Pharmacogenomics and Pharmacogenetics in Osteosarcoma: Translational Studies and Clinical Impact

Claudia Maria Hattinger, Maria Pia Patrizio, Silvia Luppi, Massimo Serra, Claudia Maria Hattinger, Maria Pia Patrizio, Silvia Luppi, Massimo Serra

Abstract

High-grade osteosarcoma (HGOS) is a very aggressive bone tumor which primarily affects adolescents and young adults. Although not advanced as is the case for other cancers, pharmacogenetic and pharmacogenomic studies applied to HGOS have been providing hope for an improved understanding of the biology and the identification of genetic biomarkers, which may impact on clinical care management. Recent developments of pharmacogenetics and pharmacogenomics in HGOS are expected to: i) highlight genetic events that trigger oncogenesis or which may act as drivers of disease; ii) validate research models that best predict clinical behavior; and iii) indicate genetic biomarkers associated with clinical outcome (in terms of treatment response, survival probability and susceptibility to chemotherapy-related toxicities). The generated body of information may be translated to clinical settings, in order to improve both effectiveness and safety of conventional chemotherapy trials as well as to indicate new tailored treatment strategies. Here, we review and summarize the current scientific evidence for each of the aforementioned issues in view of possible clinical applications.

Keywords: osteosarcoma; pharmacogenetics; pharmacogenomics; tailored treatment; toxicity.

Conflict of interest statement

The authors have no relevant affiliations or financial involvement with any organization or entity which may be in conflict with the subject matter or materials discussed in this review. These include employment, honoraria, stock ownership, royalties received or pending.

Figures

Figure 1
Figure 1
Pharmacogenetic and pharmacogenomic variations impacting on treatment response, outcome and prognosis in high-grade osteosarcoma (HGOS). Genes, polymorphisms and corresponding genotypes (inside parenthesis) are listed inside each box. Genotypes have been reported as they were described in the original studies. Gene polymorphisms or genotypes for which contradictory results have been reported are marked in bold. Genes polymorphisms included in the green boxes (left side) are those which have been indicated to favorably impact on patients’ outcome. Further details, abbreviations legend and references are provided in the text.
Figure 2
Figure 2
Pharmacogenetic variations impacting on chemotherapy-induced toxicities in high-grade osteosarcoma (HGOS). Genes, polymorphisms and corresponding genotypes (inside parenthesis) are listed inside each box. Genotypes have been reported as they were described in the original studies. Genes polymorphisms or genotypes for which contradictory results have been reported are marked in bold. Further details, abbreviations legend and references are provided in the text.

References

    1. Mirabello L., Troisi R.J., Savage S.A. Osteosarcoma incidence and survival rates from 1973 to 2004. Cancer. 2009;115:1531–1543. doi: 10.1002/cncr.24121.
    1. Picci P. Osteosarcoma. In: Picci P., Manfrini M., Donati D., Gambarotti M., Righi A., Vanel D., Dei Tos A., editors. Diagnosis of Musculoskeletal Tumors and Tumor-Like Conditions. 2nd ed. Springer Nature Switzerland AG; Cham, Switzerland: 2020. pp. 185–212.
    1. Whelan J.S., Davis L.E. Osteosarcoma, Chondrosarcoma, and Chordoma. J. Clin. Oncol. 2018;36:188–193. doi: 10.1200/JCO.2017.75.1743.
    1. Harrison D.J., Geller D.S., Gill J., Lewis V.O., Gorlick R. Current and future therapeutic approaches for osteosarcoma. Expert Rev. Anticancer. Ther. 2017;18:39–50. doi: 10.1080/14737140.2018.1413939.
    1. Kager L., Tamamyan G., Bielack S. Novel insights and therapeutic interventions for pediatric osteosarcoma. Futur. Oncol. 2017;13:357–368. doi: 10.2217/fon-2016-0261.
    1. Simpson E., Brown H.L. Understanding osteosarcomas. J. Am. Acad. Physician Assist. 2018;31:15–19. doi: 10.1097/01.JAA.0000541477.24116.8d.
    1. Ferrari S., Serra M. An update on chemotherapy for osteosarcoma. Expert Opin. Pharmacother. 2015;16:2727–2736. doi: 10.1517/14656566.2015.1102226.
    1. Smeland S., Bielack S.S., Whelan J., Bernstein M., Hogendoorn P.C.W., Krailo M.D., Gorlick R., Janeway K.A., Ingleby F.C., Anninga J., et al. Survival and prognosis with osteosarcoma: Outcomes in more than 2000 patients in the EURAMOS-1 (European and American Osteosarcoma Study) cohort. Eur. J. Cancer. 2019;109:36–50. doi: 10.1016/j.ejca.2018.11.027.
    1. Hattinger C.M., Vella S., Tavanti E., Fanelli M., Picci P., Serra M. Pharmacogenomics of second-line drugs used for treatment of unresponsive or relapsed osteosarcoma patients. Pharmacogenomics. 2016;17:2097–2114. doi: 10.2217/pgs-2016-0116.
    1. Roden D.M., McLeod H.L., Relling M.V., Williams M.S., Mensah G.A., Peterson J.F., Van Driest S.L. Pharmacogenomics. Lancet. 2019;394:521–532. doi: 10.1016/S0140-6736(19)31276-0.
    1. Serra M., Hattinger C.M. The pharmacogenomics of osteosarcoma. Pharm. J. 2017;17:11–20. doi: 10.1038/tpj.2016.45.
    1. Evans W.E., Relling M.V. Pharmacogenomics: Translating Functional Genomics into Rational Therapeutics. Science. 1999;286:487–491. doi: 10.1126/science.286.5439.487.
    1. Weng L., Zhang L., Peng Y., Huang R.S. Pharmacogenetics and pharmacogenomics: A bridge to individualized cancer therapy. Pharmacogenomics. 2013;14:315–324. doi: 10.2217/pgs.12.213.
    1. Gianferante D.M., Mirabello L., Savage S.A. Germline and somatic genetics of osteosarcoma—Connecting aetiology, biology and therapy. Nat. Rev. Endocrinol. 2017;13:480–491. doi: 10.1038/nrendo.2017.16.
    1. Mirabello L., Macari E.R., Jessop L., Ellis S.R., Myers T., Giri N., Taylor A.M., McGrath K.E., Humphries J.M., Ballew B.J., et al. Whole-exome sequencing and functional studies identify RPS29 as a novel gene mutated in multicase Diamond-Blackfan anemia families. Blood. 2014;124:24–32. doi: 10.1182/blood-2013-11-540278.
    1. Ulirsch J.C., Verboon J.M., Kazerounian S., Guo M.H., Yuan D., Ludwig L.S., Handsaker R.E., Abdulhay N.J., Fiorini C., Genovese G., et al. The Genetic Landscape of Diamond-Blackfan Anemia. Am. J. Hum. Genet. 2018;103:930–947. doi: 10.1016/j.ajhg.2018.10.027.
    1. Rickel K., Fang F., Tao J. Molecular genetics of osteosarcoma. Bone. 2016;102:69–79. doi: 10.1016/j.bone.2016.10.017.
    1. Mai P.L., Best A.F., Peters J.A., DeCastro R.M., Khincha P.P., Loud J.T., Bremer R.C., Rosenberg P.S., Savage S.A. Risks of first and subsequent cancers among TP53 mutation carriers in the National Cancer Institute Li-Fraumeni syndrome cohort. Cancer. 2016;122:3673–3681. doi: 10.1002/cncr.30248.
