Activation of Opioid Receptors Attenuates Ischemia/Reperfusion Injury in Skeletal Muscle Induced by Tourniquet Placement

Yue-Xian Guo, Gui-Ying Wang, Wen-Jie Cheng, Cai-Zhen Yan, Shuang Zhao, Zhao Li, Peng Liu, Xiu-Li Wang, Yue-Xian Guo, Gui-Ying Wang, Wen-Jie Cheng, Cai-Zhen Yan, Shuang Zhao, Zhao Li, Peng Liu, Xiu-Li Wang

Abstract

Method: Mice were randomly assigned to the sham, I/R, Oxy, and I/R with Oxy groups. Oxy was injected intraperitoneally 30 min before tourniquet placement. Morphological changes of the gastrocnemius muscle in these mice were assessed by hematoxylin-eosin (HE) staining and electron microscopy. Expression levels of TLR4, NF-κB, SIRT1, and PGC-1α in the skeletal muscles were detected by western blot. Blood TNF-α levels, gastrocnemius muscle contractile force, and ATP concentration were examined.

Results: Compared with the I/R group, Oxy pretreatment attenuated skeletal muscle damage, decreased serum TNF-α levels, and inhibited the expression levels of TLR4/NF-κB in the gastrocnemius muscle. Furthermore, Oxy treatment significantly increased serum ATP levels and the contractility of the skeletal muscles. SIRT1 and PGC-1α levels were significantly reduced in gastrocnemius muscle after I/R. Oxy pretreatment recovered these protein expression levels.

Conclusion: Tourniquet-induced acute limb I/R results in morphological and functional impairment in skeletal muscle. Pretreatment with Oxy attenuates skeletal muscle from acute I/R injury through inhibition of TLR4/NF-κB-dependent inflammatory response and protects SIRT1/PGC-1α-dependent mitochondrial function.

Conflict of interest statement

The authors declare that there is no conflict of interest regarding the publication of this article.

Copyright © 2021 Yue-Xian Guo et al.

Figures

Figure 1
Figure 1
Oxy treatment increased blood flow after tourniquet placement on the hind limb. (a) Representative images of blood perfusion in the mouse hind limb obtained using laser speckle contrast imaging. The red color on the image represents high blood flow to the limb while the blue color represents low blood flow. Quantification of perfusion in the ischemic hind limb before ischemia (b), during ischemia (c), and during reperfusion for 24 h (d). I/R: ischemia-reperfusion; Oxy: oxycodone. Data are expressed as the mean ± SEM (n = 6 in each group); ∗P < 0.05 vs. sham.
Figure 2
Figure 2
Morphology changes in gastrocnemius muscle tissues in response to tourniquet placement. (a) Representative histology in longitudinal and transverse sections of gastrocnemius muscles stained with hematoxylin-eosin. (b) Representative histology in cross and lengthwise sections of gastrocnemius muscles stained with Masson's trichrome. Arrows indicate the site of muscle injury. (c) Summary data of histology damage scores in sham, I/R, and I/R plus Oxy groups. I/R: ischemia-reperfusion; Oxy: oxycodone (n = 6 in each group).
Figure 3
Figure 3
Electron microscope images of the gastrocnemius muscle tissues from all experimental groups. The scale was 667 nm at 15,000 magnification. I/R: ischemia-reperfusion; Oxy: oxycodone (n = 6 in each group).
Figure 4
Figure 4
Oxy treatment attenuated alteration of TNF-α and ATP concentration induced by tourniquet placement. (a) Serum TNF-α level. (b) Concentration of ATP in gastrocnemius muscles. I/R: ischemia-reperfusion (n = 6 in each group); ∗P < 0.05 vs. sham; #P < 0.05 vs. I/R. Oxy: oxycodone.
Figure 5
Figure 5
Oxy attenuated impairment of contractility of gastrocnemius muscles induced by a tourniquet. (a) Schematic diagram of experimental setup. (b) Individual twitch contraction of the gastrocnemius muscle. (c) Tetanic contractile force. (d, e) Quantitative analysis of individual twitch contractile force and tetanic contractile force in different groups. I/R: ischemia-reperfusion; Oxy: oxycodone. Data are expressed as the mean ± SE (n = 6 in each group); ∗P < 0.05 vs. sham; #P < 0.05 vs. I/R.
Figure 6
Figure 6
Oxy treatment decreased TLR4 and NF-κB expression levels while increasing SIRT1 and PGC-1α levels in tourniquet-induced I/R in gastrocnemius muscle tissues. (a) Representative band images for TLR4, NF-κB, SIRT1, and PGC-1α in the I/R and Oxy-treated I/R groups. (b–e) Summary data showing expression of TLR4 (b), NF-κB (c), SIRT1 (d), and PGC-1α (e). I/R: ischemia-reperfusion; Oxy: oxycodone. Data are expressed as the mean ± SE (n = 6 in each group); ∗P < 0.05 vs. sham; #P < 0.05 vs. I/R.

