Presbycusis: An Update on Cochlear Mechanisms and Therapies

Jing Wang, Jean-Luc Puel, Jing Wang, Jean-Luc Puel

Abstract

Age-related hearing impairment (ARHI), also referred to as presbycusis, is the most common sensory impairment seen in the elderly. As our cochlea, the peripheral organ of hearing, ages, we tend to experience a decline in hearing and are at greater risk of cochlear sensory-neural cell degeneration and exacerbated age-related hearing impairments, e.g., gradual hearing loss, deterioration in speech comprehension (especially in noisy environments), difficulty in the localization sound sources, and ringing sensations in the ears. However, the aging process does not affect people uniformly; nor, in fact, does the aging process appear to be uniform even within an individual. Here, we outline recent research into chronological cochlear age in healthy people, and exacerbated hearing impairments during aging due to both extrinsic factors including noise and ototoxic medication, and intrinsic factors such as genetic predisposition, epigenetic factors, and aging. We review our current understanding of molecular pathways mediating ARHL and discuss recent discoveries in experimental hearing restoration and future prospects.

Keywords: age-related hearing loss; causal factors; mechanisms; presbycusis; therapies.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Inner-ear anatomy. (A) Schematic representation of ear anatomy. The ear is divided into three parts (insert): the external and middle ear transfer the sound waves to the inner ear where they are transduced into neural activity. The external ear is closed off from the middle ear by the eardrum. In the middle ear, the eardrum is mechanically linked, by a chain of three tiny bones (the ossicles), to the oval-window membrane which closes the inner ear. Embedded in the temporal bone, the inner ear comprises the balance organ or vestibule, and the hearing organ or cochlea. (B) Scanning electron micrograph of the organ of Corti. The cochlea is a coiled organ that forms a spiral. Scanning electron micrographs show a narrow, linear shape of IHC stereocilial bundles and a V-shape of OHC stereocilia. (C) Transverse section of the basal cochlear turn under light microscopy. The cochlea is made up of three canals wrapped around a bony axis, the modiolus. These canals are the scala tympani (ST), the scala vestibuli (SV), and the scala media (SM). The ST and SV are filled with perilymph. The SM is filled with endolymph. The organ of Corti is situated on the basilar membrane (bm). (B) = 2 mm, (C) = 10 µM, (D) = 50 µm. IHCs: inner hair cells; OHCs: outer hair cells ((BD) micrographs courtesy of Marc Lenoir, Inserm U1051, France).
Figure 2
Figure 2
Age-related hearing loss according to the International Organization for Standardization (ISO) 7029 standard. Shown are audiograms for females (A) and males (B). The x-axis displays the pure tone frequency (Hz) and the y-axis the hearing thresholds (dB HL). Each individual graph is representative of the median audiogram at a particular age (ranging from 20 to 70 years old, with increments of 10 years).
Figure 3
Figure 3
Imbalance between anti-aging and pro-aging mechanisms with age. The scheme drawing numerates several anti-aging and pro-aging mechanisms identified in the cochlear aging process. Anti-aging mechanisms include estrogen, autophagic damage clearance, and mitochondrial dynamic. Pro-aging mechanisms include oxidative stress, DNA damage, mitochondrial dysfunction, senescence-like phenotype, and senescence-associated inflammation. During the aging process, decreased activity of anti-aging molecules and increased activity of pro-aging properties might lead to accumulation of mutations in mitochondrial DNA, increased lysosomal pH with a resulting accumulation of lipofuscin and aggregates, and nuclear DNA damage, leading to cochlear cell degeneration and age-related hearing loss.
Figure 4
Figure 4
Functional and morphological assessments in SAMP8 and in SAMR1 mice. (A) Functional assessment. The compound action potential (CAP) threshold (red line) and distortion product otoacoustic emissions (DPOAE) amplitude (blue line) evoked by 20 kHz tone bursts, and endocochlear potential (EP) recordings (orange line, right axis)) in SAMR1 and SAMP8 mice. Fifty SAMP8 mice (n = 10 per age: 1, 3, 6, 12, 18 months) and 60 SAMR1 (n = 10 per age: 1, 3, 6, 12, 18, 24 months) mice were used for functional assessment. The lifespan of SAMR1 and SAMP8 was approximately 30 and 20 months, respectively. Note the earlier and faster increase in CAP threshold and decrease in DPOAE amplitude and EP value (arrowheads indicated broken-stick nonlinearities) in the SAMP8. In contrast to SAMR1, no CAP threshold nor DPOAEs could be recorded in 12-month-old SAMP8 mice, respectively. (B) Morphological assessment. Age-related loss of inner hair cells (IHCs, red line), outer hair cells (OHCs, blue line), and spiral ganglion neurons (SGNs, green line, right axis). At the end of the functional assessment period, the cochleae were removed and prepared for hair cell counting using SEM (n = 5 per age per strain) and SNG using light microscopy (n = 5 per age per strain). (C) Scanning electron microscopy in one and 12 months SAMP8 mice. Few OHCs are lacking (asterisks) among the three rows, but all IHCs are present at 1 month. The higher magnification insert shows an OHC stereociliary bundle with missing sterocilia (arrow). In a 12-month-old mouse, all OHCs and numerous IHCs (asterisks) have disappeared. The white box indicates a damaged IHC stereociliary bundle. In the insert, enlargement of the same IHC stereociliary bundle shows fused stereocilia. Scale bar = 10 µm; Insert in (A) = 1 µm. (D) Electron transmission microscopy of the stria vascularis. At one month, the three layers of strial cells, marginal (Mc), intermediate (Ic), basal (Bc) cells, and the blood vessels (Vx) appear normal. At 12 months, enlarged intercellular spaces and perivascular edema (asterisks) are seen. Scale bar = 10 µm. (E) Light microscopical evaluation of spiral ganglion loss. Shown is the normal aspect and density of neurons at 1 month, and a reduced number of spiral ganglion neurons at 12 months. Scale bar = 50 µm. (Adapted from Ménardo et al., [59]).