    1. Hameed M., Mandelker D. Tumor Syndromes Predisposing to Osteosarcoma. Adv. Anat. Pathol. 2018;25:217–222. doi: 10.1097/PAP.0000000000000190.
    1. Wang L.L., Levy M.L., Lewis R.A., Chintagumpala M.M., Lev R., Rogers M., Plon S.E. Clinical manifestations in a cohort of 41 Rothmund-Thomson syndrome patients. Am. J. Med. Genet. 2001;102:11–17. doi: 10.1002/1096-8628(20010722)102:1<11::AID-AJMG1413>;2-A.
    1. Siitonen H.A., Sotkasiira J., Biervliet M., Benmansour A., Capri Y., Cormier-Daire V., Crandall B., Hannula-Jouppi K., Hennekam R., Herzog D., et al. The mutation spectrum in RECQL4 diseases. Eur. J. Hum. Genet. 2008;17:151–158. doi: 10.1038/ejhg.2008.154.
    1. Calvert G.T., Randall R.L., Jones K.B., Cannon-Albright L.A., Lessnick S., Schiffman J.D. At-Risk Populations for Osteosarcoma: The Syndromes and Beyond. Sarcoma. 2012;2012:1–9. doi: 10.1155/2012/152382.
    1. Lipton J.M., Federman N., Khabbaze Y., Schwartz C.L., Hilliard L.M., Clark J.I., Vlachos A. Osteogenic Sarcoma Associated with Diamond-Blackfan Anemia: A Report From the Diamond-Blackfan Anemia Registry. J. Pediatr. Hematol. 2001;23:39–44. doi: 10.1097/00043426-200101000-00009.
    1. Vlachos A., Rosenberg P.S., Atsidaftos E., Kang J., Onel K., Sharaf R.N., Alter B.P., Lipton J.M. Increased risk of colon cancer and osteogenic sarcoma in Diamond-Blackfan anemia. Blood. 2018;132:2205–2208. doi: 10.1182/blood-2018-05-848937.
    1. Flanagan M., Cunniff C.M. GeneReviews. University of Washington; Seattle, WA, USA: 2006. Bloom Syndrome; pp. 1993–2020.
    1. Yu W., Clyne M., Khoury M.J., Gwinn M. Phenopedia and Genopedia: Disease-centered and gene-centered views of the evolving knowledge of human genetic associations. Bioinformatics. 2009;26:145–146. doi: 10.1093/bioinformatics/btp618.
    1. Mirabello L., Yu K., Berndt S.I., Burdette L., Wang Z., Chowdhury S., Teshome K., Uzoka A., Hutchinson A., Grotmol T., et al. A comprehensive candidate gene approach identifies genetic variation associated with osteosarcoma. BMC Cancer. 2011;11:209. doi: 10.1186/1471-2407-11-209.
    1. Savage S.A., Mirabello L., Wang Z., Gastier-Foster J.M., Gorlick R., Khanna C., Flanagan A.M., Tirabosco R., Andrulis I.L., Wunder J.S., et al. Genome-wide association study identifies two susceptibility loci for osteosarcoma. Nat. Genet. 2013;45:799–803. doi: 10.1038/ng.2645.
    1. Jiang C., Chen H., Shao L., Dong Y. GRM4 gene polymorphism is associated with susceptibility and prognosis of osteosarcoma in a Chinese Han population. Med. Oncol. 2014;31:50. doi: 10.1007/s12032-014-0050-4.
    1. Wang K., Zhao J., He M., Fowdur M., Jiang T., Luo S. Association of GRM4 gene polymorphisms with susceptibility and clinicopathological characteristics of osteosarcoma in Guangxi Chinese population. Tumour Biol. 2016;37:1105–1112. doi: 10.1007/s13277-015-3904-2.
    1. Yang Y., Basu S., Mirabello L., Spector L., Zhang L. A Bayesian Gene-Based Genome-Wide Association Study Analysis of Osteosarcoma Trio Data Using a Hierarchically Structured Prior. Cancer Inform. 2018;17:1176935118775103. doi: 10.1177/1176935118775103.
    1. Mirabello L., Yeager M., Mai P.L., Gastier-Foster J.M., Gorlick R., Khanna C., Patino-Garcia A., Sierrasesumaga L., Lecanda F., Andrulis I.L., et al. Germline TP53 variants and susceptibility to osteosarcoma. J. Natl. Cancer Inst. 2015;107:djv101. doi: 10.1093/jnci/djv101.
    1. Ballinger M.L., Goode D.L., Ray-Coquard I., James P.A., Mitchell G., Niedermayr E., Puri A., Schiffman J.D., Dite G.S., Cipponi A., et al. Monogenic and polygenic determinants of sarcoma risk: An international genetic study. Lancet Oncol. 2016;17:1261–1271. doi: 10.1016/S1470-2045(16)30147-4.
    1. Grobner S.N., Worst B.C., Weischenfeldt J., Buchhalter I., Kleinheinz K., Rudneva V.A., Johann P.D., Balasubramanian G.P., Segura-Wang M., Brabetz S., et al. The landscape of genomic alterations across childhood cancers. Nature. 2018;555:321–327. doi: 10.1038/nature25480.
    1. Zhang J., Walsh M.F., Wu G., Edmonson M.N., Gruber T.A., Easton J., Hedges D., Ma X., Zhou X., Yergeau D.A., et al. Germline Mutations in Predisposition Genes in Pediatric Cancer. N. Engl. J. Med. 2015;373:2336–2346. doi: 10.1056/NEJMoa1508054.
    1. Mirabello L., Zhu B., Koster R., Karlins E., Dean M., Yeager M., Gianferante M., Spector L.G., Morton L.M., Karyadi D., et al. Frequency of Pathogenic Germline Variants in Cancer-Susceptibility Genes in Patients With Osteosarcoma. JAMA Oncol. 2020 doi: 10.1001/jamaoncol.2020.0197.
    1. Huang X., Wu F., Zhang Z., Shao Z. Association between TP53 rs1042522 gene polymorphism and the risk of malignant bone tumors: A meta-analysis. Biosci. Rep. 2019;39:BSR20181832. doi: 10.1042/BSR20181832.
    1. Moghimi M., Sobhan M.R., Jarahzadeh M.H., Morovati-Sharifabad M., Aghili K., Ahrar H., Zare-Shehneh M., Neamatzadeh H. Association of GSTM1, GSTT1, GSTM3, and GSTP1 Genes Polymorphisms with Susceptibility to Osteosarcoma: A Case-Control Study and Meta-Analysis. Asian Pac. J. Cancer Prev. 2019;20:675–682. doi: 10.31557/APJCP.2019.20.3.675.
    1. Ito M., Barys L., O‘Reilly T., Young S., Gorbatcheva B., Monahan J., Zumstein-Mecker S., Choong P.F., Dickinson I., Crowe P., et al. Comprehensive mapping of p53 pathway alterations reveals an apparent role for both SNP309 and MDM2 amplification in sarcomagenesis. Clin. Cancer Res. 2011;17:416–426. doi: 10.1158/1078-0432.CCR-10-2050.
