Best Practices and Advice for Using Pupillometry to Measure Listening Effort: An Introduction for Those Who Want to Get Started

Matthew B Winn, Dorothea Wendt, Thomas Koelewijn, Stefanie E Kuchinsky, Matthew B Winn, Dorothea Wendt, Thomas Koelewijn, Stefanie E Kuchinsky

Abstract

Within the field of hearing science, pupillometry is a widely used method for quantifying listening effort. Its use in research is growing exponentially, and many labs are (considering) applying pupillometry for the first time. Hence, there is a growing need for a methods paper on pupillometry covering topics spanning from experiment logistics and timing to data cleaning and what parameters to analyze. This article contains the basic information and considerations needed to plan, set up, and interpret a pupillometry experiment, as well as commentary about how to interpret the response. Included are practicalities like minimal system requirements for recording a pupil response and specifications for peripheral, equipment, experiment logistics and constraints, and different kinds of data processing. Additional details include participant inclusion and exclusion criteria and some methodological considerations that might not be necessary in other auditory experiments. We discuss what data should be recorded and how to monitor the data quality during recording in order to minimize artifacts. Data processing and analysis are considered as well. Finally, we share insights from the collective experience of the authors and discuss some of the challenges that still lie ahead.

Keywords: listening effort; methods; pupillometry.

Figures

Figure 1.
Figure 1.
Events in a basic pupillometry experiment for measuring listening effort. There are other experimental paradigms that are possible, this illustrates a commonly used sequence of events.
Figure 2.
Figure 2.
Pupillary hippus, or small ongoing fluctuations in pupil size that are unrelated to an external stimulus.
Figure 3.
Figure 3.
Sequential steps of data processing. Raw data (black, marked no. 1) contain blinks that appear as transient changes in pupil dilation separated by a blank stretch of missing data. De-blinked data (no. 2, in red) expands the gap of missing data to remove the transient excursions. The gaps are interpolated (no. 3 in blue, interpolations in dashed lines). Finally, the data are low-pass filtered (no. 4, green).
Figure 4.
Figure 4.
Different baseline intervals end at the onset of the stimulus and extend backwards by variable durations (highlighted in each panel by a shaded vertical area). Comparison of the resulting baseline-corrected data is shown on the far-right panel, revealing negligible differences across baseline durations.
Figure 5.
Figure 5.
Illustration of baseline correction and proportionalization of data for two hypothetical individuals each participating in two testing conditions indicated by line color. Raw pupil size is shown on the upper panels, absolute change (mm) in pupil size is shown in the middle panels, and proportional change in shown in the lower panels. Baseline intervals consisted of the 1-s of data prior to stimulus onset indicated at time 0.
Figure 6.
Figure 6.
Different amounts of change in pupil dilation for two hypothetical individuals who have different dynamic range of pupil size. In each panel, the difference in peak pupil dilation occupies the same proportion of the overall dynamic range.
Figure 7.
Figure 7.
Sixteen individual trials of pupil data, with baseline period marked as thin gray vertical bar, and retention interval marked as thick gray vertical bar. The stimulus is played between these two bars. Baseline level for each trial is marked as the horizontal blue line. Lines plotted in color are low-pass filtered data overlaid on gray raw data that include transient vertical displacements that indicate blinks. Data in red are marked to be dropped from the data set due to excessive data loss or contamination (excessive nontask-evoked dilation) during baseline interval.
Figure 8.
Figure 8.
Aggregation of trials displayed in Figure 7, excluding “dropped” trials. The left and right panels display data aligned to stimulus onset and offset, respectively. The thin gray bar (to the left in each panel) corresponds to the baseline interval, and the thicker gray bar (to the right) corresponds to the retention interval. Because stimuli were of variable duration, average values were used for the offset time for onset-aligned data, and for onset in offset-aligned data.
Figure 9.
Figure 9.
Temporal precision of pupil dilation morphology is related to difficulty of a task. Listeners with cochlear implants (for whom auditory perception can be quite challenging) show individuated dilations to slowly spoken words that are time locked across trials. Affecting the predictability of the second word in the sequence causes a reduced response shortly after the corresponding word. Such patterns do not emerge clearly for listeners with normal hearing, for whom the task is very easy.

References

    1. Abokyi S., Oqusu-Mensah J., Osei K. (2017) Caffeine intake is associated with pupil dilation and enhanced accommodation. Eye 31: 615–619. doi:10.1038/eye.2016.288.
    1. Ahern, S., & Beatty, J. (1979). Pupillary responses during information processing vary with scholastic aptitude test scores. Science, 205, 1289–1292. doi:10.1126/science.472746.
    1. Altmann G. T., Kamide Y. (1999) Incremental interpretation at verbs: Restricting the domain of subsequent reference. Cognition 73(3): 247–264. doi:10.1016/S0010-0277(99)00059-1.
    1. Anderson C., Columbo J. (2009) Larger tonic pupil size in young children with autism spectrum disorder. Developmental Psychobiology 51: 207–211. doi:10.1002/dev.20352.
    1. Aston-Jones G., Cohen J. (2005) An integrative theory of locus coeruleus-norepinephrine function: Adaptive gain and optimal performance. Annual Review Neuroscience 28: 403–450. doi:10.1146/annurev.neuro.28.061604.135709.
    1. Ayasse N., Lash A., Wingfield A. (2017) Effort not speed characterizes comprehension of spoken sentences by older adults with mild hearing Impairment. Frontiers in Aging Neuroscience 8: 329 doi:10.3389/fnagi.2016.00329.