Figure 5
Figure 5
Pharmacological mitigation of ROS prevents loss of hearing and hair cells in SAMP8 mice (A) SAMP8 mice and EUK-207. Shown are a SAMP8 mouse aged six months and the synthetic superoxide dismutase/catalase mimetic EUK-207. (B) Physiological assessment. The auditory brainstem response (ABR) thresholds recorded before (pale red plot) and after two months (pink plot) and three months (red plot) of Manitol treatments, or before (pale blue plot) and after two months (azure plot) and three months (blue plot) of EUK-207 (10 µM) treatments. (C) Morphological assessment. Representative scanning electron micrographs showing the basal regions of cochleae from Manitol-treated (left panel) and EUK-207-treated (right panel) SAMP8 mice after three months. Scale bar = 15 µm (Adapted from Benkafadar et al. [70]).

References

    1. Franceschi C., Garagnani P., Morsiani C., Conte M., Santoro A., Grignolio A., Monti D., Capri M., Salvioli S. The Continuum of Aging and Age-Related Diseases: Common Mechanisms but Different Rates. Front. Med. 2018;5:61. doi: 10.3389/fmed.2018.00061.
    1. Addressing the Rising Prevalence of Hearing Loss. World Health Organization; Geneva, Switzerland: 2018.
    1. Woodcock K., Pole J.D. Educational attainment, labour force status and injury: A comparison of Canadians with and without deafness and hearing loss. Int. J. Rehabil. Res. 2008;31:297–304. doi: 10.1097/MRR.0b013e3282fb7d4d.
    1. Moscicki E.K., Elkins E.F., Baum H.M., McNamara P.M. Hearing loss in the elderly: An epidemiologic study of the Framingham Heart Study Cohort. Ear Hear. 1985;6:184–190. doi: 10.1097/00003446-198507000-00003.
    1. Cruickshanks K.J., Wiley T.L., Tweed T.S., Klein B.E., Klein R., Mares-Perlman J.A., Nondahl D.M. Prevalence of hearing loss in older adults in Beaver Dam, Wisconsin. The Epidemiology of Hearing Loss Study. Am. J. Epidemiol. 1998;148:879–886. doi: 10.1093/oxfordjournals.aje.a009713.
    1. Schuknecht H.F., Gacek M.R. Cochlear pathology in presbycusis. Ann. Otol. Rhinol. Laryngol. 1993;102:1–16. doi: 10.1177/00034894931020S101.
    1. Gates G.A., Mills J.H. Presbycusis. Lancet. 2005;366:1111–1120. doi: 10.1016/S0140-6736(05)67423-5.
    1. Ohlemiller K.K., Gagnon P.M. Apical-to-basal gradients in age-related cochlear degeneration and their relationship to “primary” loss of cochlear neurons. J. Comp. Neurol. 2004;479:103–116. doi: 10.1002/cne.20326.
    1. Fernandez K.A., Jeffers P.W., Lall K., Liberman M.C., Kujawa S.G. Aging after noise exposure: Acceleration of cochlear synaptopathy in “recovered” ears. J. Neurosci. 2015;35:7509–7520. doi: 10.1523/JNEUROSCI.5138-14.2015.
    1. Kujawa S.G., Liberman M.C. Synaptopathy in the noise-exposed and aging cochlea: Primary neural degeneration in acquired sensorineural hearing loss. Hear. Res. 2015;330:191–199. doi: 10.1016/j.heares.2015.02.009.
    1. Liberman M.C., Epstein M.J., Cleveland S.S., Wang H., Maison S.F. Toward a Differential Diagnosis of Hidden Hearing Loss in Humans. PLoS ONE. 2016;11:e0162726. doi: 10.1371/journal.pone.0162726.
    1. Ralli M., Greco A., De Vincentiis M., Sheppard A., Cappelli G., Neri I., Salvi R. Tone-in-noise detection deficits in elderly patients with clinically normal hearing. Am. J. Otolaryngol. 2019;40:1–9. doi: 10.1016/j.amjoto.2018.09.012.
    1. Gates G.A., Couropmitree N.N., Myers R.H. Genetic associations in age-related hearing thresholds. Arch. Otolaryngol. Head Neck Surg. 1999;125:654–659. doi: 10.1001/archotol.125.6.654.
    1. Guest M., Boggess M., Attia J., SHOAMP study team and Scientific Advisory Committee Relative risk of elevated hearing threshold compared to ISO1999 normative populations for Royal Australian Air Force male personnel. Hear. Res. 2012;285:65–76. doi: 10.1016/j.heares.2012.01.007.
    1. Rosen S., Bergman M., Plester D., El-Mofty A., Satti M.H. Presbycusis study of a relatively noise-free population in the Sudan. Ann. Otol. Rhinol. Laryngol. 1962;71:727–743. doi: 10.1177/000348946207100313.
    1. Bergman M. Hearing in the Mabaans. A critical review of related literature. Arch. Otolaryngol. 1966;84:411–415. doi: 10.1001/archotol.1966.00760030413007.
    1. Goycoolea M.V., Goycoolea H.G., Farfan C.R., Rodriguez L.G., Martinez G.C., Vidal R. Effect of life in industrialized societies on hearing in natives of Easter Island. Laryngoscope. 1986;96:1391–1396. doi: 10.1288/00005537-198612000-00015.
    1. Bielefeld E.C., Tanaka C., Chen G.D., Henderson D. Age-related hearing loss: Is it a preventable condition? Hear. Res. 2010;264:98–107. doi: 10.1016/j.heares.2009.09.001.
    1. Ciorba A., Benatti A., Bianchini C., Aimoni C., Volpato S., Bovo R., Martini A. High frequency hearing loss in the elderly: Effect of age and noise exposure in an Italian group. J. Laryngol. Otol. 2011;125:776–780. doi: 10.1017/S0022215111001101.