    1. Toffoli G., Biason P., Russo A., De Mattia E., Cecchin E., Hattinger C.M., Pasello M., Alberghini M., Ferrari C., Scotlandi K., et al. Effect of TP53 Arg72Pro and MDM2 SNP309 polymorphisms on the risk of high-grade osteosarcoma development and survival. Clin. Cancer Res. 2009;15:3550–3556. doi: 10.1158/1078-0432.CCR-08-2249.
    1. Wang L., Liu Z., Jing P., Shao L., Chen L., He X., Gong W. Effects of murine double minute 2 polymorphisms on the risk and survival of osteosarcoma: A systemic review and meta-analysis. Tumour Biol. 2014;35:1649–1652. doi: 10.1007/s13277-013-1227-8.
    1. Bilbao-Aldaiturriaga N., Askaiturrieta Z., Granado-Tajada I., Goricar K., Dolzan V., For The Slovenian Osteosarcoma Study G., Garcia-Miguel P., Garcia de Andoin N., Martin-Guerrero I., Garcia-Orad A. A systematic review and meta-analysis of MDM2 polymorphisms in osteosarcoma susceptibility. Pediatr. Res. 2016;80:472–479. doi: 10.1038/pr.2016.120.
    1. Wang X., Liu Z. Systematic meta-analysis of genetic variants associated with osteosarcoma susceptibility. Medicine (Baltimore) 2018;97:e12525. doi: 10.1097/MD.0000000000012525.
    1. Ognjanovic S., Olivier M., Bergemann T.L., Hainaut P. Sarcomas in TP53 germline mutation carriers: A review of the IARC TP53 database. Cancer. 2012;118:1387–1396. doi: 10.1002/cncr.26390.
    1. Pakos E.E., Kyzas P.A., Ioannidis J.P. Prognostic significance of TP53 tumor suppressor gene expression and mutations in human osteosarcoma: A meta-analysis. Clin. Cancer Res. 2004;10:6208–6214. doi: 10.1158/1078-0432.CCR-04-0246.
    1. Thoenen E., Curl A., Iwakuma T. TP53 in bone and soft tissue sarcomas. Pharmacol. Ther. 2019;202:149–164. doi: 10.1016/j.pharmthera.2019.06.010.
    1. Overholtzer M., Rao P.H., Favis R., Lu X.Y., Elowitz M.B., Barany F., Ladanyi M., Gorlick R., Levine A.J. The presence of p53 mutations in human osteosarcomas correlates with high levels of genomic instability. Proc. Natl. Acad. Sci. USA. 2003;100:11547–11552. doi: 10.1073/pnas.1934852100.
    1. Haupt S., Mejia-Hernandez J.O., Vijayakumaran R., Keam S.P., Haupt Y. The long and the short of it: The MDM4 tail so far. J. Mol. Cell Biol. 2019;11:231–244. doi: 10.1093/jmcb/mjz007.
    1. Duhamel L.A., Ye H., Halai D., Idowu B.D., Presneau N., Tirabosco R., Flanagan A.M. Frequency of Mouse Double Minute 2 (MDM2) and Mouse Double Minute 4 (MDM4) amplification in parosteal and conventional osteosarcoma subtypes. Histopathology. 2012;60:357–359. doi: 10.1111/j.1365-2559.2011.04023.x.
    1. Dewaele M., Tabaglio T., Willekens K., Bezzi M., Teo S.X., Low D.H., Koh C.M., Rambow F., Fiers M., Rogiers A., et al. Antisense oligonucleotide-mediated MDM4 exon 6 skipping impairs tumor growth. J. Clin. Investig. 2016;126:68–84. doi: 10.1172/JCI82534.
    1. Lenos K., Grawenda A.M., Lodder K., Kuijjer M.L., Teunisse A.F., Repapi E., Grochola L.F., Bartel F., Hogendoorn P.C., Wuerl P., et al. Alternate splicing of the p53 inhibitor HDMX offers a superior prognostic biomarker than p53 mutation in human cancer. Cancer Res. 2012;72:4074–4084. doi: 10.1158/0008-5472.CAN-12-0215.
    1. Lenos K., Jochemsen A.G. Functions of MDMX in the modulation of the p53-response. J. Biomed. Biotechnol. 2011;2011:876173. doi: 10.1155/2011/876173.
    1. Cai X., Yang M. The functional MDM2 T309G genetic variant but not P53 Arg72Pro polymorphism is associated with risk of sarcomas: A meta-analysis. J. Cancer Res. Clin. Oncol. 2012;138:555–561. doi: 10.1007/s00432-011-1124-8.
    1. Hattinger C.M., Biason P., Iacoboni E., Gagno S., Fanelli M., Tavanti E., Vella S., Ferrari S., Roli A., Roncato R., et al. Candidate germline polymorphisms of genes belonging to the pathways of four drugs used in osteosarcoma standard chemotherapy associated with risk, survival and toxicity in non-metastatic high-grade osteosarcoma. Oncotarget. 2016;7:61970–61987. doi: 10.18632/oncotarget.11486.
    1. Savage S.A., Burdett L., Troisi R., Douglass C., Hoover R.N., Chanock S.J. Germ-line genetic variation of TP53 in osteosarcoma. Pediatr. Blood Cancer. 2007;49:28–33. doi: 10.1002/pbc.21077.
    1. Ru J.Y., Cong Y., Kang W.B., Yu L., Guo T., Zhao J.N. Polymorphisms in TP53 are associated with risk and survival of osteosarcoma in a Chinese population. Int. J. Clin. Exp. Pathol. 2015;8:3198–3203.
    1. Madhusudan S., Middleton M.R. The emerging role of DNA repair proteins as predictive, prognostic and therapeutic targets in cancer. Cancer Treat. Rev. 2005;31:603–617. doi: 10.1016/j.ctrv.2005.09.006.
    1. Torgovnick A., Schumacher B. DNA repair mechanisms in cancer development and therapy. Front. Genet. 2015;6:157. doi: 10.3389/fgene.2015.00157.
    1. Lieberman H.B. DNA damage repair and response proteins as targets for cancer therapy. Curr. Med. Chem. 2008;15:360–367. doi: 10.2174/092986708783497328.
    1. Cao Z.H., Yin H.P., Jiang N., Yu B. Association between ERCC1 and ERCC2 gene polymorphisms and chemotherapy response and overall survival in osteosarcoma. Genet. Mol. Res. 2015;14:10145–10151. doi: 10.4238/2015.August.21.21.
    1. Ji W.P., He N.B. Investigation on the DNA repaired gene polymorphisms and response to chemotherapy and overall survival of osteosarcoma. Int. J. Clin. Exp. Pathol. 2015;8:894–899.
    1. Sun Y., Wu Y., Li W., Kong Z., Zou X. Genetic polymorphisms in nucleotide excision repair pathway influences response to chemotherapy and overall survival in osteosarcoma. Int. J. Clin. Exp. Pathol. 2015;8:7905–7912.
    1. Zhang H., Ge J., Hong H., Bi L., Sun Z. Genetic polymorphisms in ERCC1 and ERCC2 genes are associated with response to chemotherapy in osteosarcoma patients among Chinese population: A meta-analysis. World J. Surg. Oncol. 2017;15:75. doi: 10.1186/s12957-017-1142-3.