    1. Bala A., Spitzer M., Takahashi T. (2007) Auditory spatial acuity approximates the resolving power of space-specific neurons. PLoS One 2: e675 doi:10.1371/journal.pone.0000675.
    1. Beatty J. (1982) Task-evoked pupillary responses, processing load, and the structure of processing resources. Psychological Bulletin 91: 276–292. doi:10.1037/0033-2909.91.2.276.
    1. Beatty J., Lucero-Wagoner B. (2000) The pupillary system. In: Cacioppo J. T., Tassinary L. G., Berntson G. G. (eds) Handbook of psychophysiology, Hillsdale, NJ: Cambridge University Press, pp. 142–162.
    1. Best V., Ahlstrom J., Mason C., Roverud E., Perrachione T., Kidd G., Dubno J. (2018) Talker identification: Effects of masking, hearing loss and age. The Journal of the Acoustical Society of America 143: 1085–1092. doi:10.1121/1.5024333.
    1. Best V., Streeter T., Roverud E., Mason C., Kidd G. (2016) A flexible question-and-answer task for measuring speech understanding. Trends in Hearing 20: 1–8. doi:10.1177/2331216516678706.
    1. Bianchi F., Santurette S., Wendt D., Dau T. (2016) Pitch discrimination in musicians and non-musicians: Effects of harmonic resolvability and processing effort. Journal of the Association for Research in Otolaryngology 17(1): 69–79. doi:10.1007/s10162-015-0548-2.
    1. Bitsios P., Prettyman R., Szabadi E. (1996) Changes in autonomic function with age: A study of pupillary kinetics in healthy young and old people. Age and Ageing 25: 432–438. doi:10.1093/ageing/25.6.432.
    1. Borghini, G. (2017). Listening effort during speech understanding in a second language. Presented at the Pupillometry in Hearing Science Workshop, Amsterdam, The Netherlands.
    1. Bradshaw J. (1968) Pupil size and problem solving. The Quarterly Journal of Experimental Psychology 20: 116–122. doi:10.1080/14640746808400139.
    1. Bradshaw J. (1969) Background light intensity and the pupillary response in a reaction time task. Psychonomic Science 14: 271–272. doi:10.3758/BF03329118.
    1. Bradshaw J. (1970) Pupil size and drug state in a reaction time task. Psychonomic Science 18: 112–113. doi:10.3758/BF03335723.
    1. Brisson J., Mainville M., Mailloux D., Beaulieau C., Serres J., Sirois S. (2013) Pupil diameter measurement errors as a function of gaze direction in corneal reflection eyetrackers. Behavioral Research 45: 1322–1331. doi:10.3758/s13428-013-0327-0.
    1. Bronkhorst A. (2015) The cocktail-party problem revisited: Early processing and selection of multi-talker speech. Attention Perception and Psychophysics 77: 1465–1487. doi:10.3758/s13414-015-0882-9.
    1. Bruya, B., & Tang, Y.-Y. (2018). Is attention really effort? Revisiting Daniel Kahneman’s influential 1973 book attention and effort. Frontiers in Psychology. doi:10.3389/fpsyg.2018.01133.
    1. Cavanaugh J., Wiecki T., Kochar A., Frank M. (2014) Eye tracking and pupillometry are indicators of dissociable latent decision processes. Journal of Experimental Psychology General 143: 1476–1488. doi:10.1037/a0035813.
    1. Choi J., Corcoran C., Fiszdon J., Stevens M., Javitt D., Deasy M., Pearlson G. (2017) Pupillometer-based neurofeedback cognitive training to improve processing speed and social functioning in individuals at clinical high risk for psychosis. Psychiatric Rehabilitation Journal 40: 33–42. doi:10.1037/prj0000217.
    1. Dahan D., Tanenhaus M., Chambers C. (2001) Accent and reference resolution in spoken-language comprehension. Journal of Memory and Language 47: 292–314. doi:10.1016/S0749-596X(02)00001-3.
    1. Demorest M., Erdman S. (1986) Scale composition and item analysis of the communication profile for the hearing impaired. Journal of Speech and Hearing Research 29: 515–535. doi:10.1044/jshr.2904.535.
    1. Dosenbach N. U. F., Visscher K. M., Palmer E. D., Miezin F. M., Wenger K. K., Kang H. C., Petersen S. E. (2006) A core system for the implementation of task sets. Neuron 50: 799–812. doi:10.1016/j.neuron.2006.04.031.
    1. Eckert M., Menon V., Walczak A., Ahlstrom J., Denslow S., Horwitz A., Dubno J. R. (2009) At the heart of the ventral attention system: The right anterior insula. Human Brain Mapping 30: 2530–2541. doi:10.1002/hbm.20688.
    1. Eckert M., Teubner-Rhodes S., Vaden K. (2016) Is listening in noise worth it? The neurobiology of speech recognition in challenging listening conditions. Ear and Hearing 37(Suppl 1): 101S–110S. doi:10.1097/AUD.0000000000000300.
    1. Eckstein M., Guerra-Carrillo B., Miller Singley A., Bunge S. (2017) Beyond eye gaze: What else can eye tracking reveal about cognition and cognitive development? Developmental Cognitive Neuroscience 25: 69–91. doi:10.1016/j.dcn.2016.11.001.