    1. Schmiedt R.A., Mills J.H., Adams J.C. Tuning and suppression in auditory nerve fibers of aged gerbils raised in quiet or noise. Hear. Res. 1990;45:221–236. doi: 10.1016/0378-5955(90)90122-6.
    1. Schuknecht H.F., Watanuki K., Takahashi T., Belal A.A., Jr., Kimura R.S., Jones D.D., Ota C.Y. Atrophy of the stria vascularis, a common cause for hearing loss. Laryngoscope. 1974;84:1777–1821. doi: 10.1288/00005537-197410000-00012.
    1. Gratton M.A., Schmiedt R.A., Schulte B.A. Age-related decreases in endocochlear potential are associated with vascular abnormalities in the stria vascularis. Hear. Res. 1996;102:181–190. doi: 10.1016/S0378-5955(96)90017-9.
    1. Gratton M.A., Smyth B.J., Lam C.F., Boettcher F.A., Schmiedt R.A. Decline in the endocochlear potential corresponds to decreased Na,K-ATPase activity in the lateral wall of quiet-aged gerbils. Hear. Res. 1997;108:9–16. doi: 10.1016/S0378-5955(97)00034-8.
    1. Hellstrom L.I., Schmiedt R.A. Compound action potential input/output functions in young and quiet-aged gerbils. Hear. Res. 1990;50:163–174. doi: 10.1016/0378-5955(90)90042-N.
    1. Schulte B.A., Schmiedt R.A. Lateral wall Na,K-ATPase and endocochlear potentials decline with age in quiet-reared gerbils. Hear. Res. 1992;61:35–46. doi: 10.1016/0378-5955(92)90034-K.
    1. Gratton M.A., Schulte B.A. Alterations in microvasculature are associated with atrophy of the stria vascularis in quiet-aged gerbils. Hear. Res. 1995;82:44–52. doi: 10.1016/0378-5955(94)00161-I.
    1. Christensen K., Frederiksen H., Hoffman H.J. Genetic and environmental influences on self-reported reduced hearing in the old and oldest old. J. Am. Geriatr. Soc. 2001;49:1512–1517. doi: 10.1046/j.1532-5415.2001.4911245.x.
    1. Viljanen A., Era P., Kaprio J., Pyykko I., Koskenvuo M., Rantanen T. Genetic and environmental influences on hearing in older women. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2007;62:447–452. doi: 10.1093/gerona/62.4.447.
    1. Unal M., Tamer L., Dogruer Z.N., Yildirim H., Vayisoglu Y., Camdeviren H. N-acetyltransferase 2 gene polymorphism and presbycusis. Laryngoscope. 2005;115:2238–2241. doi: 10.1097/01.mlg.0000183694.10583.12.
    1. Van Eyken E., Van Camp G., Fransen E., Topsakal V., Hendrickx J.J., Demeester K., Van de Heyning P., Maki-Torkko E., Hannula S., Sorri M., et al. Contribution of the N-acetyltransferase 2 polymorphism NAT2*6A to age-related hearing impairment. J. Med. Genet. 2007;44:570–578. doi: 10.1136/jmg.2007.049205.
    1. Bared A., Ouyang X., Angeli S., Du L.L., Hoang K., Yan D., Liu X.Z. Antioxidant enzymes, presbycusis, and ethnic variability. Otolaryngol. Head Neck Surg. 2010;143:263–268. doi: 10.1016/j.otohns.2010.03.024.
    1. Nolan L.S., Cadge B.A., Gomez-Dorado M., Dawson S.J. A functional and genetic analysis of SOD2 promoter variants and their contribution to age-related hearing loss. Mech. Ageing Dev. 2013;134:298–306. doi: 10.1016/j.mad.2013.02.009.
    1. Arsenijevic D., Onuma H., Pecqueur C., Raimbault S., Manning B.S., Miroux B., Couplan E., Alves-Guerra M.C., Goubern M., Surwit R., et al. Disruption of the uncoupling protein-2 gene in mice reveals a role in immunity and reactive oxygen species production. Nat. Genet. 2000;26:435–439. doi: 10.1038/82565.
    1. Sugiura S., Uchida Y., Nakashima T., Ando F., Shimokata H. The association between gene polymorphisms in uncoupling proteins and hearing impairment in Japanese elderly. Acta Oto-Laryngol. 2010;130:487–492. doi: 10.3109/00016480903283758.
    1. Uchida Y., Sugiura S., Sone M., Ueda H., Nakashima T. Progress and prospects in human genetic research into age-related hearing impairment. BioMed Res. Int. 2014;2014:390601. doi: 10.1155/2014/390601.
    1. Van Laer L., Van Eyken E., Fransen E., Huyghe J.R., Topsakal V., Hendrickx J.J., Hannula S., Maki-Torkko E., Jensen M., Demeester K., et al. The grainyhead like 2 gene (GRHL2), alias TFCP2L3, is associated with age-related hearing impairment. Hum. Mol. Genet. 2008;17:159–169. doi: 10.1093/hmg/ddm292.
    1. Van Eyken E., Van Laer L., Fransen E., Topsakal V., Lemkens N., Laureys W., Nelissen N., Vandevelde A., Wienker T., Van De Heyning P., et al. KCNQ4: A gene for age-related hearing impairment? Hum. Mutat. 2006;27:1007–1016. doi: 10.1002/humu.20375.
    1. Friedman R.A., Van Laer L., Huentelman M.J., Sheth S.S., Van Eyken E., Corneveaux J.J., Tembe W.D., Halperin R.F., Thorburn A.Q., Thys S., et al. GRM7 variants confer susceptibility to age-related hearing impairment. Hum. Mol. Genet. 2009;18:785–796. doi: 10.1093/hmg/ddn402.
