Bifidobacterium animalis subsp. lactis BB-12 Protects against Antibiotic-Induced Functional and Compositional Changes in Human Fecal Microbiome

Daniel Merenstein, Claire M Fraser, Robert F Roberts, Tian Liu, Silvia Grant-Beurmann, Tina P Tan, Keisha Herbin Smith, Tom Cronin, Olivia A Martin, Mary Ellen Sanders, Sean C Lucan, Maureen A Kane, Daniel Merenstein, Claire M Fraser, Robert F Roberts, Tian Liu, Silvia Grant-Beurmann, Tina P Tan, Keisha Herbin Smith, Tom Cronin, Olivia A Martin, Mary Ellen Sanders, Sean C Lucan, Maureen A Kane

Abstract

The administration of broad-spectrum antibiotics is often associated with antibiotic-associated diarrhea (AAD), and impacts gastrointestinal tract homeostasis, as evidenced by the following: (a) an overall reduction in both the numbers and diversity of the gut microbiota, and (b) decreased short-chain fatty acid (SCFA) production. Evidence in humans that probiotics may enhance the recovery of microbiota populations after antibiotic treatment is equivocal, and few studies have addressed if probiotics improve the recovery of microbial metabolic function. Our aim was to determine if Bifidobacterium animalis subsp. lactis BB-12 (BB-12)-containing yogurt could protect against antibiotic-induced fecal SCFA and microbiota composition disruptions. We conducted a randomized, allocation-concealed, controlled trial of amoxicillin/clavulanate administration (days 1-7), in conjunction with either BB-12-containing or control yogurt (days 1-14). We measured the fecal levels of SCFAs and bacterial composition at baseline and days 7, 14, 21, and 30. Forty-two participants were randomly assigned to the BB-12 group, and 20 participants to the control group. Antibiotic treatment suppressed the fecal acetate levels in both the control and probiotic groups. Following the cessation of antibiotics, the fecal acetate levels in the probiotic group increased over the remainder of the study and returned to the baseline levels on day 30 (-1.6% baseline), whereas, in the control group, the acetate levels remained suppressed. Further, antibiotic treatment reduced the Shannon diversity of the gut microbiota, for all the study participants at day 7. The magnitude of this change was larger and more sustained in the control group compared to the probiotic group, which is consistent with the hypothesis that BB-12 enhanced microbiota recovery. There were no significant baseline clinical differences between the two groups. Concurrent administration of amoxicillin/clavulanate and BB-12 yogurt, to healthy subjects, was associated with a significantly smaller decrease in the fecal SCFA levels and a more stable taxonomic profile of the microbiota over time than the control group.

Keywords: Bifidobacterium; abundance; antibiotic-induced perturbation; diversity; gut microbiota; probiotic; short-chain fatty acid.

Conflict of interest statement

MES has been compensated for speaking engagements or for consulting from Associated British Foods, California Dairy Research Foundation, Church & Dwight, Danone North America, Fairlife, GlaxoSmithKline, Kerry, Mead Johnson, PepsiCo, and Trouw Nutrition. She has served on scientific advisory boards for Cargill, Sanofi, Danone North America, Danone Research, Winclove Probiotics and Yakult. She serves as the executive science officer for the International Scientific Association for Probiotics and Prebiotics. DM has consulted for Bayer & Pfizer. SCL has been compensated both for speaking engagements and for serving on the Scientific and Nutritional Advisory Board of Epicure. SCL has also consulted for Danone North America. The other authors have no competing interests to declare. None of the companies listed above had any role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results. Additionally none have seen the results.

Figures

Figure 1
Figure 1
Participant timeline and sample/data collection schedule.
Figure 2
Figure 2
Consolidated standards of reporting trials (CONSORT) flow diagram of participants. Sixty-six participants were enrolled, 62 of which were randomized (42 to BB-12 group and 20 to control) after a 30-day run-in period. By day 7 of the intervention, 56 participants (38 BB-12 and 18 control) remained in the study.
Figure 3
Figure 3
Comparisons of fecal SCFA levels and Shannon diversity at baseline with multiple time points post amoxicillin/clavulanate administration. (AC) % change in average SCFA levels as compared to post run-in (day 0) baseline. (A) Acetate, (B) propionate, (C) butyrate. The acetate control group (red) in (A) remains decreased at day 30 (−25.1%) whereas active (blue, BB-12) group returns to baseline at day 30 (−1.6%). (D) Correlation of Shannon diversity between pre- and post-baseline values (Spearman’s rank correlation coefficient R = 0.49, p < 0.05). (E) Differences in Shannon diversity between the control (red) and BB-12 (blue) groups at time points pre (baseline 1, day 30), post (baseline 2, day 0), day 7, day 14, day 21, and day 30.
Figure 4
Figure 4
Taxonomic shifts induced by amoxicillin/clavulanate administration with and without BB-12 over time. (A,B) Hierarchical dendrogram of participants and their predominant fecal bacterial genera; control group (A) and BB-12 (active) group (B). The heat map represents the relative abundance (range 0–1; 1 = 100%) of each bacterial genus. The predominant genera are represented along the right x-axis. The legend for the heat map is provided on the right side representing the relative abundance of each bacterial genus within each sample. (C) Percent community divergence (Bray–Curtis dissimilarity) over time with respect to the baseline (post run-in, day 0). Control group (blue bar graphs) exhibits overall greater increase in community dissimilarity when compared to BB-12 recipients (red bar graphs).