    1. Engelhardt P., Ferreira F., Patsenko E. (2010) Pupillometry reveals processing load during spoken language comprehension. Quarterly Journal of Experimental Psychology 63: 639–645. doi:10.1080/17470210903469864.
    1. Francis A., MacPherson M., Chandrasekeran B., Alvar A. (2016) Autonomic nervous system responses during perception of masked speech may reflect constructs other than subjective listening effort. Frontiers in Psychology 7: A263 doi:10.3389/fpsyg.2016.00263.
    1. Franklin M., Broadway J., Mrazek M., Smallwood J., Schooler J. (2013) Window to the wandering mind: Pupillometry of spontaneous thought while reading. The Quarterly Journal of Experimental Psychology 66: 2289–2294. doi:10.1080/17470218.2013.858170.
    1. Friesen L., Picton T. (2010) A method for removing cochlear implant artifact. Hearing Research 259: 95–106. doi:10.1016/j.heares.2009.10.012.
    1. Gagl B., Hawelka S., Huzler F. (2011) Systematic influence of gaze position on pupil size measurement: Analysis and correction. Behavioral Research 43: 1171–1181. doi:10.3758/s13428-011-0109-5.
    1. Gagné J.-P., Besser J., Lemke U. (2017) Behavioral assessment of listening effort using a dual-task paradigm: A review. Trends in Hearing 21: 1–25. doi:10.1177/2331216516687287.
    1. Gatehouse S., Noble W. (2004) The speech, spatial and qualities of hearing scale (SSQ). International Journal of Audiology 43: 85–99. doi:10.1080/14992020400050014.
    1. Gilley P., Sharma A., Dorman M., Finley C., Panch A., Martin K. (2006) Minimization of cochlear implant stimulus artifact in cortical auditory evoked potentials. Clinical Neurophysiology 117: 1772–1782. doi:10.1016/j.clinph.2006.04.018.
    1. Gilzenrat M., Nieuwenhuis S., Jepma M., Cohen J. (2010) Pupil diameter tracks changes in control state predicted by the adaptive gain theory of locus coeruleus function. Cognitive, Affective and Behavioral Neuroscience 10: 252–269. doi:10.3758/CABN.10.2.252.
    1. Granholm E., Asarnow R., Sarkin A., Dykes K. (1996) Pupillary responses index cognitive resource limitations. Psychophysiology 33: 457–461. doi:10.1111/j.1469-8986.1996.tb01071.x.
    1. Granholm E., Steinhauer S. (2004) Pupillometric measures of cognitive and emotional processes. International Journal of Psychophysiology 51: 1–6. doi:10.1016/j.ijpsycho.2003.12.001.
    1. Gredebäck G., Melinder A. (2010) Infants’ understanding of everyday social interactions: A dual process account. Cognition 114: 197–206. doi:10.1016/j.cognition.2009.09.004.
    1. Hakerem G., Sutton S. (1966) Pupillary response at visual threshold. Nature 212: 485–486. doi:10.1038/212485a0.
    1. Hayes T., Petrov A. (2016) Mapping and correcting the influence of gaze position on pupil size measurements. Behavioral Research Methods 48: 510–527. doi:10.3758/s13428-015-0588-x.
    1. Heitz R., Schrock J., Payne T., Engle R. (2008) Effects of incentive on working memory capacity: Behavioral and pupillometric data. Psychophysiology 45: 119–129. doi:10.1111/j.1469-8986.2007.00605.x.
    1. Hess E., Polt J. (1960) Pupil size as related to interest value of visual stimuli. Science 132: 349–350. doi:10.1126/science.132.3423.349.
    1. Hess E., Polt J. (1964) Pupil size in relation to mental activity during simple problem-solving. Science 143: 1190–1192. doi:2.10.1126/science.143.3611.1190.
    1. Hétu R., Riverin L., Lalande N., Getty L., St-Cyr C. (1988) Qualitative analysis of the handicap associated with occupational hearing loss. British Journal of Audiology 22: 251–264. doi:10.3109/03005368809076462.
    1. Hoeks B., Levelt W. (1993) Pupillary dilation as a measure of attention: A quantitative system analysis. Behavioral Research Methods, Instruments & Computers 25: 16–26. doi:10.3758/BF03204445.
    1. Hornsby B., Kipp A. (2016) Subjective ratings of fatigue and vigor in adults with hearing loss are driven by perceived hearing difficulties not degree of hearing loss. Ear and Hearing 37: e1–e10. doi:10.1097/AUD.0000000000000203.
    1. Hughes S., Hutchings H., Rapport F., McMahon C., Boisvert I. (2018) Social connectedness and perceived listening effort in adult cochlear implant users: A grounded theory to establish content validity for a new patient-reported outcome measure. Ear and Hearing 39: 922–934. doi:10.1097/AUD.0000000000000553.
    1. Hyönä J., Tommola J., Alaja A. (1995) Pupil dilation as a measure of processing load in simultaneous interpretation and other language tasks. Quarterly Journal of Experimental Psychology 48: 598–612. doi:10.1080/14640749508401407.
    1. Jackson I., Sirois S. (2009) Infant cognition: Going full factorial with pupil dilation. Developmental Science 12: 670–679. doi:10.1111/j.1467-7687.2008.00805.x.
    1. Jensen, J. J., Callaway, S. L., Lunner, T., Wendt, D. (2018). Investigating the impact of tinnitus: A pupillometry study. Trends in Hearing.