    1. Newman D.L., Fisher L.M., Ohmen J., Parody R., Fong C.T., Frisina S.T., Mapes F., Eddins D.A., Robert Frisina D., Frisina R.D., et al. GRM7 variants associated with age-related hearing loss based on auditory perception. Hear. Res. 2012;294:125–132. doi: 10.1016/j.heares.2012.08.016.
    1. Johnson K.R., Zheng Q.Y. Ahl2, a second locus affecting age-related hearing loss in mice. Genomics. 2002;80:461–464. doi: 10.1006/geno.2002.6858.
    1. Morita Y., Hirokawa S., Kikkawa Y., Nomura T., Yonekawa H., Shiroishi T., Takahashi S., Kominami R. Fine mapping of Ahl3 affecting both age-related and noise-induced hearing loss. Biochem. Biophys. Res. Commun. 2007;355:117–121. doi: 10.1016/j.bbrc.2007.01.115.
    1. Vaiserman A., Lushchak O. Developmental origins of type 2 diabetes: Focus on epigenetics. Ageing Res. Rev. 2019;55:100957. doi: 10.1016/j.arr.2019.100957.
    1. Pal S., Tyler J.K. Epigenetics and aging. Sci. Adv. 2016;2:e1600584. doi: 10.1126/sciadv.1600584.
    1. Provenzano M.J., Domann F.E. A role for epigenetics in hearing: Establishment and maintenance of auditory specific gene expression patterns. Hear. Res. 2007;233:1–13. doi: 10.1016/j.heares.2007.07.002.
    1. Xiao F.H., Kong Q.P., Perry B., He Y.H. Progress on the role of DNA methylation in aging and longevity. Brief. Funct. Genom. 2016;15:454–459. doi: 10.1093/bfgp/elw009.
    1. Wu X., Wang Y., Sun Y., Chen S., Zhang S., Shen L., Huang X., Lin X., Kong W. Reduced expression of Connexin26 and its DNA promoter hypermethylation in the inner ear of mimetic aging rats induced by d-galactose. Biochem. Biophys. Res. Commun. 2014;452:340–346. doi: 10.1016/j.bbrc.2014.08.063.
    1. Xu J., Zheng J., Shen W., Ma L., Zhao M., Wang X., Tang J., Yan J., Wu Z., Zou Z., et al. Elevated SLC26A4 gene promoter methylation is associated with the risk of presbycusis in men. Mol. Med. Rep. 2017;16:347–352. doi: 10.3892/mmr.2017.6565.
    1. Bouzid A., Smeti I., Dhouib L., Roche M., Achour I., Khalfallah A., Gibriel A.A., Charfeddine I., Ayadi H., Lachuer J., et al. Down-expression of P2RX2, KCNQ5, ERBB3 and SOCS3 through DNA hypermethylation in elderly women with presbycusis. Biomarkers. 2018;23:347–356. doi: 10.1080/1354750X.2018.1427795.
    1. Watanabe K., Bloch W. Histone methylation and acetylation indicates epigenetic change in the aged cochlea of mice. Eur. Arch. Oto-Rhino-Laryngol. 2013;270:1823–1830. doi: 10.1007/s00405-012-2222-1.
    1. Fransen E., Lemkens N., Van Laer L., Van Camp G. Age-related hearing impairment (ARHI): Environmental risk factors and genetic prospects. Exp. Gerontol. 2003;38:353–359. doi: 10.1016/S0531-5565(03)00032-9.
    1. Gates G.A., Schmid P., Kujawa S.G., Nam B., D’Agostino R. Longitudinal threshold changes in older men with audiometric notches. Hear. Res. 2000;141:220–228. doi: 10.1016/S0378-5955(99)00223-3.
    1. Kujawa S.G., Liberman M.C. Acceleration of age-related hearing loss by early noise exposure: Evidence of a misspent youth. J. Neurosci. 2006;26:2115–2123. doi: 10.1523/JNEUROSCI.4985-05.2006.
    1. Fetoni A.R., Picciotti P.M., Paludetti G., Troiani D. Pathogenesis of presbycusis in animal models: A review. Exp. Gerontol. 2011;46:413–425. doi: 10.1016/j.exger.2010.12.003.
    1. Alvarado J.C., Fuentes-Santamaria V., Gabaldon-Ull M.C., Juiz J.M. Age-Related Hearing Loss Is Accelerated by Repeated Short-Duration Loud Sound Stimulation. Front. Neurosci. 2019;13:77. doi: 10.3389/fnins.2019.00077.
    1. Alvarado J.C., Fuentes-Santamaria V., Gabaldon-Ull M.C., Blanco J.L., Juiz J.M. Wistar rats: A forgotten model of age-related hearing loss. Front. Aging Neurosci. 2014;6:29. doi: 10.3389/fnagi.2014.00029.
    1. Joo Y., Cruickshanks K.J., Klein B.E.K., Klein R., Hong O., Wallhagen M. The Contribution of Ototoxic Medications to Hearing Loss among Older Adults. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2019 doi: 10.1093/gerona/glz166.
    1. Pacher P., Beckman J.S., Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol. Rev. 2007;87:315–424. doi: 10.1152/physrev.00029.2006.
    1. Han C., Someya S. Maintaining good hearing: Calorie restriction, Sirt3, and glutathione. Exp. Gerontol. 2013;48:1091–1095. doi: 10.1016/j.exger.2013.02.014.
    1. Menardo J., Tang Y., Ladrech S., Lenoir M., Casas F., Michel C., Bourien J., Ruel J., Rebillard G., Maurice T., et al. Oxidative stress, inflammation, and autophagic stress as the key mechanisms of premature age-related hearing loss in SAMP8 mouse Cochlea. Antioxid. Redox Signal. 2012;16:263–274. doi: 10.1089/ars.2011.4037.
    1. Lasisi A.O., Fehintola F.A. Correlation between plasma levels of radical scavengers and hearing threshold among elderly subjects with age-related hearing loss. Acta Oto-Laryngol. 2011;131:1160–1164. doi: 10.3109/00016489.2010.549840.