References

    1. Tuohy K.M., Rouzaud G.C., Bruck W.M., Gibson G.R. Modulation of the Human Gut Microflora towards Improved Health Using Prebiotics—Assessment of Efficacy. Curr. Pharm. Des. 2005;11:75–90. doi: 10.2174/1381612053382331.
    1. Binder H.J. Role of Colonic Short-Chain Fatty Acid Transport in Diarrhea. Annu. Rev. Physiol. 2010;72:297–313. doi: 10.1146/annurev-physiol-021909-135817.
    1. Dethlefsen L., Huse S., Sogin M.L., Relman D.A. The Pervasive Effects of an Antibiotic on the Human Gut Microbiota, as Revealed by Deep 16S RRNA Sequencing. PLoS Biol. 2008;6:e280. doi: 10.1371/journal.pbio.0060280.
    1. Dethlefsen L., Relman D.A. Incomplete Recovery and Individualized Responses of the Human Distal Gut Microbiota to Repeated Antibiotic Perturbation. Proc. Natl. Acad. Sci. USA. 2011;108(Suppl. 1):4554–4561. doi: 10.1073/pnas.1000087107.
    1. Young V.B., Schmidt T.M. Antibiotic-Associated Diarrhea Accompanied by Large-Scale Alterations in the Composition of the Fecal Microbiota. J. Clin. Micro. 2004;42:1203–1206. doi: 10.1128/JCM.42.3.1203-1206.2004.
    1. Clausen M.R., Bonnen H., Tvede M., Mortensen P.B. Colonic Fermentation to Short-Chain Fatty Acids Is Decreased in Antibiotic-Associated Diarrhea. Gastroenterology. 1991;101:1497–1504. doi: 10.1016/0016-5085(91)90384-W.
    1. Pennycook J.H., Scanlan P.D. Ecological and Evolutionary Responses to Antibiotic Treatment in the Human Gut Microbiota. FEMS Microbiol. Rev. 2021 doi: 10.1093/femsre/fuab018.
    1. Uzan-Yulzari A., Turta O., Belogolovski A., Ziv O., Kunz C., Perschbacher S., Neuman H., Pasolli E., Oz A., Ben-Amram H., et al. Neonatal Antibiotic Exposure Impairs Child Growth during the First Six Years of Life by Perturbing Intestinal Microbial Colonization. Nat. Commun. 2021;12:443. doi: 10.1038/s41467-020-20495-4.
    1. Martín-Núñez G.M., Cornejo-Pareja I., Coin-Aragüez L., Roca-Rodríguez M.D.M., Muñoz-Garach A., Clemente-Postigo M., Cardona F., Moreno-Indias I., Tinahones F.J.H. Pylori Eradication with Antibiotic Treatment Causes Changes in Glucose Homeostasis Related to Modifications in the Gut Microbiota. PLoS ONE. 2019;14:e0213548. doi: 10.1371/journal.pone.0213548.
    1. Romick-Rosendale L.E., Haslam D.B., Lane A., Denson L., Lake K., Wilkey A., Watanabe M., Bauer S., Litts B., Luebbering N., et al. Antibiotic Exposure and Reduced Short Chain Fatty Acid Production after Hematopoietic Stem Cell Transplant. Biol. Blood Marrow Transplant. 2018;24:2418–2424. doi: 10.1016/j.bbmt.2018.07.030.
    1. Turck D., Bernet J.P., Marx J., Kempf H., Giard P., Walbaum O., Lacombe A., Rembert F., Toursel F., Bernasconi P., et al. Incidence and Risk Factors of Oral Antibiotic-Associated Diarrhea in an Outpatient Pediatric Population. J. Pediatr. Gastroenterol. Nutr. 2003;37:22–26. doi: 10.1097/00005176-200307000-00004.
    1. Mitchell D.K., Van R., Mason E.H., Norris D.M., Pickering L.K. Prospective Study of Toxigenic Clostridium Difficile in Children given Amoxicillin/Clavulanate for Otitis Media. Pediatr. Infect. Dis. J. 1996;15:514–519. doi: 10.1097/00006454-199606000-00008.
    1. McCarty J.M., Phillips A., Wiisanen R. Comparative Safety and Efficacy of Clarithromycin and Amoxicillin/Clavulanate in the Treatment of Acute Otitis Media in Children. Pediatr. Infect. Dis. J. 1993;12:S122–S127. doi: 10.1097/00006454-199312003-00006.