    1. Johnson E., Singley A., Peckham A., Johnson S., Bunge S. (2014) Task-evoked pupillometry provides a window into the development of short-term memory capacity. Frontiers in Psychology 5: A218 doi:10.3389/fpsyg.2014.00218.
    1. Joshi S., Li Y., Kalwani R., Gold J. (2016) Relationships between pupil diameter and neuronal activity in the locus coeruleus, colliculi, and cingulate cortex. Neuron 89: 221–234. doi:10.1016/j.neuron.2015.11.028.
    1. Kahneman D. (1973) Attention and effort, Englewood Cliffs, NJ: Prentice Hall.
    1. Kahneman D., Beatty J. (1966) Pupil diameter and load on memory. Science 154: 1583–1585. doi:10.1126/science.154.3756.1583.
    1. Kahneman D., Beatty J. (1967) Pupillary responses in a pitch-discrimination task. Perception & Psychophysics 2: 101–105. doi:10.3758/BF03210302.
    1. Kahneman D., Peavler W. S. (1969) Incentive effects and pupillary changes in association learning. Journal of Experimental Psychology 79: 312–318. doi:10.1037/h0026912.
    1. Kang M., Hsu M., Krajbich I. M., Loewenstein G., McClure S. M., Wang J. T., Camerer C. F. (2009) The wick in the candle of learning: Epistemic curiosity activates reward circuitry and enhances memory. Psychological Science 20: 963–973. doi:10.1111/j.1467-9280.2009.02402.x.
    1. Karatekin C., Couperous J. W., Marcus D. J. (2004) Attention allocation in the dual-task paradigm as measured through behavioural and psychophysiological responses. Psychophysiology 41: 1–11. doi:10.1111/j.1469-8986.2004.00147.x.
    1. Kerns J., Cohen J., MacDonald A., Cho R. Y., Stenger V. A., Carter C. S. (2004) Anterior cingulate conflict monitoring and adjustments in control. Science 303: 1023–1026. doi:10.1126/science.1089910.
    1. Kim M., Beversdorf D., Heilman K. (2000) Arousal response with aging: Pupillographic study. Journal of the International Neuropsychological Society 6: 348–350. doi:10.1017/S135561770000309X.
    1. Klingner J., Tversky B., Hanrahan P. (2011) Effects of visual and verbal presentation on cognitive load in vigilance, memory, and arithmetic tasks. Psychophysiology 48: 323–332. doi:10.1111/j.1469-8986.2010.01069.x.
    1. Koelewijn T., de Kluiver H., Shinn-Cunningham B., Zekveld A., Kramer S. (2015) The pupil response reveals increased listening effort when it is difficult to focus attention. Hearing Research 323: 81–90. doi:10.1016/j.heares.2015.02.004.
    1. Koelewijn T., Shinn-Cunningham B. G., Zekveld A. A., Kramer S. E. (2014) The pupil response is sensitive to divided attention during speech processing. Hearing Research 312: 114–120. doi:10.1016/j.heares.2014.03.010.
    1. Koelewijn, T., van Haastrecht, J., & Kramer, S. (2018). Pupil responses of adults with traumatic brain injury during processing of speech in noise. Trends in Hearing.
    1. Koelewijn T., Versfeld N., Kramer S. (2017) Effects of attention on the speech reception threshold and pupil response of people with impaired and normal hearing. Hearing Research 354: 56–63. doi:10.1016/j.heares.2017.08.006.
    1. Koelewijn T., Zekveld A., Festen J., Kramer S. (2012) Pupil dilation uncovers extra listening effort in the presence of a single-talker masker. Ear and Hearing 33: 291–300. doi:10.1097/AUD.0b013e3182310019.
    1. Koenig S., Uengoer M., Lachnit H. (2017) Pupil dilation indicates the coding of past prediction errors: Evidence for attentional learning theory. Psychophysiology 55(4): e13020 doi:10.1111/psyp.13020.
    1. Koeritzer M., Rogers C., Van Engen K., Peelle J. (2018) The impact of age, background noise, semantic ambiguity and hearing loss on recognition memory for spoken sentences. Journal of Speech Language and Hearing Research 61: 740–751. doi:10.1044/2017_JSLHR-H-17-0077.
    1. Kramer S., Kapteyn T., Houtgast T. (2006) Occupational performance: Comparing normally-hearing and hearing-impaired employees using the Amsterdam Checklist for Hearing and Work. International Journal of Audiology 45: 503–512. doi:10.1080/14992020600754583.
    1. Kramer, S., Kapteyn, T., Festen, J., & Kuik, D. (1997). Assessing aspects of hearing handicap by means of pupil dilation. Audiology, 36, 155–164. doi:10.3109/00206099709071969.
    1. Książek, P., Wendt, D., Alickovic, E., & Lunner, T. (2018). Analysis of the individual listening effort reflected by the pupillary responses during speech perception in noise. Presented at the 10th Speech in Noise Workshop, Glasgow, UK.
    1. Kuchinsky S., Ahlstrom J., Vaden K., Cute S., Humes L., Dubno J., Eckert M. A. (2013) Pupil size varies with word listening and response selection difficulty in older adults with hearing loss. Psychophysiology 50: 23–34. doi:10.1111/j.1469-8986.2012.01477.x.
    1. Kuchinsky, S., Vaden, K., Ahlstrom, J., Cute, S., Humes, L., Dubno, J., Eckert, M. (2016). Task-related vigilance during word recognition in noise for older adults with hearing loss. Experimental Aging Research, 42, 50–66. doi: 10.1080/0361073X.2016.1108712.