References

    1. Corrick R. M., Tu H., Zhang D., et al. Dexamethasone protects against tourniquet-induced acute ischemia-reperfusion injury in mouse hindlimb. Frontiers in Physiology. 2018;9 doi: 10.3389/fphys.2018.00244.
    1. Blaisdell F. W. The pathophysiology of skeletal muscle ischemia and the reperfusion syndrome: a review. Cardiovascular Surgery. 2002;10(6):620–630. doi: 10.1016/S0967-2109(02)00070-4.
    1. Smith J. K., Grisham M. B., Granger D. N., Korthuis R. J. Free radical defense mechanisms and neutrophil infiltration in postischemic skeletal muscle. The American Journal of Physiology. 1989;256(3):H789–H793. doi: 10.1152/ajpheart.1989.256.3.H789.
    1. Kue R. C., Temin E. S., Weiner S. G., et al. Tourniquet use in a civilian emergency medical services setting: a descriptive analysis of the Boston ems experience. Prehospital Emergency Care. 2015;19(3):399–404. doi: 10.3109/10903127.2014.995842.
    1. Mo Y., Chen S., Yang L., et al. The effect of transcutaneous electrical acupoint stimulation on inflammatory response in patients undergoing limb ischemia-reperfusion. Mediators of Inflammation. 2017;2017:7. doi: 10.1155/2017/8369737.8369737
    1. Kaufman R. D., Walts L. F. Tourniquet-induced hypertension. British Journal of Anaesthesia. 1982;54(3):333–336. doi: 10.1093/bja/54.3.333.
    1. Foster A. D., Vicente D., Sexton J. J., et al. Administration of fty720 during tourniquet-induced limb ischemia reperfusion injury attenuates systemic inflammation. Mediators of Inflammation. 2017;2017:11. doi: 10.1155/2017/4594035.4594035
    1. Wilson H.-M. P., Welikson R. E., Luo J., et al. Can cytoprotective cobalt protoporphyrin protect skeletal muscle and muscle-derived stem cells from ischemic injury? Clinical Orthopaedics and Related Research. 2015;473(9):2908–2919. doi: 10.1007/s11999-015-4332-8.
    1. Houtkooper R. H., Pirinen E., Auwerx J. Sirtuins as regulators of metabolism and healthspan. Nature Reviews. Molecular Cell Biology. 2012;13(4):225–238. doi: 10.1038/nrm3293.
    1. Rodgers J. T., Lerin C., Haas W., Gygi S. P., Spiegelman B. M., Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature. 2005;434(7029):113–118. doi: 10.1038/nature03354.
    1. Rasbach K. A., Schnellmann R. G. Isoflavones promote mitochondrial biogenesis. The Journal of Pharmacology and Experimental Therapeutics. 2008;325(2):536–543. doi: 10.1124/jpet.107.134882.
    1. O'Neill L. A. How toll-like receptors signal: what we know and what we don't know. Current Opinion in Immunology. 2006;18(1):3–9. doi: 10.1016/j.coi.2005.11.012.
    1. Cen X., Liu S., Cheng K. The role of toll-like receptor in inflammation and tumor immunity. Frontiers in Pharmacology. 2018;9 doi: 10.3389/fphar.2018.00878.
    1. Sabroe I., Parker L. C., Dower S. K., Whyte M. K. The role of tlr activation in inflammation. The Journal of Pathology. 2008;214(2):126–135. doi: 10.1002/path.2264.