    1. Elstner C.L., Lindsay A.N., Book L.S., Matsen J.M. Lack of Relationship of Clostridium Difficile to Antibiotic-Associated Diarrhea in Children. Pediatr Infect. Dis. J. 1983;2:364–366. doi: 10.1097/00006454-198309000-00006.
    1. McFarland L.V. Epidemiology, Risk Factors and Treatments for Antibiotic-Associated Diarrhea. Dig. Dis. 1998;16:292–307. doi: 10.1159/000016879.
    1. Beaugerie L., Flahault A., Barbut F., Atlan P., Lalande V., Cousin P., Cadilhac M., Petit J.C. Antibiotic-Associated Diarrhoea and Clostridium Difficile in the Community. Aliment. Pharmacol. Ther. 2003;17:905–912. doi: 10.1046/j.1365-2036.2003.01531.x.
    1. Finkelstein J.A., Davis R.L., Dowell S.F., Metlay J.P., Soumerai S.B., Rifas-Shiman S.L., Higham M., Miller Z., Miroshnik I., Pedan A., et al. Reducing Antibiotic Use in Children: A Randomized Trial in 12 Practices. Pediatrics. 2001;108:1–7. doi: 10.1542/peds.108.1.1.
    1. Finkelstein J.A., Metlay J.P., Davis R.L., Rifas-Shiman S.L., Dowell S.F., Platt R. Antimicrobial Use in Defined Populations of Infants and Young Children. Arch. Pediatr. Adolesc. Med. 2000;154:395–400. doi: 10.1001/archpedi.154.4.395.
    1. Yu H., Flaster N., Casanello A.L., Curcio D. Assessing Risk Factors, Mortality, and Healthcare Utilization Associated with Clostridioides Difficile Infection in Four Latin American Countries. Braz. J. Infect. Dis. Off. Publ. Braz. Soc. Infect. Dis. 2021;25:101040. doi: 10.1016/j.bjid.2020.11.005.
    1. Stebel R., Vojtilová L., Husa P. Clostridium Difficile Infection: An Update on Treatment and Prevention. Vnitr. Lek. 2020;66:58–62. doi: 10.36290/vnl.2020.037.
    1. Hill C., Guarner F., Reid G., Gibson G.R., Merenstein D.J., Pot B., Morelli L., Canani R.B., Flint H.J., Salminen S., et al. Expert Consensus Document. The International Scientific Association for Probiotics and Prebiotics Consensus Statement on the Scope and Appropriate Use of the Term Probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014;11:506–514. doi: 10.1038/nrgastro.2014.66.
    1. Jungersen M., Wind A., Johansen E., Christensen J., Stuer-Lauridsen B., Eskesen D. The Science behind the Probiotic Strain Bifidobacterium animalis Subsp. Lactis BB-12®. Microorganisms. 2014;2:92–110. doi: 10.3390/microorganisms2020092.
    1. Garrigues C., Johansen E., Pedersen M.B. Complete Genome Sequence of Bifidobacterium animalis Subsp. Lactis BB-12, a Widely Consumed Probiotic Strain. J. Bacteriol. 2010;192:2467–2468. doi: 10.1128/JB.00109-10.
    1. Merenstein D.J., Smith K.H., Scriven M., Roberts R.F., Sanders M.E., Petterson S. The Study to Investigate the Potential Benefits of Probiotics in Yogurt, a Patient-Oriented, Double-Blind, Cluster-Randomised, Placebo-Controlled, Clinical Trial. Eur. J. Clin. Nutr. 2010;64:685–691. doi: 10.1038/ejcn.2010.30.
    1. Tan T.P., Ba Z., Sanders M.E., D′Amico F.J., Roberts R.F., Smith K.H., Merenstein D.J. Safety of Bifidobacterium animalis Subsp. Lactis (B. Lactis) Strain BB-12-Supplemented Yogurt in Healthy Children. J. Pediatr. Gastroenterol. Nutr. 2017;64:302–309. doi: 10.1097/MPG.0000000000001272.