    1. Kun A., Palinko O., Razumenić I. (2012) Exploring the effects of size and luminance of visual targets on the pupillary light reflex. Proceedings of the 4th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, New York, NY: ACM. doi:10.1145/2390256.2390287, pp. 183–186.
    1. Laeng B., Ørbo M., Holmlund T., Miozzo M. (2011) Pupillary stroop effects. Cognitive Processing 12: 13–21. doi:10.1007/s10339-010-0370-z.
    1. Laeng B., Sirous S., Gredebäck G. (2012) Pupillometry: A window into the preconscious? Perspectives on Psychological Science 7: 18–27. doi:10.1177/1745691611427305.
    1. Larson M., Behrends M. (2015) Portable infrared pupillometry: A review. Anesthesia & Analgesia 120: 1242–1253. doi:10.1213/ANE.0000000000000314.
    1. Lee Y.-S., Min N., Wingfield A., Grossman M., Peelle J. (2016) Acoustic richness modulates the neural networks supporting intelligible speech processing. Hearing Research 333: 108–117. doi:10.1016/j.heares.2015.12.008.
    1. Lõo, K., van Rij, J., Järvikivi, J., & Baayen, H. (2016). Individual differences in pupil dilation during naming task. Proceedings of the Annual Meeting of the Cognitive Science Society. Retrieved from .
    1. Lynch G., James S., VanDam M. (2017) Pupillary response and phenotype in ASD: Latency to constriction discriminates ASD from typically developing adolescents. Autism Research 31: 1–12. doi:10.1002/aur.1888.
    1. Marmarou A., Lu J., Butcher I., McHugh G., Murray G., Steyerberg E., Maas A. (2007) Prognostic value of the Glasgow Coma Scale and pupil reactivity in traumatic brain injury assessed pre-hospital and on enrollment: An IMPACT analysis. Journal of Neurotrauma 24: 270–280. doi:10.1089/neu.2006.0029.
    1. Marshall, S. (2002). The index of cognitive activity: Measuring cognitive workload. Proceedings of the 7th IEEE Human Factors Meeting, Scottsdale, AZ. doi:10.1109/HFPP.2002.1042860.
    1. Martineau J., Hernandez N., Hiebel L., Roché L., Metzger A., Bonnet-Brilhault F. (2011) Can pupil size and pupil responses during visual scanning contribute to the diagnosis of autism spectrum disorder in children? Journal of Psychiatric Research 45: 1077–1082. doi:10.1016/j.jpsychires.2011.01.008.
    1. Mattys S., Davis M., Bradlow A., Scott S. (2012) Speech recognition in adverse conditions: A review. Language and Cognitive Processes 27: 953–978. doi:10.1080/01690965.2012.705006.
    1. McCloy D., Larson E., Lau B., Lee A. K. C. (2016) Temporal alignment of pupillary response with stimulus events via deconvolution. Journal of the Acoustical Society of America 139: EL57–EL62. doi:10.1121/1.4943787.
    1. McCloy D., Lau B., Larson E., Pratt K., Lee A. K. C. (2017) Pupillometry shows the effort of auditory attention switching. Journal of the Acoustical Society of America 141: 2440–2451. doi:10.1121/1.4979340.
    1. McCoy S., Tun P., Cox L., Colangelo M., Stewart R., Wingfield A. (2005) Hearing loss and perceptual effort: Downstream effects on older adults’ memory for speech. Quarterly Journal of Experimental Psychology 58: 22–33. doi:10.1080/02724980443000151.
    1. McGarrigle R., Dawes P., Stewart A., Kuchinsky S., Munro K. (2017. a) Pupillometry reveals changes in physiological arousal during a sustained listening task. Psychophysiology 54: 193–203. doi:10.1111/psyp.12772.
    1. McGarrigle R., Dawes P., Stewart A., Kuchinsky S., Munro K. (2017. b) Measuring listening-related effort and fatigue in school-aged children using pupillometry. Journal of Experimental Child Psychology 161: 95–112. doi:10.1016/j.jecp.2017.04.006.
    1. McGarrigle R., Munro K., Dawes P., Stewart A. J., Moore D. R., Barry J. G., Amitay S. (2014) Listening effort and fatigue: What exactly are we measuring? A British Society of Audiology Cognition in hearing special interest group ‘white paper’. International Journal of Audiology 53: 433–445. doi:10.3109/14992027.2014.890296.
    1. McGinley M., David S., McCormick S. (2015) Cortical membrane potential signature of optimal states for sensory signal detection. Neuron 87: 179–192. doi:10.1016/j.neuron.2015.05.038.
    1. McKay C. M., Shah A., Seghouane A. K., Zhou X., Cross W., Litovsky R. (2016) Connectivity in language areas of the brain in cochlear implant users as revealed by fNIRS. Advances in Experimental Medicine and Biology 894: 327–335. doi:10.1007/978-3-319-25474-6_34.
    1. McMahon C., Boisvert I., de Lissa P., Granger L., Ibrahim R., Lo C., Graham P. (2016) Monitoring alpha oscillations and pupil dilation across the performance-intensity function. Frontiers in Psychology 7: 745 doi:10.3389/fpsyg.2016.00745.
    1. Miles K., McMahon C., Boisvert I., Ibrahim R., de Lissa P., Graham P., Lyxell B. (2017) Objective assessment of listening effort: Coregistration of pupillometry and EEG. Trends in Hearing 21: 1–13. doi:10.1177/2331216517706396.