    1. Jiang H., Talaska A.E., Schacht J., Sha S.H. Oxidative imbalance in the aging inner ear. Neurobiol. Aging. 2007;28:1605–1612. doi: 10.1016/j.neurobiolaging.2006.06.025.
    1. Someya S., Xu J., Kondo K., Ding D., Salvi R.J., Yamasoba T., Rabinovitch P.S., Weindruch R., Leeuwenburgh C., Tanokura M., et al. Age-related hearing loss in C57BL/6J mice is mediated by Bak-dependent mitochondrial apoptosis. Proc. Natl. Acad. Sci. USA. 2009;106:19432–19437. doi: 10.1073/pnas.0908786106.
    1. Keithley E.M., Canto C., Zheng Q.Y., Wang X., Fischel-Ghodsian N., Johnson K.R. Cu/Zn superoxide dismutase and age-related hearing loss. Hear. Res. 2005;209:76–85. doi: 10.1016/j.heares.2005.06.009.
    1. Ying Y.L., Balaban C.D. Regional distribution of manganese superoxide dismutase 2 (Mn SOD2) expression in rodent and primate spiral ganglion cells. Hear. Res. 2009;253:116–124. doi: 10.1016/j.heares.2009.04.006.
    1. Mantha A.K., Sarkar B., Tell G. A short review on the implications of base excision repair pathway for neurons: Relevance to neurodegenerative diseases. Mitochondrion. 2014;16:38–49. doi: 10.1016/j.mito.2013.10.007.
    1. Breen A.P., Murphy J.A. Reactions of oxyl radicals with DNA. Free Radic. Biol. Med. 1995;18:1033–1077. doi: 10.1016/0891-5849(94)00209-3.
    1. Valavanidis A., Vlachogianni T., Fiotakis C. 8-hydroxy-2′ -deoxyguanosine (8-OHdG): A critical biomarker of oxidative stress and carcinogenesis. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 2009;27:120–139. doi: 10.1080/10590500902885684.
    1. Benkafadar N., Menardo J., Bourien J., Nouvian R., Francois F., Decaudin D., Maiorano D., Puel J.L., Wang J. Reversible p53 inhibition prevents cisplatin ototoxicity without blocking chemotherapeutic efficacy. EMBO Mol. Med. 2017;9:7–26. doi: 10.15252/emmm.201606230.
    1. Kamogashira T., Hayashi K., Fujimoto C., Iwasaki S., Yamasoba T. Functionally and morphologically damaged mitochondria observed in auditory cells under senescence-inducing stress. NPJ Aging Mech. Dis. 2017;3:2. doi: 10.1038/s41514-017-0002-2.
    1. Benkafadar N., Francois F., Affortit C., Casas F., Ceccato J.C., Menardo J., Venail F., Malfroy-Camine B., Puel J.L., Wang J. ROS-Induced Activation of DNA Damage Responses Drives Senescence-Like State in Postmitotic Cochlear Cells: Implication for Hearing Preservation. Mol. Neurobiol. 2019;56:5950–5969. doi: 10.1007/s12035-019-1493-6.
    1. Trifunovic A., Wredenberg A., Falkenberg M., Spelbrink J.N., Rovio A.T., Bruder C.E., Bohlooly Y.M., Gidlof S., Oldfors A., Wibom R., et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature. 2004;429:417–423. doi: 10.1038/nature02517.
    1. Chen H., Tang J. The role of mitochondria in age-related hearing loss. Biogerontology. 2014;15:13–19. doi: 10.1007/s10522-013-9475-y.
    1. Markaryan A., Nelson E.G., Hinojosa R. Quantification of the mitochondrial DNA common deletion in presbycusis. Laryngoscope. 2009;119:1184–1189. doi: 10.1002/lary.20218.
    1. Bai U., Seidman M.D., Hinojosa R., Quirk W.S. Mitochondrial DNA deletions associated with aging and possibly presbycusis: A human archival temporal bone study. Am. J. Otol. 1997;18:449–453.
    1. Fischel-Ghodsian N., Bykhovskaya Y., Taylor K., Kahen T., Cantor R., Ehrenman K., Smith R., Keithley E. Temporal bone analysis of patients with presbycusis reveals high frequency of mitochondrial mutations. Hear. Res. 1997;110:147–154. doi: 10.1016/S0378-5955(97)00077-4.
    1. Markaryan A., Nelson E.G., Hinojosa R. Major arc mitochondrial DNA deletions in cytochrome c oxidase-deficient human cochlear spiral ganglion cells. Acta Oto-Laryngol. 2010;130:780–787. doi: 10.3109/00016480903397702.
    1. Filosto M., Mancuso M., Nishigaki Y., Pancrudo J., Harati Y., Gooch C., Mankodi A., Bayne L., Bonilla E., Shanske S., et al. Clinical and genetic heterogeneity in progressive external ophthalmoplegia due to mutations in polymerase gamma. Arch. Neurol. 2003;60:1279–1284. doi: 10.1001/archneur.60.9.1279.
    1. Sarzi E., Angebault C., Seveno M., Gueguen N., Chaix B., Bielicki G., Boddaert N., Mausset-Bonnefont A.L., Cazevieille C., Rigau V., et al. The human OPA1delTTAG mutation induces premature age-related systemic neurodegeneration in mouse. Brain. 2012;135:3599–3613. doi: 10.1093/brain/aws303.
    1. Trifunovic A., Hansson A., Wredenberg A., Rovio A.T., Dufour E., Khvorostov I., Spelbrink J.N., Wibom R., Jacobs H.T., Larsson N.G. Somatic mtDNA mutations cause aging phenotypes without affecting reactive oxygen species production. Proc. Natl. Acad. Sci. USA. 2005;102:17993–17998. doi: 10.1073/pnas.0508886102.