    1. Zhang Q., Lv L.Y., Li B.J., Zhang J., Wei F. Investigation of ERCC1 and ERCC2 gene polymorphisms and response to chemotherapy and overall survival in osteosarcoma. Genet. Mol. Res. 2015;14:11235–11241. doi: 10.4238/2015.September.22.17.
    1. Hao T., Feng W., Zhang J., Sun Y.J., Wang G. Association of four ERCC1 and ERCC2 SNPs with survival of bone tumour patients. Asian Pac. J. Cancer Prev. 2012;13:3821–3824. doi: 10.7314/APJCP.2012.13.8.3821.
    1. Wang M.J., Zhu Y., Guo X.J., Tian Z.Z. Genetic variability of genes involved in DNA repair influence treatment outcome in osteosarcoma. Genet. Mol. Res. 2015;14:11652–11657. doi: 10.4238/2015.September.28.17.
    1. Obiedat H., Alrabadi N., Sultan E., Al Shatti M., Zihlif M. The effect of ERCC1 and ERCC2 gene polymorphysims on response to cisplatin based therapy in osteosarcoma patients. BMC Med. Genet. 2018;19:112. doi: 10.1186/s12881-018-0627-4.
    1. Caronia D., Patino-Garcia A., Milne R.L., Zalacain-Diez M., Pita G., Alonso M.R., Moreno L.T., Sierrasesumaga-Ariznabarreta L., Benitez J., Gonzalez-Neira A. Common variations in ERCC2 are associated with response to cisplatin chemotherapy and clinical outcome in osteosarcoma patients. Pharmacogn J. 2009;9:347–353. doi: 10.1038/tpj.2009.19.
    1. Biason P., Hattinger C.M., Innocenti F., Talamini R., Alberghini M., Scotlandi K., Zanusso C., Serra M., Toffoli G. Nucleotide excision repair gene variants and association with survival in osteosarcoma patients treated with neoadjuvant chemotherapy. Pharmacogn. J. 2012;12:476–483. doi: 10.1038/tpj.2011.33.
    1. Li J., Liu S., Wang W., Zhang K., Liu Z., Zhang C., Chen S., Wu S. ERCC polymorphisms and prognosis of patients with osteosarcoma. Tumour Biol. 2014;35:10129–10136. doi: 10.1007/s13277-014-2322-1.
    1. Yang L.M., Li X.H., Bao C.F. Glutathione S-transferase P1 and DNA polymorphisms influence response to chemotherapy and prognosis of bone tumors. Asian Pac. J. Cancer Prev. 2012;13:5883–5886. doi: 10.7314/APJCP.2012.13.11.5883.
    1. Goricar K., Kovac V., Jazbec J., Zakotnik B., Lamovec J., Dolzan V. Genetic variability of DNA repair mechanisms and glutathione-S-transferase genes influences treatment outcome in osteosarcoma. Cancer Epidemiol. 2015;39:182–188. doi: 10.1016/j.canep.2014.12.009.
    1. Liu Z.F., Asila A.L., Aikenmu K., Zhao J., Meng Q.C., Fang R. Influence of ERCC2 gene polymorphisms on the treatment outcome of osteosarcoma. Genet. Mol. Res. 2015;14:12967–12972. doi: 10.4238/2015.October.21.17.
    1. Bai S.B., Chen H.X., Bao Y.X., Luo X., Zhong J.J. Predictive impact of common variations in DNA repair genes on clinical outcome of osteosarcoma. Asian Pac. J. Cancer Prev. 2013;14:3677–3680. doi: 10.7314/APJCP.2013.14.6.3677.
    1. Sun X.H., Hou W.G., Zhao H.X., Zhao Y.L., Ma C., Liu Y. Single nucleotide polymorphisms in the NER pathway and clinical outcome of patients with bone malignant tumors. Asian Pac. J. Cancer Prev. 2013;14:2049–2052. doi: 10.7314/APJCP.2013.14.3.2049.
    1. Zhao Y.L., Yang L.B., Geng X.L., Zhou Q.L., Qin H., Yang L., Dong Y.Z., Zhong J.J. The association of XPG and MMS19L polymorphisms response to chemotherapy in osteosarcoma. Pak. J. Med. Sci. 2013;29:1225–1229. doi: 10.12669/pjms.295.3747.
    1. Hagleitner M.M., Coenen M.J., Gelderblom H., Makkinje R.R., Vos H.I., de Bont E.S., van der Graaf W.T., Schreuder H.B., Flucke U.E., van Leeuwen F.N., et al. A first step towards personalized medicine in osteosarcoma: Pharmacogenetics as predictive marker of outcome after chemotherapy based treatment. Clin. Cancer Res. 2015;21:3436–3441. doi: 10.1158/1078-0432.CCR-14-2638.
    1. Liu X., Zhang Z., Deng C., Tian Y., Ma X. Meta-analysis showing that ERCC1 polymorphism is predictive of osteosarcoma prognosis. Oncotarget. 2017;8:62769–62779. doi: 10.18632/oncotarget.19370.
    1. Michael M., Doherty M.M. Tumoral drug metabolism: Overview and its implications for cancer therapy. J. Clin. Oncol. 2005;23:205–229. doi: 10.1200/JCO.2005.02.120.
    1. Hayes J.D., Flanagan J.U., Jowsey I.R. Glutathione transferases. Annu Rev. Pharmacol. Toxicol. 2005;45:51–88. doi: 10.1146/annurev.pharmtox.45.120403.095857.
    1. Lo H.W., Ali-Osman F. Genetic polymorphism and function of glutathione S-transferases in tumor drug resistance. Curr. Opin. Pharmacol. 2007;7:367–374. doi: 10.1016/j.coph.2007.06.009.
    1. Li J.Z., Tian Z.Q., Jiang S.N., Feng T. Effect of variation of ABCB1 and GSTP1 on osteosarcoma survival after chemotherapy. Genet. Mol. Res. 2014;13:3186–3192. doi: 10.4238/2014.April.25.3.
    1. Liu S., Yi Z., Ling M., Shi J., Qiu Y., Yang S. Predictive potential of ABCB1, ABCC3, and GSTP1 gene polymorphisms on osteosarcoma survival after chemotherapy. Tumour Biol. 2014;35:9897–9904. doi: 10.1007/s13277-014-1917-x.
    1. Teng J.W., Yang Z.M., Li J., Xu B. Predictive role of Glutathione S-transferases (GSTs) on the prognosis of osteosarcoma patients treated with chemotherapy. Pak. J. Med. Sci. 2013;29:1182–1186. doi: 10.12669/pjms.295.3870.
    1. Windsor R.E., Strauss S.J., Kallis C., Wood N.E., Whelan J.S. Germline genetic polymorphisms may influence chemotherapy response and disease outcome in osteosarcoma: A pilot study. Cancer. 2012;118:1856–1867. doi: 10.1002/cncr.26472.
    1. Zhang S.L., Mao N.F., Sun J.Y., Shi Z.C., Wang B., Sun Y.J. Predictive potential of glutathione S-transferase polymorphisms for prognosis of osteosarcoma patients on chemotherapy. Asian Pac. J. Cancer Prev. 2012;13:2705–2709. doi: 10.7314/APJCP.2012.13.6.2705.