    1. Mirman D. (2014) Growth curve analysis and visualization using R, New York, NY: CRC Press.
    1. Mulert C., Menzinger E., Leicht G., Pogarell O., Hegerl U. (2005) Evidence for a close relationship between conscious effort and anterior cingulate cortex activity. International Journal of Psychophysiology 56(1): 65–80. doi:10.1016/j.ijpsycho.2004.10.002.
    1. Murphy P. R., O’Connell R. G., O’Sullivan M., Robertson I. H., Balsters J. H. (2014) Pupil diameter covaries with BOLD activity in human locus coeruleus. Human Brain Mapping 35: 4140–4154. doi:10.1002/hbm.22466.
    1. Nachtegaal J., Kuik D., Anema J., Goverts T., Festen J., Kramer S. (2009) Hearing status, need for recovery after work, and psychosocial work characteristics: Results from an internet-based national survey on hearing. International Journal of Audiology 48: 684–691. doi:10.1080/14992020902962421.
    1. Nunnally J., Knott P., Duchnowski A., Parker R. (1967) Pupillary response as a general measure of activation. Perception & Psychophysics 2: 149–155. doi:10.3758/BF03210310.
    1. Obleser J., Wise R., Dresner M., Scott S. (2007) Functional integration across brain regions improves speech perception under adverse listening conditions. Journal of Neuroscience 27: 2283–2289. doi:10.1523/JNEUROSCI.4663-06.2007.
    1. Ohlenforst B., Wendt D., Kramer S., Naylor G., Zekveld A. A., Lunner T. (2018) Impact of SNR, masker type and noise reduction processing on listening effort as indicated by the pupil dilation. Hearing Research 365: 90–99. doi:10.1016/j.heares.2018.05.003.
    1. Ohlenforst B., Zekveld A., Lunner T., Wendt D., Naylor G., Wang Y., Kramer S. E. (2017) Impact of stimulus-related factors and hearing impairment on listening effort as indicated by pupil dilation. Hearing Research 351: 68–79. doi:10.1016/j.heares.2017.05.012.
    1. Palinko, O., & Kun, A. (2011). Exploring the influence of light and cognitive load on pupil diameter in driving simulation studies. Proceedings of the Sixth International Driving Symposium on Human Factors in Driver Assessment, Training and Vehicle Design, Lake Tahoe, CA. doi:10.17077/drivingassessment.1416.
    1. Pals C., Sarampalis A., Baskent D. (2013) Listening effort with cochlear implant simulations. Journal of Speech Language and Hearing Research 56: 1075–1084. doi:10.1044/1092-4388(2012/12-0074).
    1. Papesh N., Goldinger S. (2012) Pupil-BLAH-metry: Cognitive effort in speech planning reflected by pupil dilation. Attention Perception and Psychophysics 74: 754–765. doi:10.3758/s13414-011-0263-y.
    1. Partala T., Surakka V. (2003) Pupil size variations as an indication of affective processing. International Journal of Human-Computer Studies 59: 185–198. doi:10.1016/S1071-5819(03)00017-X.
    1. Payne D., Parry M., Harasymiw S. (1968) Percentage of pupillary dilation as a measure of item difficulty. Perception & Psychophysics 4: 139–143. doi:10.3758/BF03210453.
    1. Peavler W. (1974) Pupil size, information overload and performance differences. Psychophysiology 11: 559–566. doi:10.1111/j.1469-8986.1974.tb01114.x.
    1. Peelle J. E. (2017) Listening effort: How the cognitive consequences of acoustic challenge are reflected in brain and behavior. Ear and Hearing 39: 204–214. doi:10.1097/AUD.0000000000000494.
    1. Pichora-Fuller M. K., Schneider B., Daneman M. (1995) How young and old adults listen to and remember speech in noise. Journal of the Acoustical Society of America 97: 593–608. doi:10.1121/1.412282.
    1. Pichora-Fuller M. K., Kramer S., Eckert M., Edwards B., Hornsby B., Humes L., Wingfield A. (2016) Hearing impairment and cognitive energy: The framework for understanding effortful listening (FUEL). Ear and Hearing 37(Suppl. 1): 5S–27S. doi:10.1097/AUD.0000000000000312.
    1. Piquado T., Isaacowitz D., Wingfield A. (2010) Pupillometry as a measure of cognitive effort in younger and older adults. Psychophysiology 47: 560–569. doi:10.1111/j.1469-8986.2009.00947.x.
    1. Privitera C., Renninger L., Carney T., Klein S., Aguilar M. (2010) Pupil dilation during visual target detection. Journal of Vision 10: 1–14. doi:10.1167/10.10.3.
    1. Purves, D., Augustine, G., Fitzpatrick, D., Hall, W., LaMantia, A., McNamara, J., & Williams, S. (Eds.). (2004). Neuroscience (3rd ed.). Sunderland, England: Sinauer Associates, Inc.
    1. Rajkowski J., Kubiak P., Aston-Jones G. (1993) Correlations between locus coeruleus (LC) neural activity, pupil diameter and behavior in monkey support a role of LC in attention. Society of Neuroscience Abstracts 19: 974.
    1. Rajkowski J., Majczynski H., Clayton E., Aston-Jones G. (2004) Activation of monkey locus coeruleus neurons varies with difficulty and performance in a target detection task. Journal of Neurophysiology 92: 361–371. doi:10.1152/jn.00673.2003.
