistance exercise in humans. Am. J. Physiol. 1997;273 Pt 1:E99–E107. doi: 10.1152/ajpendo.1997.273.1.E99.
    1. Stokes T., Hector A.J., Morton R.W., McGlory C., Phillips S.M. Recent Perspectives Regarding the Role of Dietary Protein for the Promotion of Muscle Hypertrophy with Resistance Exercise Training. Nutrients. 2018;10:180. doi: 10.3390/nu10020180.
    1. Stoll B., Henry J., Reeds P.J., Yu H., Jahoor F., Burrin D.G. Catabolism dominates the first-pass intestinal metabolism of dietary essential amino acids in milk protein-fed piglets. J. Nutr. 1998;128:606–614. doi: 10.1093/jn/128.3.606.
    1. Groen B.B., Horstman A.M., Hamer H.M., de Haan M., van Kranenburg J., Bierau J., Poeze M., Wodzig W.K.W.H., Rasmussen B., van Loon L.J. Post-Prandial Protein Handling: You Are What You Just Ate. PLoS ONE. 2015;10:e0141582. doi: 10.1371/journal.pone.0141582.
    1. Kirk-Sanchez N.J., McGough E.L. Physical exercise and cognitive performance in the elderly: Current perspectives. Clin. Interv. Aging. 2014;9:51–62. doi: 10.2147/CIA.S39506.
    1. Coombes J.S., McNaughton L.R. Effects of branched-chain amino acid supplementation on serum creatine kinase and lactate dehydrogenase after prolonged exercise. J. Sports Med. Phys. Fit. 2000;40:240–246.
    1. Lewis P.B., Ruby D., Bush-Joseph C.A. Muscle soreness and delayed-onset muscle soreness. Clin. Sports Med. 2012;31:255–262. doi: 10.1016/j.csm.2011.09.009.
    1. Kraemer W.J., Ratamess N.A., Volek J.S., Häkkinen K., Rubin M.R., French D.N., Gómez A.L., McGuigan M.R., Scheett T.P., Newton R.U., et al. The effects of amino acid supplementation on hormonal responses to resistance training overreaching. Metabolism. 2006;55:282–291. doi: 10.1016/j.metabol.2005.08.023.
    1. Macnaughton L.S., Wardle S.L., Witard O.C., McGlory C., Hamilton D.L., Jeromson S., Lawrence C.E., Wallis G.A., Tipton K.D. The response of muscle protein synthesis following whole-body resistance exercise is greater following 40 g than 20 g of ingested whey protein. Physiol. Rep. 2016;4:e12893. doi: 10.14814/phy2.12893.
    1. Witard O.C., Jackman S.R., Breen L., Smith K., Selby A., Tipton K.D. Myofibrillar muscle protein synthesis rates subsequent to a meal in response to increasing doses of whey protein at rest and after resistance exercise. Am. J. Clin. Nutr. 2014;99:86–95. doi: 10.3945/ajcn.112.055517.
    1. Gorissen S.H., Horstman A.M., Franssen R., Crombag J.J., Langer H., Bierau J., Respondek F., Van Loon L.J. Ingestion of Wheat Protein Increases In Vivo Muscle Protein Synthesis Rates in Healthy Older Men in a Randomized Trial. J. Nutr. 2016;146:1651–1659. doi: 10.3945/jn.116.231340.
    1. Tang J.E., Moore D.R., Kujbida G.W., Tarnopolsky M.A., Phillips S.M. Ingestion of whey hydrolysate, casein, or soy protein isolate: Effects on mixed muscle protein synthesis at rest and following resistance exercise in young men. J. Appl. Physiol. 2009;107:987–992. doi: 10.1152/japplphysiol.00076.2009.
    1. Areta J.L., Burke L.M., Ross M.L., Camera D.M., West D.W., Broad E.M., Jeacocke N.A., Moore D., Stellingwerff T., Phillips S., et al. Timing and distribution of protein ingestion during prolonged recovery from resistance exercise alters myofibrillar protein synthesis. J. Physiol. 2013;591:2319–2331. doi: 10.1113/jphysiol.2012.244897.

Source: PubMed

3
Sottoscrivi