    1. Salinas-Souza C., Petrilli A.S., de Toledo S.R. Glutathione S-transferase polymorphisms in osteosarcoma patients. Pharm. Genom. 2010;20:507–515. doi: 10.1097/FPC.0b013e32833caa45.
    1. Barnette P., Scholl R., Blandford M., Ballard L., Tsodikov A., Magee J., Williams S., Robertson M., Ali-Osman F., Lemons R., et al. High-throughput detection of glutathione s-transferase polymorphic alleles in a pediatric cancer population. Cancer Epidemiol. Biomark. Prev. 2004;13:304–313. doi: 10.1158/1055-9965.EPI-03-0178.
    1. Pu F., Chen F., Chen S., Wang B., Liu J., Shao Z. Association between GSTP1 polymorphisms and prognosis of osteosarcoma in patients treated with chemotherapy: A meta-analysis. Onco Targets Ther. 2015;8:1835–1842.
    1. Wang Z., Xu H., He M., Wu H., Zhu Y., Su Z. The association of glutathione S-transferase polymorphisms in patients with osteosarcoma: Evidence from a meta-analysis. Eur. J. Cancer Care (Engl.) 2015;24:417–424. doi: 10.1111/ecc.12197.
    1. Lan J., Yang Q., Zhou M., Xu R., Zhou C., Wang J., Zheng H. A meta-analysis of association between glutathione S-transferase gene polymorphism and osteosarcoma chemosensitivity in Chinese population. J. Cancer Res. Ther. 2016;12:64–67.
    1. McFadyen M.C., Melvin W.T., Murray G.I. Cytochrome P450 enzymes: Novel options for cancer therapeutics. Mol. Cancer Ther. 2004;3:363–371.
    1. Caronia D., Patino-Garcia A., Perez-Martinez A., Pita G., Moreno L.T., Zalacain-Diez M., Molina B., Colmenero I., Sierrasesumaga L., Benitez J., et al. Effect of ABCB1 and ABCC3 polymorphisms on osteosarcoma survival after chemotherapy: A pharmacogenetic study. PLoS ONE. 2011;6:e26091. doi: 10.1371/journal.pone.0026091.
    1. Sun X., Li A., Geng X., Liu Y., Zhao H., Zhao Y. Effect of ABCB1 polymorphism on the clinical outcome of osteosarcoma patients after receiving chemotherapy. Pak. J. Med. Sci. 2014;30:886–890. doi: 10.12669/pjms.304.4955.
    1. Yang J., Wang Z.G., Cai H.Q., Li Y.C., Xu Y.L. Effect of variation of ABCB1 and ABCC3 genotypes on the survival of bone tumor cases after chemotherapy. Asian Pac. J. Cancer Prev. 2013;14:4595–4598. doi: 10.7314/APJCP.2013.14.8.4595.
    1. Chen X., Jiang M., Zhao R.K., Gu G.H. Quantitative Assessment of the Association between ABC Polymorphisms and Osteosarcoma Response: A Meta-analysis. Asian Pac. J. Cancer Prev. 2015;16:4659–4664. doi: 10.7314/APJCP.2015.16.11.4659.
    1. Duffaud F., Egerer G., Ferrari S., Rassam H., Boecker U., Bui-Nguyen B. A phase II trial of second-line pemetrexed in adults with advanced/metastatic osteosarcoma. Eur. J. Cancer. 2012;48:564–570. doi: 10.1016/j.ejca.2011.12.015.
    1. O’Day K., Gorlick R. Novel therapeutic agents for osteosarcoma. Expert Rev. Anticancer Ther. 2009;9:511–523. doi: 10.1586/era.09.7.
    1. Warwick A.B., Malempati S., Krailo M., Melemed A., Gorlick R., Ames M.M., Safgren S.L., Adamson P.C., Blaney S.M. Phase 2 trial of pemetrexed in children and adolescents with refractory solid tumors: A Children’s Oncology Group study. Pediatr. Blood Cancer. 2013;60:237–241. doi: 10.1002/pbc.24244.
    1. Jabeen S., Holmboe L., Alnaes G.I., Andersen A.M., Hall K.S., Kristensen V.N. Impact of genetic variants of RFC1, DHFR and MTHFR in osteosarcoma patients treated with high-dose methotrexate. Pharmacogn. J. 2015;15:385–390. doi: 10.1038/tpj.2015.11.
    1. Goricar K., Kovac V., Jazbec J., Zakotnik B., Lamovec J., Dolzan V. Influence of the folate pathway and transporter polymorphisms on methotrexate treatment outcome in osteosarcoma. Pharmacogn. Genom. 2014;24:514–521. doi: 10.1097/FPC.0000000000000083.
    1. Janeway K.A., Grier H.E. Sequelae of osteosarcoma medical therapy: A review of rare acute toxicities and late effects. Lancet Oncol. 2010;11:670–678. doi: 10.1016/S1470-2045(10)70062-0.
    1. Vos H.I., Coenen M.J., Guchelaar H.J., Te Loo D.M. The role of pharmacogenetics in the treatment of osteosarcoma. Drug Discov. Today. 2016;21:1775–1786. doi: 10.1016/j.drudis.2016.06.022.
    1. Aminkeng F., Ross C.J., Rassekh S.R., Hwang S., Rieder M.J., Bhavsar A.P., Smith A., Sanatani S., Gelmon K.A., Bernstein D., et al. Recommendations for genetic testing to reduce the incidence of anthracycline-induced cardiotoxicity. Br. J. Clin. Pharmacol. 2016;82:683–695. doi: 10.1111/bcp.13008.
    1. Lee J.W., Pussegoda K., Rassekh S.R., Monzon J.G., Liu G., Hwang S., Bhavsar A.P., Pritchard S., Ross C.J., Amstutz U., et al. Clinical Practice Recommendations for the Management and Prevention of Cisplatin-Induced Hearing Loss Using Pharmacogenetic Markers. Ther. Drug Monit. 2016;38:423–431. doi: 10.1097/FTD.0000000000000298.
    1. Hattinger C.M., Tavanti E., Fanelli M., Vella S., Picci P., Serra M. Pharmacogenomics of genes involved in antifolate drug response and toxicity in osteosarcoma. Expert Opin. Drug Metab. Toxicol. 2017;13:245–257. doi: 10.1080/17425255.2017.1246532.
    1. Patino-Garcia A., Zalacain M., Marrodan L., San-Julian M., Sierrasesumaga L. Methotrexate in pediatric osteosarcoma: Response and toxicity in relation to genetic polymorphisms and dihydrofolate reductase and reduced folate carrier 1 expression. J. Pediatr. 2009;154:688–693. doi: 10.1016/j.jpeds.2008.11.030.
    1. Xie L., Guo W., Yang Y., Ji T., Xu J. More severe toxicity of genetic polymorphisms on MTHFR activity in osteosarcoma patients treated with high-dose methotrexate. Oncotarget. 2018;9:11465–11476. doi: 10.18632/oncotarget.23222.
    1. Hegyi M., Arany A., Semsei A.F., Csordas K., Eipel O., Gezsi A., Kutszegi N., Csoka M., Muller J., Erdelyi D.J., et al. Pharmacogenetic analysis of high-dose methotrexate treatment in children with osteosarcoma. Oncotarget. 2017;8:9388–9398. doi: 10.18632/oncotarget.11543.
