Dexmedetomidine infusion as an analgesic adjuvant during laparoscopic сholecystectomy: a randomized controlled study

Kateryna Bielka, Iurii Kuchyn, Volodymyr Babych, Kseniia Martycshenko, Oleksii Inozemtsev, Kateryna Bielka, Iurii Kuchyn, Volodymyr Babych, Kseniia Martycshenko, Oleksii Inozemtsev

Abstract

Background: Dexmedetomidine (DEX) has sedative, sympatholytic and analgesic effects and might be beneficial if used as an adjuvant to: improve analgesia; modulate haemodynamic responses to intubation and pneumoperitoneum and; reduce the number of opioid-associated adverse events. The aim of this study was to evaluate the efficacy and safety of DEX infusion during elective laparoscopic cholecystectomy (LC).

Methods: A randomized, single-centre, parallel-group, placebo-controlled study was carried out between May 2016 and June 2017. Adult patients (18-79 years) with American Society of Anesthesiology (ASA) physical status I-II were randomly assigned to 0.5 μg/kg/h DEX infusion from induction of anaesthesia to extubation (Group D; n = 30) or normal saline infusion (Group C; n = 30). The primary efficacy outcomes were postoperative morphine consumption. Secondary efficacy outcomes included: time to first use of rescue analgesia; postoperative morphine consumption; intraoperative fentanyl consumption; time from end of surgery to extubation; lengths of intensive care unit (ICU) and general ward stay; degree of postoperative pain 3, 6, 12 and 24 h after surgery; incidence of persistent post-surgical pain.

Results: DEX infusion was associated with a decrease in postoperative morphine consumption (p = 0.001), lower incidence of severe postoperative pain (odds ratio [OR] 9, 95% confidence interval [CI] 1.1-77, p = 0.04) and significantly longer time to first use of rescue analgesia (p = 0.001). Group D also had significantly lower fentanyl consumption both intraoperatively (p = 0.001) and in the time from end of surgery to extubation (p = 0.001) plus decreased incidence of persistent post-surgical pain (OR 14.5, 95% CI 1.7-122, p = 0.005). The incidence of postoperative nausea and vomiting was lower in Group D than Group C (OR 5, 95% CI 1.1-26, p = 0.005). Median pain intensity did not differ between the groups 3, 6, 12 or 24 h after surgery and there were no inter-group differences in the lengths of ICU stay or overall hospital stay between groups. The incidence of hypertension was significantly higher in Group C (OR 13.8, 95% CI 4-48, p < 0.0001); there were no inter-group differences in incidences of hypotension and bradycardia.

Conclusions: Intraoperative DEX infusion is safe and effective for improving analgesia during and after elective LC. DEX appears to significantly reduce the number of patients with severe postoperative pain, postoperative morphine consumption and prolong time to first use of rescue analgesia.

Trial registration: ClinicalTrials.gov: Retrospectively registered on July 7, 2017, NCT03211871 .

Keywords: Dexmedetomidine; Laparoscopic cholecystectomy; Postoperative pain; Randomized controlled trial.

Conflict of interest statement

Ethics approval and consent to participate

This study was approved by the Ethical Committee of Bogomolets National Medical University. All participants gave their written, informed consent to participate in the study.

Consent for publication

All participants gave their signed informed consent to the publication of study data.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
CONSORT flowchart