    1. Kujoth G.C., Hiona A., Pugh T.D., Someya S., Panzer K., Wohlgemuth S.E., Hofer T., Seo A.Y., Sullivan R., Jobling W.A., et al. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science. 2005;309:481–484. doi: 10.1126/science.1112125.
    1. Sanchis-Gomar F., Garcia-Gimenez J.L., Gomez-Cabrera M.C., Pallardo F.V. Mitochondrial biogenesis in health and disease. Molecular and therapeutic approaches. Curr. Pharm. Des. 2014;20:5619–5633. doi: 10.2174/1381612820666140306095106.
    1. Zhao X.Y., Sun J.L., Hu Y.J., Yang Y., Zhang W.J., Hu Y., Li J., Sun Y., Zhong Y., Peng W., et al. The effect of overexpression of PGC-1alpha on the mtDNA4834 common deletion in a rat cochlear marginal cell senescence model. Hear. Res. 2013;296:13–24. doi: 10.1016/j.heares.2012.11.007.
    1. Herranz N., Gil J. Mechanisms and functions of cellular senescence. J. Clin. Investig. 2018;128:1238–1246. doi: 10.1172/JCI95148.
    1. Childs B.G., Durik M., Baker D.J., van Deursen J.M. Cellular senescence in aging and age-related disease: From mechanisms to therapy. Nat. Med. 2015;21:1424–1435. doi: 10.1038/nm.4000.
    1. van Deursen J.M. The role of senescent cells in ageing. Nature. 2014;509:439–446. doi: 10.1038/nature13193.
    1. Sapieha P., Mallette F.A. Cellular Senescence in Postmitotic Cells: Beyond Growth Arrest. Trends Cell Biol. 2018;28:595–607. doi: 10.1016/j.tcb.2018.03.003.
    1. Howcroft T.K., Campisi J., Louis G.B., Smith M.T., Wise B., Wyss-Coray T., Augustine A.D., McElhaney J.E., Kohanski R., Sierra F. The role of inflammation in age-related disease. Aging. 2013;5:84–93. doi: 10.18632/aging.100531.
    1. Nash S.D., Cruickshanks K.J., Zhan W., Tsai M.Y., Klein R., Chappell R., Nieto F.J., Klein B.E., Schubert C.R., Dalton D.S., et al. Long-term assessment of systemic inflammation and the cumulative incidence of age-related hearing impairment in the epidemiology of hearing loss study. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2014;69:207–214. doi: 10.1093/gerona/glt075.
    1. Verschuur C.A., Dowell A., Syddall H.E., Ntani G., Simmonds S.J., Baylis D., Gale C.R., Walsh B., Cooper C., Lord J.M., et al. Markers of inflammatory status are associated with hearing threshold in older people: Findings from the Hertfordshire Ageing Study. Age Ageing. 2012;41:92–97. doi: 10.1093/ageing/afr140.
    1. Tadros S.F., D’Souza M., Zhu X., Frisina R.D. Apoptosis-related genes change their expression with age and hearing loss in the mouse cochlea. Apoptosis Int. J. Program. Cell Death. 2008;13:1303–1321. doi: 10.1007/s10495-008-0266-x.
    1. Fujimoto C., Yamasoba T. Oxidative stresses and mitochondrial dysfunction in age-related hearing loss. Oxid. Med. Cell. Longev. 2014;2014:582849. doi: 10.1155/2014/582849.
    1. Falah M., Houshmand M., Najafi M., Balali M., Mahmoudian S., Asghari A., Emamdjomeh H., Farhadi M. The potential role for use of mitochondrial DNA copy number as predictive biomarker in presbycusis. Ther. Clin. Risk Manag. 2016;12:1573–1578. doi: 10.2147/TCRM.S117491.
    1. Wang J., Puel J.L. Toward Cochlear Therapies. Physiol. Rev. 2018;98:2477–2522. doi: 10.1152/physrev.00053.2017.
    1. Aburto M.R., Sanchez-Calderon H., Hurle J.M., Varela-Nieto I., Magarinos M. Early otic development depends on autophagy for apoptotic cell clearance and neural differentiation. Cell Death Dis. 2012;3:e394. doi: 10.1038/cddis.2012.132.
    1. de Iriarte Rodriguez R., Pulido S., Rodriguez-de la Rosa L., Magarinos M., Varela-Nieto I. Age-regulated function of autophagy in the mouse inner ear. Hear. Res. 2015;330:39–50. doi: 10.1016/j.heares.2015.07.020.
    1. Liu N., Landreh M., Cao K., Abe M., Hendriks G.J., Kennerdell J.R., Zhu Y., Wang L.S., Bonini N.M. The microRNA miR-34 modulates ageing and neurodegeneration in Drosophila. Nature. 2012;482:519–523. doi: 10.1038/nature10810.
    1. Xiong H., Pang J., Yang H., Dai M., Liu Y., Ou Y., Huang Q., Chen S., Zhang Z., Xu Y., et al. Activation of miR-34a/SIRT1/p53 signaling contributes to cochlear hair cell apoptosis: Implications for age-related hearing loss. Neurobiol. Aging. 2015;36:1692–1701. doi: 10.1016/j.neurobiolaging.2014.12.034.
    1. Pang J., Xiong H., Lin P., Lai L., Yang H., Liu Y., Huang Q., Chen S., Ye Y., Sun Y., et al. Activation of miR-34a impairs autophagic flux and promotes cochlear cell death via repressing ATG9A: Implications for age-related hearing loss. Cell Death Dis. 2017;8:e3079. doi: 10.1038/cddis.2017.462.
    1. Cui J., Shen Y., Li R. Estrogen synthesis and signaling pathways during aging: From periphery to brain. Trends Mol. Med. 2013;19:197–209. doi: 10.1016/j.molmed.2012.12.007.