    1. Te Loo D.M.W., Hagleitner M.M., Coenen M.J. Is there a role for the MTHFR 677C>T and 1298A>C polymorphisms in methotrexate-induced liver toxicity? Pharmacogenomics. 2014;15:1401–1403. doi: 10.2217/pgs.14.82.
    1. Hagleitner M.M., Coenen M.J., Aplenc R., Patino-Garcia A., Chiusolo P., Gemmati D., De Mattei M., Ongaro A., Krajinovic M., Hoogerbrugge P.M., et al. The role of the MTHFR 677C>T polymorphism in methotrexate-induced liver toxicity: A meta-analysis in patients with cancer. Pharmacogn. J. 2014;14:115–119. doi: 10.1038/tpj.2013.19.
    1. Dogan M., Karabulut H.G., Tukun A., Demirkazik A., Utkan G., Yalcin B., Dincol D., Akbulut H., Icli F. Relationship between antimetabolite toxicity and pharmacogenetics in Turkish cancer patients. Asian Pac. J. Cancer Prev. 2012;13:1553–1556. doi: 10.7314/APJCP.2012.13.4.1553.
    1. Muller J., Kralovanszky J., Adleff V., Pap E., Nemeth K., Komlosi V., Kovacs G. Toxic encephalopathy and delayed MTX clearance after high-dose methotrexate therapy in a child homozygous for the MTHFR C677T polymorphism. Anticancer Res. 2008;28:3051–3054.
    1. Park J.A., Shin H.Y. Influence of genetic polymorphisms in the folate pathway on toxicity after high-dose methotrexate treatment in pediatric osteosarcoma. Blood Res. 2016;51:50–57. doi: 10.5045/br.2016.51.1.50.
    1. Blanco J.G., Sun C.L., Landier W., Chen L., Esparza-Duran D., Leisenring W., Mays A., Friedman D.L., Ginsberg J.P., Hudson M.M., et al. Anthracycline-related cardiomyopathy after childhood cancer: Role of polymorphisms in carbonyl reductase genes—A report from the Children’s Oncology Group. J. Clin. Oncol. 2012;30:1415–1421. doi: 10.1200/JCO.2011.34.8987.
    1. Visscher H., Ross C.J., Rassekh S.R., Barhdadi A., Dube M.P., Al-Saloos H., Sandor G.S., Caron H.N., van Dalen E.C., Kremer L.C., et al. Pharmacogenomic prediction of anthracycline-induced cardiotoxicity in children. J. Clin. Oncol. 2012;30:1422–1428. doi: 10.1200/JCO.2010.34.3467.
    1. Visscher H., Ross C.J., Rassekh S.R., Sandor G.S., Caron H.N., van Dalen E.C., Kremer L.C., van der Pal H.J., Rogers P.C., Rieder M.J., et al. Validation of variants in SLC28A3 and UGT1A6 as genetic markers predictive of anthracycline-induced cardiotoxicity in children. Pediatr. Blood Cancer. 2013;60:1375–1381. doi: 10.1002/pbc.24505.
    1. Wang X., Liu W., Sun C.L., Armenian S.H., Hakonarson H., Hageman L., Ding Y., Landier W., Blanco J.G., Chen L., et al. Hyaluronan synthase 3 variant and anthracycline-related cardiomyopathy: A report from the children’s oncology group. J. Clin. Oncol. 2014;32:647–653. doi: 10.1200/JCO.2013.50.3557.
    1. Visscher H., Rassekh S.R., Sandor G.S., Caron H.N., van Dalen E.C., Kremer L.C., van der Pal H.J., Rogers P.C., Rieder M.J., Carleton B.C., et al. Genetic variants in SLC22A17 and SLC22A7 are associated with anthracycline-induced cardiotoxicity in children. Pharmacogenomics. 2015;16:1065–1076. doi: 10.2217/pgs.15.61.
    1. Aminkeng F., Bhavsar A.P., Visscher H., Rassekh S.R., Li Y., Lee J.W., Brunham L.R., Caron H.N., van Dalen E.C., Kremer L.C., et al. A coding variant in RARG confers susceptibility to anthracycline-induced cardiotoxicity in childhood cancer. Nat. Genet. 2015;47:1079–1084. doi: 10.1038/ng.3374.
    1. Singh P., Wang X., Hageman L., Chen Y., Magdy T., Landier W., Ginsberg J.P., Neglia J.P., Sklar C.A., Castellino S.M., et al. Association of GSTM1 null variant with anthracycline-related cardiomyopathy after childhood cancer-A Children’s Oncology Group ALTE03N1 report. Cancer. 2020 doi: 10.1002/cncr.32948.
    1. Riedemann L., Lanvers C., Deuster D., Peters U., Boos J., Jurgens H., am Zehnhoff-Dinnesen A. Megalin genetic polymorphisms and individual sensitivity to the ototoxic effect of cisplatin. Pharmacogn. J. 2008;8:23–28. doi: 10.1038/sj.tpj.6500455.
    1. Ross C.J., Katzov-Eckert H., Dube M.P., Brooks B., Rassekh S.R., Barhdadi A., Feroz-Zada Y., Visscher H., Brown A.M., Rieder M.J., et al. Genetic variants in TPMT and COMT are associated with hearing loss in children receiving cisplatin chemotherapy. Nat. Genet. 2009;41:1345–1349. doi: 10.1038/ng.478.
    1. Lanvers-Kaminsky C., Sprowl J.A., Malath I., Deuster D., Eveslage M., Schlatter E., Mathijssen R.H., Boos J., Jurgens H., Am Zehnhoff-Dinnesen A.G., et al. Human OCT2 variant c.808G>T confers protection effect against cisplatin-induced ototoxicity. Pharmacogenomics. 2015;16:323–332. doi: 10.2217/pgs.14.182.
    1. Pussegoda K., Ross C.J., Visscher H., Yazdanpanah M., Brooks B., Rassekh S.R., Zada Y.F., Dube M.P., Carleton B.C., Hayden M.R. Replication of TPMT and ABCC3 genetic variants highly associated with cisplatin-induced hearing loss in children. Clin. Pharmacol. Ther. 2013;94:243–251. doi: 10.1038/clpt.2013.80.
    1. Hagleitner M.M., Coenen M.J., Patino-Garcia A., de Bont E.S., Gonzalez-Neira A., Vos H.I., van Leeuwen F.N., Gelderblom H., Hoogerbrugge P.M., Guchelaar H.J., et al. Influence of genetic variants in TPMT and COMT associated with cisplatin induced hearing loss in patients with cancer: Two new cohorts and a meta-analysis reveal significant heterogeneity between cohorts. PLoS ONE. 2014;9:e115869. doi: 10.1371/journal.pone.0115869.
    1. Xu H., Robinson G.W., Huang J., Lim J.Y., Zhang H., Bass J.K., Broniscer A., Chintagumpala M., Bartels U., Gururangan S., et al. Common variants in ACYP2 influence susceptibility to cisplatin-induced hearing loss. Nat. Genet. 2015;47:263–266. doi: 10.1038/ng.3217.