    1. Wang S. L., Duan L., Xia B., Liu Z., Wang Y., Wang G. M. Dexmedetomidine preconditioning plays a neuroprotective role and suppresses TLR4/NF-κB pathways model of cerebral ischemia reperfusion. Biomedicine & Pharmacotherapy. 2017;93:1337–1342. doi: 10.1016/j.biopha.2017.06.051.
    1. Schmidt-Hansen M., Bennett M. I., Arnold S., Bromham N., Hilgart J. S. Oxycodone for cancer-related pain. Cochrane Database of Systematic Reviews. 2017;8 doi: 10.1002/14651858.CD003870.pub6.
    1. Yang P.-P., Yeh G.-C., Huang E. Y.-K., Law P.-Y., Loh H. H., Tao P.-L. Effects of dextromethorphan and oxycodone on treatment of neuropathic pain in mice. Journal of Biomedical Science. 2015;22(1) doi: 10.1186/s12929-015-0186-3.
    1. Ye J., Yan H., Xia Z. Oxycodone ameliorates the inflammatory response induced by lipopolysaccharide in primary microglia. Journal of Pain Research. 2018;11:1199–1207. doi: 10.2147/JPR.S160659.
    1. McCormack M. C., Kwon E., Eberlin K. R., et al. Development of reproducible histologic injury severity scores: skeletal muscle reperfusion injury. Surgery. 2008;143(1):126–133. doi: 10.1016/j.surg.2007.06.005.
    1. Hong Y., Zhang B., Yu L., Duan S. S. Cell membrane integrity and revascularization: the possible functional mechanism of ischemic preconditioning for skeletal muscle protection against ischemic-reperfusion injury. Acta Histochemica. 2017;119(3):309–314. doi: 10.1016/j.acthis.2017.02.007.
    1. Gillani S., Cao J., Suzuki T., Hak D. J. The effect of ischemia reperfusion injury on skeletal muscle. Injury. 2012;43(6):670–675. doi: 10.1016/j.injury.2011.03.008.
    1. Albadawi H., Oklu R., Raacke Malley R. E., et al. Effect of DNase I treatment and neutrophil depletion on acute limb ischemia- reperfusion injury in mice. Journal of Vascular Surgery. 2016;64(2):484–493. doi: 10.1016/j.jvs.2015.01.031.
    1. Liu Y., Zhou C., Jiang J., Su Q., Ding X. Blockade of hmgb1 preserves vascular homeostasis and improves blood perfusion in rats of acute limb ischemia/reperfusion. Microvascular Research. 2017;112:37–40. doi: 10.1016/j.mvr.2017.02.005.
    1. Crawford R. S., Hashmi F. F., Jones J. E., et al. A novel model of acute murine hindlimb ischemia. American Journal of Physiology. Heart and Circulatory Physiology. 2007;292(2):H830–H837. doi: 10.1152/ajpheart.00581.2006.
    1. Wiffen P. J., Wee B., Derry S., Bell R. F., Moore R. A. Opioids for cancer pain - an overview of cochrane reviews. Cochrane Database of Systematic Reviews. 2017;7 doi: 10.1002/14651858.cd012592.
    1. Kharbanda R. K., Peters M., Walton B., et al. Ischemic preconditioning prevents endothelial injury and systemic neutrophil activation during ischemia-reperfusion in humans in vivo. Circulation. 2001;103(12):1624–1630. doi: 10.1161/01.CIR.103.12.1624.
    1. Zhu L., Ye T., Tang Q., et al. Exercise preconditioning regulates the Toll-like receptor 4/nuclear factor-κB signaling pathway and reduces cerebral ischemia/reperfusion inflammatory injury: a study in rats. Journal of Stroke and Cerebrovascular Diseases. 2016;25(11):2770–2779. doi: 10.1016/j.jstrokecerebrovasdis.2016.07.033.