References

    1. Kehlet H, Dahl JB. Anaesthesia, surgery, and challenges in postoperative recovery. Lancet. 2003;362:1921–1928. doi: 10.1016/S0140-6736(03)14966-5.
    1. Jabbour-Khoury SI, Dabbous AS, Gerges FJ, Azar MS, Ayoub CM, Khoury GS. Intraperitoneal and Intravenous routes for pain relief in laparoscopic cholecystectomy. JSLS. 2005;9:316–321.
    1. Bisgaard T. Analgesic treatment after laparoscopic cholecystectomy: a critical assessment of the evidence. Anesthesiology. 2006;104:835–846. doi: 10.1097/00000542-200604000-00030.
    1. Mitra S, Khandelwal P, Roberts K, Kumar S, Vadivelu N. Pain relief in cholecystectomy--a review of the current options. Pain Pract. 2012;12:485–496. doi: 10.1111/j.1533-2500.2011.00513.x.
    1. Hansson L, Hedner T, Dahlöf B. Prospective randomized open blinded end-point (PROBE) study. A novel design for intervention trials. Prospective Randomized Open Blinded End-Point Blood Press. 1992;1(2):113–119.
    1. Tufanogullari B, White PF, Peixoto MP, Kianpour D, Lacour T, Griffin J, Skrivanek G, Macaluso A, Shah M, Provost DA. Dexmedetomidine infusion during laparoscopic bariatric surgery: the effect on recovery outcome variables. Anesth Analg. 2008;106:1741–1748. doi: 10.1213/ane.0b013e318172c47c.
    1. Macrae WA. Chronic post-surgical pain: 10 years on. Br J Anaesth. 2008;101:77–86. doi: 10.1093/bja/aen099.
    1. Song J, Ji Q, Sun Q. The opioid-sparing effect of IntraoperativeDexmedetomidine infusion after craniotomy. J Neurosurg Anesthesiol. 2016;28(1):14–20. doi: 10.1097/ANA.0000000000000190.
    1. Ge D-J, Qi B, Tang G. Intraoperative Dexmedetomidine Promotes Postoperative Analgesia and Recovery in Patients after Abdominal Hysterectomy: a Double-Blind, Randomized Clinical Trial. Scientific Reports. 2015;6 Epub
    1. Yu L, Ran B, Li M, Shi Z. Gabapentin and pregabalin in the management of postoperative pain after lumbar spinal surgery: a systematic review and meta-analysis. Spine (Phila Pa 1976) 2013;38(22):1947–1952. doi: 10.1097/BRS.0b013e3182a69b90.
    1. Tang C, Xia Z. Dexmedetomidine in perioperative acute pain management: a non-opioid adjuvant analgesic. J Pain Res. 2017;10:1899–1904. doi: 10.2147/JPR.S139387.
    1. Lee C, Kim YD, Kim JN. Antihyperalgesic effects of dexmedetomidine on high-dose remifentanil-induced hyperalgesia. Korean J Anesthesiol. 2013;64(4):301–307. doi: 10.4097/kjae.2013.64.4.301.
    1. Volkov PA, Churadze BT, Sevalkin SA, Volkova YN, Guryanov VA. Dexmedetomidine as a part of analgesic component of general anesthesia for laparoscopic operations. Anesteziol Reanimatol. 2015;60(1):4–8.
    1. Mizrak A, Sanli M, Bozgeyik S, Gul R, Ganidagli S, Baysal E, Oner U. Dexmedetomidine use in direct laryngoscopic biopsy under TIVA. Middle East J Anaesthesiol. 2012;21(4):605–612.
    1. Candiotti KA, Bergese SD, Bokesch PM, Feldman MA, Wisemandle W, Bekker AY. MAC study group. Monitored anesthesia care with dexmedetomidine: a prospective, randomized, double-blind, multicenter trial. Anesth Analg. 2010;110(1):47–56. doi: 10.1213/ane.0b013e3181ae0856.
    1. An LX, Chen X, Ren XJ, Wu HF. Electro-acupuncture decreases postoperative pain and improves recovery in patients undergoing a supratentorial craniotomy. Am J Chin Med. 2014;42:1099–1109. doi: 10.1142/S0192415X14500682.
    1. Peng KMS, Liu H-YMS, Wu S-RMS, et al. Effects of combining Dexmedetomidine and opioids for postoperative intravenous patient-controlled analgesia: a systematic review and meta-analysis. Clin J Pain. 2015;31(12):1097–1104. doi: 10.1097/AJP.0000000000000219.
    1. Xiao C, Lu B, Yao J, sun J. Effect of dexmedetomidine in acute postoperative pain relief is independent of suppressing the hyperalgesia induced by remifentanil. Zhonghua Yi Xue Za Zhi. 2013;93:44–47.
    1. Manne GR, Upadhyay MR, Swadia V. Effects of low dose dexmedetomidine infusion on haemodynamic stress response, sedation and post-operative analgesia requirement in patients undergoing laparoscopic cholecystectomy. Indian J Anaesth. 2014;58:726–731. doi: 10.4103/0019-5049.147164.
    1. Abdallah FW, Abrishami A, Brull R. The facilitatory effects of intravenous dexmedetomidine on the duration of spinal anesthesia: a systematic review and meta-analysis. Anesth Analg. 2013;117(1):271–278. doi: 10.1213/ANE.0b013e318290c566.

Source: PubMed

3
Sottoscrivi