    1. Reimer J., McGinley M., Liu Y., Rodenkirch C., Wang Q., McCormick D., Tolias A. (2016) Pupil fluctuations track rapid changes in adrenergic and cholinergic activity in cortex. Nature Communications 7: 13289 doi:10.1038/ncomms13289.
    1. Rönnberg J., Lunner T., Zekveld A. (2013) The ease of language understanding (ELU) model: Theoretical, empirical and clinical advances. Frontiers in Systems Neuroscience 13: 7–31. doi:10.3389/fnsys.2013.00031.
    1. Samadani U., Ritlop R., Reyes M., Nehrbass E., Li M., Lamm E., Huang P. (2015) Eye tracking detects disconjugate eye movements associated with structural traumatic brain injury and concussion. Journal of Neurotrauma 32: 548–556. doi:10.1089/neu.2014.3687.
    1. Schluroff M., Zimmerman T., Freeman R., Hofmeister K., Lorscheid T., Weber A. (1986) Pupillary responses to syntactic ambiguity of sentences. Brain and Language 27: 322–344. doi:10.1016/0093-934X(86)90023-4.
    1. Schmidtke J. (2014) Second language experience modulates word retrieval effort in bilinguals: Evidence from pupillometry. Frontiers in Psychology 5: 1–16. doi:10.3389/fpsyg.2014.00137.
    1. Schmidtke J. (2017) Pupillometry in linguistic research: An introduction and review for second language researchers. Studies in Second Language Acquisition. Advance online publication doi:10.1017/S0272263117000195.
    1. Schneider M., Hathway P., Leuchs L., Sämann P., Czisch M., Spoormaker V. (2016) Spontaneous pupil dilations during the resting state are associated with activation of the salience network. NeuroImage 139: 189–201. doi:10.1016/j.neuroimage.2016.06.011.
    1. Siegle G., Steinhauer S., Stenger V., Konecky R., Carter C. (2003) Use of concurrent pupil dilation assessment to inform interpretation and analysis of fMRI data. NeuroImage 20: 114–124. doi:10.1016/S1053-8119(03)00298-2.
    1. Snedeker J., Trueswell J. (2004) The developing constraints on parsing decisions: The role of lexical-biases and referential scenes in child and adult sentence processing. Cognitive Psychology 49: 238–299. doi:10.1016/j.cogpsych.2004.03.001.
    1. Stanners R. F., Coulter M., Sweet A. W., Murphy P. (1979) The pupillary response as an indicator of arousal and cognition. Motivation and Emotion 3: 319–339. doi:10.1007/BF00994048.
    1. Steel M., Papsin B., Gordon K. (2015) Binaural fusion and listening effort in children who use bilateral cochlear implants: A psychoacoustic and pupillometric study. PLoS One 10: e011761 doi:10.1371/journal.pone.0117611.
    1. Steinhauer S. R., Seigle G., Condray R., Pless M. (2004) Sympathetic and parasympathetic innervation of pupillary dilation during sustained processing. International Journal of Psychophysiology 52: 77–86. doi:10.1016/j.ijpsycho.2003.12.005.
    1. Steinhauer S. R., Zubin J. (1982) Vulnerability to schizophrenia: Information processing in the pupil and event-related potential. In: Usdin E., Hanin I. (eds) Biological markers in psychiatry and neurology, Oxford, England: Pergamon Press, pp. 371–385.
    1. Tanenhaus M., Spivey M., Eberhard K., Sedivy J. (1995) Integration of visual and linguistic information in spoken language comprehension. Science 268: 1632–1634.
    1. Tavano A., Scharinger M. (2015) Prediction in speech and language processing. Cortex 68: 1–7. doi:10.1016/j.cortex.2015.05.001.
    1. Teubner-Rhodes S., Vaden K., Dubno J., Eckert M. (2017) Cognitive persistence: Development and validation of a novel measure from the Wisconsin Card Sorting Test. Neuropsychologia 102: 95–108. doi:10.1016/j.neuropsychologia.2017.05.027.
    1. Tryon W. (1975) Pupillometry: A survey of sources of variation. Psychophysiology 12: 90–93. doi:10.1111/j.1469-8986.1975.tb03068.x.
    1. Vaden K., Kuchinsky S., Ahlstrom J., Dubno J., Eckert M. (2015) Cortical activity predicts which older adults recognize speech in noise and when. Journal of Neuroscience 35(9): 3929–3937. doi:10.1523/JNEUROSCI.2908-14.2015.
    1. van Rij, J. (2012). Pronoun processing: Computational, behavioral, and psychophysiological studies in children and adults (doctoral thesis). University of Groningen, The Netherlands.
    1. van Rij, J., Hendriks, P., van Rijn, H., Baayen, R. H., & Wood, S. (2018). Analyzing the time course of pupillometric data. Trends in Hearing.
    1. Veneman C., Gordon-Salant S., Matthews L., Dubno J. (2013) Age and measurement time-of-day effects on speech recognition in noise. Ear and Hearing 34: 288–299. doi:10.1097/AUD.0b013e31826d0b81.
    1. Verney S. P., Granholm E., Marshall S. P. (2004) Pupillary responses on the visual backward masking task reflect general cognitive ability. International Journal of Psychophysiology 52: 23–26. doi:10.1016/j.ijpsycho.2003.12.003.
    1. Vogelzang M., Hendriks P., van Rijn H. (2016) Pupillary responses reflect ambiguity resolution in pronoun processing. Language, Cognition and Neuroscience 31: 876–885. doi:10.1080/23273798.2016.1155718.