    1. Zarate S., Stevnsner T., Gredilla R. Role of Estrogen and Other Sex Hormones in Brain Aging. Neuroprotection and DNA Repair. Front. Aging Neurosci. 2017;9:430. doi: 10.3389/fnagi.2017.00430.
    1. Jonsson R., Rosenhall U., Gause-Nilsson I., Steen B. Auditory function in 70- and 75-year-olds of four age cohorts. A cross-sectional and time-lag study of presbyacusis. Scand. Audiol. 1998;27:81–93. doi: 10.1080/010503998420324.
    1. Stenberg A.E., Nylen O., Windh M., Hultcrantz M. Otological problems in children with Turner’s syndrome. Hear. Res. 1998;124:85–90. doi: 10.1016/S0378-5955(98)00113-0.
    1. Hultcrantz M., Simonoska R., Stenberg A.E. Estrogen and hearing: A summary of recent investigations. Acta Oto-Laryngol. 2006;126:10–14. doi: 10.1080/00016480510038617.
    1. Balogova Z., Popelar J., Chiumenti F., Chumak T., Burianova J.S., Rybalko N., Syka J. Age-Related Differences in Hearing Function and Cochlear Morphology between Male and Female Fischer 344 Rats. Front. Aging Neurosci. 2017;9:428. doi: 10.3389/fnagi.2017.00428.
    1. Guimaraes P., Zhu X., Cannon T., Kim S., Frisina R.D. Sex differences in distortion product otoacoustic emissions as a function of age in CBA mice. Hear. Res. 2004;192:83–89. doi: 10.1016/j.heares.2004.01.013.
    1. Henry K.R. Males lose hearing earlier in mouse models of late-onset age-related hearing loss; females lose hearing earlier in mouse models of early-onset hearing loss. Hear. Res. 2004;190:141–148. doi: 10.1016/S0378-5955(03)00401-5.
    1. Seidman M.D., Khan M.J., Bai U., Shirwany N., Quirk W.S. Biologic activity of mitochondrial metabolites on aging and age-related hearing loss. Am. J. Otol. 2000;21:161–167. doi: 10.1016/S0196-0709(00)80003-4.
    1. Sha S.H., Kanicki A., Halsey K., Wearne K.A., Schacht J. Antioxidant-enriched diet does not delay the progression of age-related hearing loss. Neurobiol. Aging. 2012;33:1010.e15–1010.e16. doi: 10.1016/j.neurobiolaging.2011.10.023.
    1. Seidman M.D., Khan M.J., Tang W.X., Quirk W.S. Influence of lecithin on mitochondrial DNA and age-related hearing loss. Otolaryngol. Head Neck Surg. 2002;127:138–144. doi: 10.1067/mhn.2002.127627.
    1. Nevado J., Sanz R., Sanchez-Rodriguez C., Garcia-Berrocal J.R., Martin-Sanz E., Gonzalez-Garcia J.A., Esteban-Sanchez J., Ramirez-Camacho R. Ginkgo biloba extract (EGb761) protects against aging-related caspase-mediated apoptosis in rat cochlea. Acta Oto-Laryngol. 2010;130:1101–1112. doi: 10.3109/00016481003713657.
    1. Kang J.W., Choi H.S., Kim K., Choi J.Y. Dietary vitamin intake correlates with hearing thresholds in the older population: The Korean National Health and Nutrition Examination Survey. Am. J. Clin. Nutr. 2014;99:1407–1413. doi: 10.3945/ajcn.113.072793.
    1. Polanski J.F., Cruz O.L. Evaluation of antioxidant treatment in presbyacusis: Prospective, placebo-controlled, double-blind, randomised trial. J. Laryngol. Otol. 2013;127:134–141. doi: 10.1017/S0022215112003118.
    1. Esposito E., Di Matteo V., Benigno A., Pierucci M., Crescimanno G., Di Giovanni G. Non-steroidal anti-inflammatory drugs in Parkinson’s disease. Exp. Neurol. 2007;205:295–312. doi: 10.1016/j.expneurol.2007.02.008.
    1. Lowthian J.A., Britt C.J., Rance G., Lin F.R., Woods R.L., Wolfe R., Nelson M.R., Dillon H.A., Ward S., Reid C.M., et al. Slowing the progression of age-related hearing loss: Rationale and study design of the ASPIRIN in HEARING, retinal vessels imaging and neurocognition in older generations (ASPREE-HEARING) trial. Contemp. Clin. Trials. 2016;46:60–66. doi: 10.1016/j.cct.2015.11.014.
    1. Lee S.H., Lee H.Y., Yu M., Yeom E., Lee J.H., Yoon A., Lee K.S., Min K.J. Extension of Drosophila lifespan by Korean red ginseng through a mechanism dependent on dSir2 and insulin/IGF-1 signaling. Aging. 2019;11:9369–9387. doi: 10.18632/aging.102387.
    1. Rascon B., Hubbard B.P., Sinclair D.A., Amdam G.V. The lifespan extension effects of resveratrol are conserved in the honey bee and may be driven by a mechanism related to caloric restriction. Aging. 2012;4:499–508. doi: 10.18632/aging.100474.
    1. Agarwal B., Baur J.A. Resveratrol and life extension. Ann. N. Y. Acad. Sci. 2011;1215:138–143. doi: 10.1111/j.1749-6632.2010.05850.x.
    1. Han C., Linser P., Park H.J., Kim M.J., White K., Vann J.M., Ding D., Prolla T.A., Someya S. Sirt1 deficiency protects cochlear cells and delays the early onset of age-related hearing loss in C57BL/6 mice. Neurobiol. Aging. 2016;43:58–71. doi: 10.1016/j.neurobiolaging.2016.03.023.
    1. Someya S., Tanokura M., Weindruch R., Prolla T.A., Yamasoba T. Effects of caloric restriction on age-related hearing loss in rodents and rhesus monkeys. Curr. Aging Sci. 2010;3:20–25. doi: 10.2174/1874609811003010020.