    1. Merenstein D.J., Tan T.P., Molokin A., Smith K.H., Roberts R.F., Shara N.M., Mete M., Sanders M.E., Solano-Aguilar G. Safety of Bifidobacterium animalis Subsp. Lactis (B. Lactis) Strain BB-12-Supplemented Yogurt in Healthy Adults on Antibiotics: A Phase I Safety Study. Gut Microbes. 2015;6:66–77. doi: 10.1080/19490976.2015.1005484.
    1. Merenstein D., Gonzalez J., Young A.G., Roberts R.F., Sanders M.E., Petterson S. Study to Investigate the Potential of Probiotics in Children Attending School. Eur. J. Clin. Nutr. 2011;65:447–453. doi: 10.1038/ejcn.2010.290.
    1. Han J., Lin K., Sequeira C., Borchers C.H. An Isotope-Labeled Chemical Derivatization Method for the Quantitation of Short-Chain Fatty Acids in Human Feces by Liquid Chromatography-Tandem Mass Spectrometry. Anal. Chim. Acta. 2015;854:86–94. doi: 10.1016/j.aca.2014.11.015.
    1. Holm J.B., Humphrys M.S., Robinson C.K., Settles M.L., Ott S., Fu L., Yang H., Gajer P., He X., McComb E., et al. Ultrahigh-Throughput Multiplexing and Sequencing of >500-Base-Pair Amplicon Regions on the Illumina HiSeq 2500 Platform. MSystems. 2019;4:e00029-19. doi: 10.1128/mSystems.00029-19.
    1. Wang Q., Garrity G.M., Tiedje J.M., Cole J.R. Naive Bayesian Classifier for Rapid Assignment of RRNA Sequences into the New Bacterial Taxonomy. Appl. Environ. Microbiol. 2007;73:5261–5267. doi: 10.1128/AEM.00062-07.
    1. Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., Peplies J., Glockner F.O. The SILVA Ribosomal RNA Gene Database Project: Improved Data Processing and Web-Based Tools. Nucleic Acids. Res. 2012;41:D590–D596. doi: 10.1093/nar/gks1219.
    1. Callahan B.J., McMurdie P.J., Rosen M.J., Han A.W., Johnson A.J.A., Holmes S.P. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods. 2016;13:581–583. doi: 10.1038/nmeth.3869.
    1. McMurdie P.J., Holmes S. Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE. 2013;8:e61217. doi: 10.1371/journal.pone.0061217.
    1. Segata N., Izard J., Waldron L., Gevers D., Miropolsky L., Garrett W.S., Huttenhower C. Metagenomic Biomarker Discovery and Explanation. Genome Biol. 2011;12:R60. doi: 10.1186/gb-2011-12-6-r60.
    1. Hoverstad T., Carlstedt-Duke B., Lingaas E., Midtvedt T., Norin K.E., Saxerholt H., Steinbakk M. Influence of Ampicillin, Clindamycin, and Metronidazole on Faecal Excretion of Short-Chain Fatty Acids in Healthy Subjects. Scand. J. Gastroenterol. 1986;21:621–626. doi: 10.3109/00365528609003109.
    1. Hoverstad T., Carlstedt-Duke B., Lingaas E., Norin E., Saxerholt H., Steinbakk M., Midtvedt T. Influence of Oral Intake of Seven Different Antibiotics on Faecal Short-Chain Fatty Acid Excretion in Healthy Subjects. Scand. J. Gastroenterol. 1986;21:997–1003. doi: 10.3109/00365528608996411.
    1. Krebs-Smith S.M., Pannucci T.E., Subar A.F., Kirkpatrick S.I., Lerman J.L., Tooze J.A., Wilson M.M., Reedy J. Update of the Healthy Eating Index: HEI-2015. J. Acad. Nutr. Diet. 2018;118:1591–1602. doi: 10.1016/j.jand.2018.05.021.
    1. Kirkpatrick S.I., Reedy J., Krebs-Smith S.M., Pannucci T.E., Subar A.F., Wilson M.M., Lerman J.L., Tooze J.A. Applications of the Healthy Eating Index for Surveillance, Epidemiology, and Intervention Research: Considerations and Caveats. J. Acad. Nutr. Diet. 2018;118:1603–1621. doi: 10.1016/j.jand.2018.05.020.