    1. Wagner L., Maurits N., Maat B., Baskent D., Wagner A. (2018) The cochlear implant EEG artifact recorded from an artificial bran for complex acoustic stimuli. IEEE Transactions on Neural Systems and Rehabilitative Engineering 26: 392–399. doi:10.1109/TNSRE.2018.2789780.
    1. Wagner A., Toffanin P., Baskent D. (2016) The timing and effort of lexical access in natural and degraded speech. Frontiers in Psychology 7: 398 doi:10.3389/fpsyg.2016.00398.
    1. Wang Y., Zekveld A., Lunner T., Kramer S. (2018) Pupil light reflex evoked by light-emitting diode and computer screen: Methodology and association with need for recovery in daily life. PLoS One 13: e0197739 doi:10.1371/journal.pone.0197739.
    1. Weinstein B., Ventry I. (1982) Hearing impairment and social isolation in the elderly. Journal of Speech and Hearing Research 25: 593–599. doi:10.1044/jshr.2504.593.
    1. Wendt D., Dau T., Hjortkjær J. (2016) Impact of background noise and sentence complexity on processing demands during sentence comprehension. Frontiers in Psychology 7: 345 doi:10.3389/fpsyg.2016.00345.
    1. Wendt D., Hietkamp R., Lunner T. (2017) Impact of noise and noise reduction on processing effort: A pupillometry study. Ear and Hearing 38: 690–700.
    1. Wendt, D., Koelewijn, T., Książek P., Kramer S., & Lunner, T. (2018). Toward a more comprehensive understanding of the impact of masker type and signal-to-noise ratio on the pupillary response while performing a speech-in-noise test. Hearing Research.
    1. Wierda S., Van Rijn H., Taatgen N., Martens S. (2012) Pupil dilation deconvolution reveals the dynamics of attention at high temporal resolution. Proceedings of the National Academy of Sciences 109: 8456–8460. doi:10.1073/pnas.1201858109.
    1. Wilhelm B., Stuiber G., Lüdtke H., Wilhelm H. (2014) The effect of caffeine on spontaneous pupillary oscillations. Ophthalmic & Physiological Optics 34: 73–81. doi:10.1111/opo.12094.
    1. Williamson R. S., Hancock K. E., Shinn-Cunningham B. G., Polley D. B. (2015) Locomotion and task demands differentially modulate thalamic audiovisual processing during active search. Current Biology 26: 1885–1891. doi:10.1016/j.cub.2015.05.045.
    1. Winn B., Whitaker D., Elliott D., Phillips J. (1994) Factors affecting light-adapted pupil size in normal human subjects. Investigative Ophthalmology & Visual Science 35: 1132–1137.
    1. Winn M. (2016) Rapid release from listening effort resulting from semantic context, and effects of spectral degradation and cochlear implants. Trends in Hearing 20: 1–17. doi:10.1177/2331216516669723.
    1. Winn M., Edwards J., Litovsky R. (2015) The impact of auditory spectral resolution on listening effort revealed by pupil dilation. Ear and Hearing 36: e153–e165. doi:10.1097/AUD.0000000000000145.
    1. Winn, M., & Moore, A. (2018). Pupil dilation reveals ongoing effort in speech comprehension that is vulnerable to interference from later-occurring sounds: A comparison of listeners with normal hearing and listeners with cochlear implants. Trends in Hearing.
    1. Wu Y.-H., Stangl E., Chipara O., Hasan S., Welhaven A., Oleson J. (2018) Characteristics of real-world signal to noise ratios and speech listening situations of older adults with mild to moderate hearing loss. Ear and Hearing 39: 293–304. doi:10.1097/AUD.0000000000000486.
    1. Wu Y.-H., Stangl E., Zhang X., Perkins J., Eilers E. (2016) Psychometric functions of dual-task paradigms for measuring listening effort. Ear and Hearing 37: 660–670. doi:10.1097/AUD.0000000000000335.
    1. Zekveld A., Festen J., Kramer S. (2013) Task difficulty differentially affects two measures of processing load: The pupil response during sentence processing and delayed cued recall of the sentences. Journal of Speech Language and Hearing Research 56: 1156–1165. doi:10.1044/1092-4388(2012/12-0058).
    1. Zekveld A., Heslenfeld D., Johnsrude I., Versfeld N., Kramer S. (2014) The eye as a window to the listening brain: Neural correlates of pupil size as a measure of cognitive listening load. NeuroImage 101: 76–86. doi:10.1016/j.neuroimage.2014.06.069.
    1. Zekveld A., Kramer S. (2014) Cognitive processing load across a wide range of listening conditions: Insights from pupillometry. Psychophysiology 51: 277–284. doi:10.1111/psyp.12151.
    1. Zekveld A., Kramer S., Festen J. (2010) Pupil response as an indication of effortful listening: The influence of sentence intelligibility. Ear and Hearing 31: 480–490. doi:10.1097/AUD.0b013e3181d4f251.
    1. Zekveld A., Kramer S., Festen J. (2011) Cognitive load during speech perception in noise: The influence of age, hearing loss, and cognition on the pupil response. Ear and Hearing 32: 498–510. doi:10.1097/AUD.0b013e31820512bb.
    1. Zekveld, A., Koelewijn, T., & Kramer, S. (2018). Pupil dilation response to auditory stimuli: Current state of knowledge. Trends in Hearing.

Source: PubMed

3
Abonnere