    1. Han X., Ge R., Xie G., Li P., Zhao X., Gao L., Zhang H., Wang O., Huang F., Han F. Caspase-mediated apoptosis in the cochleae contributes to the early onset of hearing loss in A/J mice. ASN Neuro. 2015;7 doi: 10.1177/1759091415573985.
    1. Yang L., Zhang H., Han X., Zhao X., Hu F., Li P., Xie G., Gao L., Cheng L., Song X., et al. Attenuation of hearing loss in DBA/2J mice by anti-apoptotic treatment. Hear. Res. 2015;327:109–116. doi: 10.1016/j.heares.2015.05.006.
    1. Lee H., Shin E.A., Lee J.H., Ahn D., Kim C.G., Kim J.H., Kim S.H. Caspase inhibitors: A review of recently patented compounds (2013–2015) Expert Opin. Ther. Pat. 2018;28:47–59. doi: 10.1080/13543776.2017.1378426.
    1. Viana L.M., O’Malley J.T., Burgess B.J., Jones D.D., Oliveira C.A., Santos F., Merchant S.N., Liberman L.D., Liberman M.C. Cochlear neuropathy in human presbycusis: Confocal analysis of hidden hearing loss in post-mortem tissue. Hear. Res. 2015;327:78–88. doi: 10.1016/j.heares.2015.04.014.
    1. Makary C.A., Shin J., Kujawa S.G., Liberman M.C., Merchant S.N. Age-related primary cochlear neuronal degeneration in human temporal bones. J. Assoc. Res. Otolaryngol. 2011;12:711–717. doi: 10.1007/s10162-011-0283-2.
    1. Chen H., Xing Y., Xia L., Chen Z., Yin S., Wang J. AAV-mediated NT-3 overexpression protects cochleae against noise-induced synaptopathy. Gene Ther. 2018 doi: 10.1038/s41434-018-0012-0.
    1. Pyykko I., Zou J., Schrott-Fischer A., Glueckert R., Kinnunen P. An Overview of Nanoparticle Based Delivery for Treatment of Inner Ear Disorders. Methods Mol. Biol. 2016;1427:363–415. doi: 10.1007/978-1-4939-3615-1_21.
    1. Miller R.A. Evaluating evidence for aging. Science. 2005;310:441–443. doi: 10.1126/science.310.5747.441.
    1. Ren H., Chen J., Wang Y., Zhang S., Zhang B. Intracerebral neural stem cell transplantation improved the auditory of mice with presbycusis. Int. J. Clin. Exp. Pathol. 2013;6:230–241.
    1. Hu Z., Ulfendahl M. Cell replacement therapy in the inner ear. Stem Cells Dev. 2006;15:449–459. doi: 10.1089/scd.2006.15.449.
    1. Corrales C.E., Pan L., Li H., Liberman M.C., Heller S., Edge A.S. Engraftment and differentiation of embryonic stem cell-derived neural progenitor cells in the cochlear nerve trunk: Growth of processes into the organ of Corti. J. Neurobiol. 2006;66:1489–1500. doi: 10.1002/neu.20310.
    1. Chen W., Jongkamonwiwat N., Abbas L., Eshtan S.J., Johnson S.L., Kuhn S., Milo M., Thurlow J.K., Andrews P.W., Marcotti W., et al. Restoration of auditory evoked responses by human ES-cell-derived otic progenitors. Nature. 2012;490:278–282. doi: 10.1038/nature11415.
    1. Davidsohn N., Pezzone M., Vernet A., Graveline A., Oliver D., Slomovic S., Punthambaker S., Sun X., Liao R., Bonventre J.V., et al. A single combination gene therapy treats multiple age-related diseases. Proc. Natl. Acad. Sci. USA. 2019;116:23505–23511. doi: 10.1073/pnas.1910073116.
    1. Gantz B.J., Turner C. Combining acoustic and electrical speech processing: Iowa/Nucleus hybrid implant. Acta Oto-Laryngol. 2004;124:344–347. doi: 10.1080/00016480410016423.
    1. Skarzynski H., Lorens A., Piotrowska A., Podskarbi-Fayette R. Results of partial deafness cochlear implantation using various electrode designs. Audiol. Neuro-Otol. 45 doi: 10.1159/000206494.
    1. Liu Y., Jolly C., Braun S., Stark T., Scherer E., Plontke S.K., Kiefer J. In vitro and in vivo pharmacokinetic study of a dexamethasone-releasing silicone for cochlear implants. Eur. Arch. Oto-Rhino-Laryngol. 2016;273:1745–1753. doi: 10.1007/s00405-015-3760-0.
    1. Douchement D., Terranti A., Lamblin J., Salleron J., Siepmann F., Siepmann J., Vincent C. Dexamethasone eluting electrodes for cochlear implantation: Effect on residual hearing. Cochlear Implant. Int. 2015;16:195–200. doi: 10.1179/1754762813Y.0000000053.
    1. Astolfi L., Simoni E., Giarbini N., Giordano P., Pannella M., Hatzopoulos S., Martini A. Cochlear implant and inflammation reaction: Safety study of a new steroid-eluting electrode. Hear. Res. 2016;336:44–52. doi: 10.1016/j.heares.2016.04.005.
    1. Bas E., Bohorquez J., Goncalves S., Perez E., Dinh C.T., Garnham C., Hessler R., Eshraghi A.A., Van De Water T.R. Electrode array-eluted dexamethasone protects against electrode insertion trauma induced hearing and hair cell losses, damage to neural elements, increases in impedance and fibrosis: A dose response study. Hear. Res. 2016;337:12–24. doi: 10.1016/j.heares.2016.02.003.
    1. Plontke S.K., Gotze G., Rahne T., Liebau A. Intracochlear drug delivery in combination with cochlear implants : Current aspects. Hno. 2016;64:797–807. doi: 10.1007/s00106-016-0257-0.

Source: PubMed

3
Abonnere