    1. Kim E., Kim H. C., Lee S., et al. Dexmedetomidine confers neuroprotection against transient global cerebral ischemia/reperfusion injury in rats by inhibiting inflammation through inactivation of the TLR-4/NF-κB pathway. Neuroscience Letters. 2017;649:20–27. doi: 10.1016/j.neulet.2017.04.011.
    1. Hutchinson M. R., Zhang Y., Shridhar M., et al. Evidence that opioids may have toll-like receptor 4 and md-2 effects. Brain, Behavior, and Immunity. 2010;24(1):83–95. doi: 10.1016/j.bbi.2009.08.004.
    1. Stevens C. W., Aravind S., Das S., Davis R. L. Pharmacological characterization of lps and opioid interactions at the toll-like receptor 4. British Journal of Pharmacology. 2013;168(6):1421–1429. doi: 10.1111/bph.12028.
    1. Xie N., Gomes F. P., Deora V., et al. Activation of μ-opioid receptor and Toll-like receptor 4 by plasma from morphine-treated mice. Brain, Behavior, and Immunity. 2017;61:244–258. doi: 10.1016/j.bbi.2016.12.002.
    1. Jiang L., Hu J., He S., Zhang L., Zhang Y. Spinal neuronal nos signaling contributes to morphine cardioprotection in ischemia reperfusion injury in rats. The Journal of Pharmacology and Experimental Therapeutics. 2016;358(3):450–456. doi: 10.1124/jpet.116.234021.
    1. Kuroda Y., Togashi H., Uchida T., Haga K., Yamashita A., Sadahiro M. Oxidative stress evaluation of skeletal muscle in ischemia-reperfusion injury using enhanced magnetic resonance imaging. Scientific Reports. 2020;10(1):p. 10863. doi: 10.1038/s41598-020-67336-4.
    1. Ozkok E., Yorulmaz H., Ates G., et al. Amelioration of energy metabolism by melatonin in skeletal muscle of rats with lps induced endotoxemia. Physiological Research. 2016;65(5):833–842. doi: 10.33549/physiolres.933282.
    1. Huang Y., Chen K., Ren Q., et al. Dihydromyricetin attenuates dexamethasone-induced muscle atrophy by improving mitochondrial function via the PGC-1α pathway. Cellular Physiology and Biochemistry. 2018;49(2):758–779. doi: 10.1159/000493040.
    1. Theilen N. T., Kunkel G. H., Tyagi S. C. The role of exercise and tfam in preventing skeletal muscle atrophy. Journal of Cellular Physiology. 2017;232(9):2348–2358. doi: 10.1002/jcp.25737.
    1. Lagouge M., Argmann C., Gerhart-Hines Z., et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell. 2006;127(6):1109–1122. doi: 10.1016/j.cell.2006.11.013.
    1. Yang S. R., Wright J., Bauter M., Seweryniak K., Kode A., Rahman I. Sirtuin regulates cigarette smoke-induced proinflammatory mediator release via rela/p65 nf-kappab in macrophages in vitro and in rat lungs in vivo: implications for chronic inflammation and aging. American Journal of Physiology. Lung Cellular and Molecular Physiology. 2007;292(2):L567–L576. doi: 10.1152/ajplung.00308.2006.
    1. Thorn D. A., Siemian J. N., Zhang Y., Li J. X. Anti-hyperalgesic effects of imidazoline i2 receptor ligands in a rat model of inflammatory pain: interactions with oxycodone. Psychopharmacology. 2015;232(18):3309–3318. doi: 10.1007/s00213-015-3983-1.

Source: PubMed

3
Sottoscrivi