このページは自動翻訳されたものであり、翻訳の正確性は保証されていません。を参照してください。 英語版 ソーステキスト用。

Motor Learning in a Customized Body-Machine Interface (BMI)

2019年11月14日 更新者:Ferdinando Mussa-Ivaldi、Shirley Ryan AbilityLab

Motor Learning in a Customized Body-Machine Interface for Persons With Paralysis

People with tetraplegia often retain some level of mobility of the upper body. The proposed study will test the hypothesis that it is possible to develop personalized interfaces, which utilize the residual mobility to enable paralyzed persons to control computers, wheelchairs and other assistive devices. If successful the project will result into the establishment of a new family of human-machine interfaces based on wearable sensors that adapt their functions to their users' abilities.

調査の概要

状態

わからない

条件

詳細な説明

The goal of these studies is to enable persons paralyzed by spinal cord injury (SCI) to drive powered wheelchairs and interact with computers by acting through an interface that maximizes the effectiveness of their residual motor function. This is called a "body-machine interface" because it maps the motions of the upper-body (arms and shoulders) to the space of device control signals in an optimal way. In this way, paralyzed persons that cannot operate a joystick controller because of lack of hand mobility can effectively use their whole upper body as virtual joystick device. An important characteristic of the proposed approach is that it is based on the possibility to control a computer or a wheelchair by bodily movements through an interactive learning process, in which the interface adapts itself to the subject's mobility and the subject learns to act through the interface. This study aims at developing and testing the customization of this interface to a group of SCI participants with tetraplegia, resulting from high-level cervical injury. The proposed research is organized in three specific aims:

(Aim 1) To develop new functional capabilities in persons with spinal cord injury by customizing a body-machine interface to their individual upper body mobility. After fitting the interface to the residual movements of each subject, participants will practice computer games aimed at training two classes of control actions: operating a virtual joystick and operating a virtual keyboard. This study will test the ability of the subjects to perform skilled maneuvers with a simulated wheelchair.

(Aim 2.) To test the hypothesis that practicing the upper-body control of personalized interfaces results in significant physical and psychological benefits after spinal-cord injury. A study will evaluate and quantify the impact of the practicing functional upper-body motions on the mobility of the shoulder and arms by conventional clinical methods and by measuring the subjects' ability to generate coordinated upper body movements and to apply isometric forces. Other studies under this aim will evaluate the effects of operating the body-machine interface on musculoskeletal pain and on the mood and mental state of the participants.

(Aim 3) To train spinal-cord injury survivors to skillfully operate a powered wheelchair using their enhanced upper body motor skills and customized interface parameters. Finally, the last study will test the hypothesis that the skills learned through practice in the virtual environment are retained for the control of an actual powered wheelchair. After reaching stable performance in the simulated wheelchair, subjects will practice the control of the physical wheelchair in safe a testing environment.

(Aim 4.) To understand how extensive practice with a body machine interface affects the cortical representation of the trained limbs. A study will evaluate and quantify the impact of the practicing functional upper-body motions on corticospinal excitability as a correlate to sensorimotor skill learning. Participants will meet the inclusion criteria for both the main study and satisfy the additional optional criteria. Participant will practice upper-body movements using the body-machine interface. The study will evaluate the evolution of corticospinal excitability in related areas of the motor cortex during the training compared to the baseline and after a follow-up period.

If successful, this study will lead to effective operation of a highly customized interface that adapts to the residual motor capability of its users. Physical and psychological benefits are expected to derive from the sustained and coordinated activity associated with the use of this body-machine interface

研究の種類

介入

入学 (実際)

157

段階

  • 適用できない

連絡先と場所

このセクションには、調査を実施する担当者の連絡先の詳細と、この調査が実施されている場所に関する情報が記載されています。

研究場所

    • Illinois
      • Chicago、Illinois、アメリカ、60611
        • Shirley Ryan AbilityLab

参加基準

研究者は、適格基準と呼ばれる特定の説明に適合する人を探します。これらの基準のいくつかの例は、人の一般的な健康状態または以前の治療です。

適格基準

就学可能な年齢

18年~65年 (大人、高齢者)

健康ボランティアの受け入れ

いいえ

受講資格のある性別

全て

説明

Inclusion Criteria:

  • Age 18-65
  • Injuries at C3-C6 level, complete (ASIA A) or incomplete (ASIA B and C)
  • Able to follow simple commands
  • Able to speak or respond to questions

Exclusion Criteria:

  • Presence of tremors, spasm and other significant involuntary movements
  • Cognitive impairment
  • Deficit of visuo-spatial orientation
  • Concurrent pressure sores or urinary tract infection

(Optional) Additional Exclusion Criteria for evaluation of corticospinal excitability using Transcranial Magnetic Stimulation:

  • Any metal in head with the exception of dental work or any ferromagnetic metal elsewhere in the body. This applies to all metallic hardware such as cochlear implants, or an Internal Pulse Generator or medication pumps, implanted brain electrodes, and peacemaker.
  • Personal history of epilepsy (untreated with one or a few past episodes), or treated patients
  • Vascular, traumatic, tumoral, infectious, or metabolic lesion of the brain, even without history of seizure, and without anticonvulsant medication
  • Administration of drugs that potentially lower seizure threshold [62], without concomitant administration of anticonvulsant drugs which potentially protect against seizures occurrence
  • Change in dosage for neuro-active medications (Baclophen, Lyrica, Celebrex, Cymbalta, Gapapentin, Naposyn, Diclofenac, Diazapam, Tramadol, etc) within 2 weeks of any study visit.
  • Skull fractures, skull deficits or concussion within the last 6 months
  • unexplained recurring headaches
  • Sleep deprivation, alcoholism
  • Claustrophobia precluding MRI
  • Pregnancy

研究計画

このセクションでは、研究がどのように設計され、研究が何を測定しているかなど、研究計画の詳細を提供します。

研究はどのように設計されていますか?

デザインの詳細

  • 主な目的:支持療法
  • 割り当て:非ランダム化
  • 介入モデル:並列代入
  • マスキング:独身

武器と介入

参加者グループ / アーム
介入・治療
実験的:SCI Static
SCI group that practices with a static body-machine map
The intervention compares two ways of customizing the body-machine interface which will be used for subjects for 40 sessions (spread over 8 months). In one case (SCI static), the body-machine interface is static. In the other case (SCI Machine Learning), there is a machine learning algorithm that adapts to the movements made by the subject.
実験的:SCI Machine Learning
Spinal Cord Injury patients who practice with a body-machine map that is adapted using machine learning
The intervention compares two ways of customizing the body-machine interface which will be used for subjects for 40 sessions (spread over 8 months). In one case (SCI static), the body-machine interface is static. In the other case (SCI Machine Learning), there is a machine learning algorithm that adapts to the movements made by the subject.

この研究は何を測定していますか?

主要な結果の測定

結果測定
メジャーの説明
時間枠
Change in Time to task completion from Baseline at 8 months
時間枠:Baseline and 8 months
The subjects will perform computer games requiring different data entry tasks (characters, cursor control) and navigate either a virtual or a real obstacle course. This primary outcome measure is the time it takes subjects to complete each task.
Baseline and 8 months

二次結果の測定

結果測定
メジャーの説明
時間枠
Change in Movement Smoothness from Baseline at 8 months
時間枠:Baseline and 8 months
This outcome measure measures the change in movement smoothness when operating the virtual and real wheelchairs
Baseline and 8 months
Change in Strength
時間枠:Baseline and 8 months
This outcome measure measures the changes in upper body strength after training
Baseline and 8 months
Change in Mental State
時間枠:Baseline and 8 months
This outcome measures measures the change in mental state (as quantified by the State-Trait Anxiety Inventory) after training
Baseline and 8 months

協力者と研究者

ここでは、この調査に関係する人々や組織を見つけることができます。

スポンサー

捜査官

  • 主任研究者:Ferdinando A Mussa-Ivaldi, PhD、Northwestern University

出版物と役立つリンク

研究に関する情報を入力する責任者は、自発的にこれらの出版物を提供します。これらは、研究に関連するあらゆるものに関するものである可能性があります。

研究記録日

これらの日付は、ClinicalTrials.gov への研究記録と要約結果の提出の進捗状況を追跡します。研究記録と報告された結果は、国立医学図書館 (NLM) によって審査され、公開 Web サイトに掲載される前に、特定の品質管理基準を満たしていることが確認されます。

主要日程の研究

研究開始

2013年2月1日

一次修了 (予想される)

2022年9月1日

研究の完了 (予想される)

2022年9月1日

試験登録日

最初に提出

2012年4月16日

QC基準を満たした最初の提出物

2012年5月28日

最初の投稿 (見積もり)

2012年5月31日

学習記録の更新

投稿された最後の更新 (実際)

2019年11月15日

QC基準を満たした最後の更新が送信されました

2019年11月14日

最終確認日

2019年11月1日

詳しくは

この情報は、Web サイト clinicaltrials.gov から変更なしで直接取得したものです。研究の詳細を変更、削除、または更新するリクエストがある場合は、register@clinicaltrials.gov。 までご連絡ください。 clinicaltrials.gov に変更が加えられるとすぐに、ウェブサイトでも自動的に更新されます。

脊髄損傷の臨床試験

Customizing the Body-Machine Interfaceの臨床試験

3
購読する