    1. Suez J., Zmora N., Zilberman-Schapira G., Mor U., Dori-Bachash M., Bashiardes S., Zur M., Regev-Lehavi D., Ben-Zeev Brik R., Federici S., et al. Post-Antibiotic Gut Mucosal Microbiome Reconstitution Is Impaired by Probiotics and Improved by Autologous FMT. Cell. 2018;174:1406–1423.e16. doi: 10.1016/j.cell.2018.08.047.
    1. Shen N.T., Maw A., Tmanova L.L., Pino A., Ancy K., Crawford C.V., Simon M.S., Evans A.T. Timely Use of Probiotics in Hospitalized Adults Prevents Clostridium Difficile Infection: A Systematic Review With Meta-Regression Analysis. Gastroenterology. 2017;152:1889–1900.e9. doi: 10.1053/j.gastro.2017.02.003.
    1. Goldenberg J.Z., Yap C., Lytvyn L., Lo C.K.-F., Beardsley J., Mertz D., Johnston B.C. Probiotics for the Prevention of Clostridium Difficile-Associated Diarrhea in Adults and Children. Cochrane Database Syst. Rev. 2017;12:CD006095. doi: 10.1002/14651858.CD006095.pub4.
    1. Guo Q., Goldenberg J.Z., Humphrey C., El Dib R., Johnston B.C. Probiotics for the Prevention of Pediatric Antibiotic-Associated Diarrhea. Cochrane Database Syst. Rev. 2019;4:CD004827. doi: 10.1002/14651858.CD004827.pub5.
    1. Schnadower D., Tarr P.I., Casper T.C., Gorelick M.H., Dean J.M., O’Connell K.J., Mahajan P., Levine A.C., Bhatt S.R., Roskind C.G., et al. Lactobacillus rhamnosus GG versus Placebo for Acute Gastroenteritis in Children. N. Engl. J. Med. 2018;379:2002–2014. doi: 10.1056/NEJMoa1802598.
    1. Szajewska H., Guarino A., Hojsak I., Indrio F., Kolacek S., Shamir R., Vandenplas Y., Weizman Z. European Society for Pediatric Gastroenterology, Hepatology, and Nutrition Use of Probiotics for Management of Acute Gastroenteritis: A Position Paper by the ESPGHAN Working Group for Probiotics and Prebiotics. J. Pediatr. Gastroenterol. Nutr. 2014;58:531–539. doi: 10.1097/MPG.0000000000000320.
    1. Su G.L., Ko C.W., Bercik P., Falck-Ytter Y., Sultan S., Weizman A.V., Morgan R.L. AGA Clinical Practice Guidelines on the Role of Probiotics in the Management of Gastrointestinal Disorders. Gastroenterology. 2020;159:697–705. doi: 10.1053/j.gastro.2020.05.059.
    1. Collado M.C., Grześkowiak Ł., Salminen S. Probiotic Strains and Their Combination Inhibit in Vitro Adhesion of Pathogens to Pig Intestinal Mucosa. Curr. Microbiol. 2007;55:260–265. doi: 10.1007/s00284-007-0144-8.
    1. Collado M.C., Meriluoto J., Salminen S. Role of Commercial Probiotic Strains against Human Pathogen Adhesion to Intestinal Mucus. Lett. Appl. Microbiol. 2007;45:454–460. doi: 10.1111/j.1472-765X.2007.02212.x.
    1. Shubitowski T.B., Poll B.G., Natarajan N., Pluznick J.L. Short-Chain Fatty Acid Delivery: Assessing Exogenous Administration of the Microbiome Metabolite Acetate in Mice. Physiol. Rep. 2019;7:e14005. doi: 10.14814/phy2.14005.
    1. den Besten G., van Eunen K., Groen A.K., Venema K., Reijngoud D.-J., Bakker B.M. The Role of Short-Chain Fatty Acids in the Interplay between Diet, Gut Microbiota, and Host Energy Metabolism. J. Lipid Res. 2013;54:2325–2340. doi: 10.1194/jlr.R036012.
    1. O’Callaghan A., van Sinderen D. Bifidobacteria and Their Role as Members of the Human Gut Microbiota. Front. Microbiol. 2016;7:925. doi: 10.3389/fmicb.2016.00925.
    1. Sanders M.E., Benson A., Lebeer S., Merenstein D.J., Klaenhammer T.R. Shared Mechanisms among Probiotic Taxa: Implications for General Probiotic Claims. Curr. Opin. Biotechnol. 2018;49:207–216. doi: 10.1016/j.copbio.2017.09.007.

Source: PubMed

3
Abonnere