    1. Vos H.I., Guchelaar H.J., Gelderblom H., de Bont E.S., Kremer L.C., Naber A.M., Hakobjan M.H., van der Graaf W.T., Coenen M.J., te Loo D.M. Replication of a genetic variant in ACYP2 associated with cisplatin-induced hearing loss in patients with osteosarcoma. Pharm. Genom. 2016;26:243–247. doi: 10.1097/FPC.0000000000000212.
    1. Peters U., Preisler-Adams S., Hebeisen A., Hahn M., Seifert E., Lanvers C., Heinecke A., Horst J., Jurgens H., Lamprecht-Dinnesen A. Glutathione S-transferase genetic polymorphisms and individual sensitivity to the ototoxic effect of cisplatin. Anticancer Drugs. 2000;11:639–643. doi: 10.1097/00001813-200009000-00007.
    1. Spracklen T.F., Whitehorn H., Vorster A.A., Ramma L., Dalvie S., Ramesar R.S. Genetic variation in Otos is associated with cisplatin-induced ototoxicity. Pharmacogenomics. 2014;15:1667–1676. doi: 10.2217/pgs.14.112.
    1. Manolio T.A., Rowley R., Williams M.S., Roden D., Ginsburg G.S., Bult C., Chisholm R.L., Deverka P.A., McLeod H.L., Mensah G.A., et al. Opportunities, resources, and techniques for implementing genomics in clinical care. Lancet. 2019;394:511–520. doi: 10.1016/S0140-6736(19)31140-7.
    1. Bilbao-Aldaiturriaga N., Gutierrez-Camino A., Martin-Guerrero I., Pombar-Gomez M., Zalacain-Diez M., Patino-Garcia A., Lopez-Lopez E., Garcia-Orad A. Polymorphisms in miRNA processing genes and their role in osteosarcoma risk. Pediatr. Blood Cancer. 2015;62:766–769. doi: 10.1002/pbc.25416.
    1. Izadpanah S., Shabani P., Aghebati-Maleki A., Baghbani E., Baghbanzadeh A., Fotouhi A., Bakhshinejad B., Aghebati-Maleki L., Baradaran B. Insights into the roles of miRNAs; miR-193 as one of small molecular silencer in osteosarcoma therapy. Biomed. Pharmacother. 2019;111:873–881. doi: 10.1016/j.biopha.2018.12.106.
    1. Wang C., Jing J., Cheng L. Emerging roles of non-coding RNAs in the pathogenesis, diagnosis and prognosis of osteosarcoma. Investig. New Drugs. 2018;36:1116–1132. doi: 10.1007/s10637-018-0624-7.
    1. Zhang Y., Li J., Wang Y., Jing J. The Roles of Circular RNAs in Osteosarcoma. Med. Sci. Monit. 2019;25:6378–6382. doi: 10.12659/MSM.915559.
    1. Shi Z.W., Wang J.L., Zhao N., Guan Y., He W. Single nucleotide polymorphism of hsa-miR-124a affects risk and prognosis of osteosarcoma. Cancer Biomark. 2016;17:249–257. doi: 10.3233/CBM-160637.
    1. Bofill-De Ros X., Yang A., Gu S. IsomiRs: Expanding the miRNA repression toolbox beyond the seed. Biochim. Biophys. Acta Gene Regul. Mech. 2020;1863:194373. doi: 10.1016/j.bbagrm.2019.03.005.
    1. Rainusso N., Cleveland H., Hernandez J.A., Quintanilla N.M., Hicks J., Vasudevan S., Marco R.A.W., Allen-Rhoades W., Wang L.L., Yustein J.T. Generation of patient-derived tumor xenografts from percutaneous tumor biopsies in children with bone sarcomas. Pediatr. Blood Cancer. 2019;66:e27579. doi: 10.1002/pbc.27579.
    1. Stewart E., Federico S.M., Chen X., Shelat A.A., Bradley C., Gordon B., Karlstrom A., Twarog N.R., Clay M.R., Bahrami A., et al. Orthotopic patient-derived xenografts of paediatric solid tumours. Nature. 2017;549:96–100. doi: 10.1038/nature23647.
    1. Nanni P., Landuzzi L., Manara M.C., Righi A., Nicoletti G., Cristalli C., Pasello M., Parra A., Carrabotta M., Ferracin M., et al. Bone sarcoma patient-derived xenografts are faithful and stable preclinical models for molecular and therapeutic investigations. Sci. Rep. 2019;9:12174. doi: 10.1038/s41598-019-48634-y.
    1. Sayles L.C., Breese M.R., Koehne A.L., Leung S.G., Lee A.G., Liu H.Y., Spillinger A., Shah A.T., Tanasa B., Straessler K., et al. Genome-Informed Targeted Therapy for Osteosarcoma. Cancer Discov. 2019;9:46–63. doi: 10.1158/-17-1152.
    1. Chen X., Bahrami A., Pappo A., Easton J., Dalton J., Hedlund E., Ellison D., Shurtleff S., Wu G., Wei L., et al. Recurrent somatic structural variations contribute to tumorigenesis in pediatric osteosarcoma. Cell Rep. 2014;7:104–112. doi: 10.1016/j.celrep.2014.03.003.
    1. Ambati S.R., Shieh J.H., Pera B., Lopes E.C., Chaudhry A., Wong E.W., Saxena A., Su T.L., Moore M.A. BO-1055, a novel DNA cross-linking agent with remarkable low myelotoxicity shows potent activity in sarcoma models. Oncotarget. 2016;7:43062–43075. doi: 10.18632/oncotarget.9657.
    1. Manara M.C., Valente S., Cristalli C., Nicoletti G., Landuzzi L., Zwergel C., Mazzone R., Stazi G., Arimondo P.B., Pasello M., et al. A Quinoline-Based DNA Methyltransferase Inhibitor as a Possible Adjuvant in Osteosarcoma Therapy. Mol. Cancer Ther. 2018;17:1881–1892. doi: 10.1158/1535-7163.MCT-17-0818.
    1. Xian M., Cao H., Cao J., Shao X., Zhu D., Zhang N., Huang P., Li W., Yang B., Ying M., et al. Bortezomib sensitizes human osteosarcoma cells to adriamycin-induced apoptosis through ROS-dependent activation of p-eIF2alpha/ATF4/CHOP axis. Int. J. Cancer. 2017;141:1029–1041. doi: 10.1002/ijc.30792.
    1. De Luca A., Raimondi L., Salamanna F., Carina V., Costa V., Bellavia D., Alessandro R., Fini M., Giavaresi G. Relevance of 3d culture systems to study osteosarcoma environment. J. Exp. Clin. Cancer Res. 2018;37:2. doi: 10.1186/s13046-017-0663-5.
    1. Le Nail L.R., Brennan M., Rosset P., Deschaseaux F., Piloquet P., Pichon O., Le Caignec C., Crenn V., Layrolle P., Herault O., et al. Comparison of Tumor- and Bone Marrow-Derived Mesenchymal Stromal/Stem Cells from Patients with High-Grade Osteosarcoma. Int. J. Mol. Sci. 2018;19:707. doi: 10.3390/ijms19030707.
    1. Bhuvaneshwar K., Harris M., Gusev Y., Madhavan S., Iyer R., Vilboux T., Deeken J., Yang E., Shankar S. Genome sequencing analysis of blood cells identifies germline haplotypes strongly associated with drug resistance in osteosarcoma patients. BMC Cancer. 2019;19:357. doi: 10.1186/s12885-019-5474-y.
    1. Johnson J.A., Bootman J.L. Drug-related morbidity and mortality. A cost-of-illness model. Arch. Intern. Med. 1995;155:1949–1956. doi: 10.1001/archinte.1995.00430180043006.
    1. Lazarou J., Pomeranz B.H., Corey P.N. Incidence of adverse drug reactions in hospitalized patients: A meta-analysis of prospective studies. JAMA. 1998;279:1200–1205. doi: 10.1001/jama.279.15.1200.
    1. Landrigan C.P., Parry G.J., Bones C.B., Hackbarth A.D., Goldmann D.A., Sharek P.J. Temporal trends in rates of patient harm resulting from medical care. N. Engl. J. Med. 2010;363:2124–2134. doi: 10.1056/NEJMsa1004404.
    1. Trusheim M.R., Berndt E.R., Douglas F.L. Stratified medicine: Strategic and economic implications of combining drugs and clinical biomarkers. Nat. Rev. Drug Discov. 2007;6:287–293. doi: 10.1038/nrd2251.
    1. Garbayo E., Pascual-Gil S., Rodriguez-Nogales C., Saludas L., Estella-Hermoso de Mendoza A., Blanco-Prieto M.J. Nanomedicine and drug delivery systems in cancer and regenerative medicine. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2020 doi: 10.1002/wnan.1637.
    1. Pereira-Silva M., Alvarez-Lorenzo C., Concheiro A., Santos A.C., Veiga F., Figueiras A. Nanomedicine in osteosarcoma therapy: Micelleplexes for delivery of nucleic acids and drugs toward osteosarcoma-targeted therapies. Eur. J. Pharm. Biopharm. 2020;148:88–106. doi: 10.1016/j.ejpb.2019.10.013.
    1. Manolio T.A., Abramowicz M., Al-Mulla F., Anderson W., Balling R., Berger A.C., Bleyl S., Chakravarti A., Chantratita W., Chisholm R.L., et al. Global implementation of genomic medicine: We are not alone. Sci. Transl. Med. 2015;7:290. doi: 10.1126/scitranslmed.aab0194.
    1. Individualized Therapy for Relapsed Malignancies in Childhood (INFORM) [(accessed on 30 March 2020)]; Available online:
    1. Worst B.C., van Tilburg C.M., Balasubramanian G.P., Fiesel P., Witt R., Freitag A., Boudalil M., Previti C., Wolf S., Schmidt S., et al. Next-generation personalised medicine for high-risk paediatric cancer patients—The INFORM pilot study. Eur. J. Cancer. 2016;65:91–101. doi: 10.1016/j.ejca.2016.06.009.
    1. UK 100,000 Genomes Cancer Project. [(accessed on 30 March 2020)]; Available online:
    1. Turnbull C., Scott R.H., Thomas E., Jones L., Murugaesu N., Pretty F.B., Halai D., Baple E., Craig C., Hamblin A., et al. The 100 000 Genomes Project: Bringing whole genome sequencing to the NHS. BMJ. 2018;361:k1687. doi: 10.1136/bmj.k1687.
    1. Geisinger MyCode Community Health Initiative. [(accessed on 30 March 2020)]; Available online: .
    1. Ginsburg G.S., Phillips K.A. Precision Medicine: From Science to Value. Health Aff. (Millwood) 2018;37:694–701. doi: 10.1377/hlthaff.2017.1624.
    1. Manolio T.A., Chisholm R.L., Ozenberger B., Roden D.M., Williams M.S., Wilson R., Bick D., Bottinger E.P., Brilliant M.H., Eng C., et al. Implementing genomic medicine in the clinic: The future is here. Genet. Med. 2013;15:258–267. doi: 10.1038/gim.2012.157.
    1. Owusu Obeng A., Fei K., Levy K.D., Elsey A.R., Pollin T.I., Ramirez A.H., Weitzel K.W., Horowitz C.R. Physician-Reported Benefits and Barriers to Clinical Implementation of Genomic Medicine: A Multi-Site IGNITE-Network Survey. J. Pers. Med. 2018;8:24. doi: 10.3390/jpm8030024.
    1. Hay M.A., Severson E.A., Miller V.A., Liebner D.A., Vergilio J., Millis S.Z., Chen J.L. Identifying Opportunities and Challenges for Patients With Sarcoma as a Result of Comprehensive Genomic Profiling of Sarcoma Specimens. JCO Precis. Oncol. 2020;4:176–182. doi: 10.1200/PO.19.00227.
    1. Li Z., Dou P., Liu T., He S. Application of Long Noncoding RNAs in Osteosarcoma: Biomarkers and Therapeutic Targets. Cell Physiol. Biochem. 2017;42:1407–1419. doi: 10.1159/000479205.
    1. Khan F.A., Pandupuspitasari N.S., Huang C.-J., Ao Z., Jamal M., Zohaib A., Hakim M.R., Zhao S. CRISPR/Cas9 therapeutics: A cure for cancer and other genetic diseases. Oncotarget. 2016;7:52541–52552. doi: 10.18632/oncotarget.9646.
    1. Zewde M., Kiyotani K., Park J.H., Fang H., Yap K.L., Yew P.Y., Alachkar H., Kato T., Mai T.H., Ikeda Y., et al. The era of immunogenomics/immunopharmacogenomics. J. Hum. Genet. 2018;63:865–875. doi: 10.1038/s10038-018-0468-1.
    1. Le D.T., Durham J.N., Smith K.N., Wang H., Bartlett B.R., Aulakh L.K., Lu S., Kemberling H., Wilt C., Luber B.S., et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 2017;357:409–413. doi: 10.1126/science.aan6733.
    1. Rizvi N.A., Hellmann M.D., Snyder A., Kvistborg P., Makarov V., Havel J.J., Lee W., Yuan J., Wong P., Ho T.S., et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348:124–128. doi: 10.1126/science.aaa1348.
    1. Schumacher T.N., Scheper W., Kvistborg P. Cancer Neoantigens. Annu. Rev. Immunol. 2019;37:173–200. doi: 10.1146/annurev-immunol-042617-053402.
    1. Chalmers Z.R., Connelly C.F., Fabrizio D., Gay L., Ali S.M., Ennis R., Schrock A., Campbell B., Shlien A., Chmielecki J., et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 2017;9:34. doi: 10.1186/s13073-017-0424-2.
    1. Chang T.C., Carter R.A., Li Y., Wang H., Edmonson M.N., Chen X., Arnold P., Geiger T.L., Wu G., Peng J., et al. The neoepitope landscape in pediatric cancers. Genome Med. 2017;9:78. doi: 10.1186/s13073-017-0468-3.
    1. Weinstein J.N., Collisson E.A., Mills G.B., Shaw K.R., Ozenberger B.A., Ellrott K., Shmulevich I., Sander C., Stuart J.M. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013;45:1113–1120. doi: 10.1038/ng.2764.
    1. Hudson T.J., Anderson W., Artez A., Barker A.D., Bell C., Bernabe R.R., Bhan M.K., Calvo F., Eerola I., Gerhard D.S., et al. International network of cancer genome projects. Nature. 2010;464:993–998.

Source: PubMed

3
Abonnere