Combined evaluation of sexually transmitted infections in HIV-infected pregnant women and infant HIV transmission

Kristina Adachi, Jiahong Xu, Nava Yeganeh, Margaret Camarca, Mariza G Morgado, D Heather Watts, Lynne M Mofenson, Valdilea G Veloso, Jose Henrique Pilotto, Esau Joao, Glenda Gray, Gerhard Theron, Breno Santos, Rosana Fonseca, Regis Kreitchmann, Jorge Pinto, Marisa M Mussi-Pinhata, Mariana Ceriotto, Daisy Maria Machado, Yvonne J Bryson, Beatriz Grinsztejn, Jack Moye, Jeffrey D Klausner, Claire C Bristow, Ruth Dickover, Mark Mirochnick, Karin Nielsen-Saines, NICHD HPTN 040 Study Team, Kristina Adachi, Jiahong Xu, Nava Yeganeh, Margaret Camarca, Mariza G Morgado, D Heather Watts, Lynne M Mofenson, Valdilea G Veloso, Jose Henrique Pilotto, Esau Joao, Glenda Gray, Gerhard Theron, Breno Santos, Rosana Fonseca, Regis Kreitchmann, Jorge Pinto, Marisa M Mussi-Pinhata, Mariana Ceriotto, Daisy Maria Machado, Yvonne J Bryson, Beatriz Grinsztejn, Jack Moye, Jeffrey D Klausner, Claire C Bristow, Ruth Dickover, Mark Mirochnick, Karin Nielsen-Saines, NICHD HPTN 040 Study Team

Abstract

Background: Sexually transmitted infections (STIs) including Chlamydia trachomatis (CT), Neisseria gonorrhoeae (NG), Treponema pallidum (TP), and cytomegalovirus (CMV) may lead to adverse pregnancy and infant outcomes. The role of combined maternal STIs in HIV mother-to-child transmission (MTCT) was evaluated in mother-infant pairs from NICHD HPTN 040.

Methodology: Urine samples from HIV-infected pregnant women during labor were tested by polymerase chain reaction (PCR) for CT, NG, and CMV. Infant HIV infection was determined by serial HIV DNA PCR testing. Maternal syphilis was tested by VDRL and confirmatory treponemal antibodies.

Results: A total of 899 mother-infant pairs were evaluated. Over 30% had at least one of the following infections (TP, CT, NG, and/or CMV) detected at the time of delivery. High rates of TP (8.7%), CT (17.8%), NG (4%), and CMV (6.3%) were observed. HIV MTCT was 9.1% (n = 82 infants). HIV MTCT was 12.5%, 10.3%, 11.1%, and 26.3% among infants born to women with CT, TP, NG or CMV respectively. Forty-two percent of HIV-infected infants were born to women with at least one of these 4 infections. Women with these infections were nearly twice as likely to have an HIV-infected infant (aOR 1.9, 95% CI 1.1-3.0), particularly those with 2 STIs (aOR 3.4, 95% CI 1.5-7.7). Individually, maternal CMV (aOR 4.4 1.5-13.0) and infant congenital CMV (OR 4.1, 95% CI 2.2-7.8) but not other STIs (TP, CT, or NG) were associated with an increased risk of HIV MTCT.

Conclusion: HIV-infected pregnant women identified during labor are at high risk for STIs. Co-infection with STIs including CMV nearly doubles HIV MTCT risk. CMV infection appears to confer the largest risk of HIV MTCT.

Trial registration: NCT00099359.

Conflict of interest statement

Competing Interests: We have the following interests: Co-author Margaret Camarca is employed by Westat, and co-author Jiahong Xu is a former employee of Westat. Funding was received from commercial sources for the parent study HPTN 040 clinical trial from Boehringer Ingelheim Pharmaceuticals Inc. (BIPI), and GlaxoSmithKline, on behalf of ViiV Healthcare, all of which donated antiretrovirals for the conduct of the primary parent study evaluating neonatal prophylaxis. Support was also received from Cepheid for the testing of CT and NG during the implementation of another previous HPTN 040 sub-study. There are no patents, products in development or marketed products to declare. This does not alter our adherence to all the PLOS ONE policies on sharing data and materials.

References

    1. World Health Organization. Global Incidence and Prevalence of Selected Curable Sexually Transmitted Infections—2008. Geneva, Switzerland: World Health Organization, 2012.
    1. Mayaud P, Mabey D. Approaches to the control of sexually transmitted infections in developing countries: old problems and modern challenges. Sexually transmitted infections. 2004;80(3):174–82. Epub 2004/06/01. PubMed Central PMCID: PMC1744836. doi:
    1. Glasier A, Gulmezoglu AM, Schmid GP, Moreno CG, Van Look PF. Sexual and reproductive health: a matter of life and death. Lancet. 2006;368(9547):1595–607. Epub 2006/11/07. doi:
    1. Silveira MF, Ghanem KG, Erbelding EJ, Burke AE, Johnson HL, Singh RH, et al. Chlamydia trachomatis infection during pregnancy and the risk of preterm birth: a case-control study. International journal of STD & AIDS. 2009;20(7):465–9. Epub 2009/06/23. doi: .
    1. Woods CR. Gonococcal infections in neonates and young children. Seminars in pediatric infectious diseases. 2005;16(4):258–70. Epub 2005/10/08. doi:
    1. Hammerschlag MR. Chlamydial and gonococcal infections in infants and children. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America. 2011;53 Suppl 3:S99–102. Epub 2011/12/07. doi: .
    1. World Health Organization. Global Strategy for Prevention and Control of Sexually Transmitted Infections: 2006–2105. Geneva, Switzerland: World Health Organization, 2006.
    1. Walker DG, Walker GJ. Forgotten but not gone: the continuing scourge of congenital syphilis. The Lancet infectious diseases. 2002;2(7):432–6. Epub 2002/07/20.
    1. Walker GJ, Walker DG. Congenital syphilis: a continuing but neglected problem. Seminars in fetal & neonatal medicine. 2007;12(3):198–206. Epub 2007/03/06. doi: .
    1. Woods CR. Congenital syphilis-persisting pestilence. The Pediatric infectious disease journal. 2009;28(6):536–7. Epub 2009/06/02. doi:
    1. Woods CR. Syphilis in children: congenital and acquired. Seminars in pediatric infectious diseases. 2005;16(4):245–57. Epub 2005/10/08. doi:
    1. Cannon MJ, Hyde TB, Schmid DS. Review of cytomegalovirus shedding in bodily fluids and relevance to congenital cytomegalovirus infection. Reviews in medical virology. 2011;21(4):240–55. Epub 2011/06/16. PubMed Central PMCID: PMC4494736. doi:
    1. Kaul R, Pettengell C, Sheth PM, Sunderji S, Biringer A, MacDonald K, et al. The genital tract immune milieu: an important determinant of HIV susceptibility and secondary transmission. Journal of reproductive immunology. 2008;77(1):32–40. doi:
    1. Adler SP, Nigro G, Pereira L. Recent advances in the prevention and treatment of congenital cytomegalovirus infections. Seminars in perinatology. 2007;31(1):10–8. Epub 2007/02/24. doi:
    1. Conboy TJ, Pass RF, Stagno S, Alford CA, Myers GJ, Britt WJ, et al. Early clinical manifestations and intellectual outcome in children with symptomatic congenital cytomegalovirus infection. The Journal of pediatrics. 1987;111(3):343–8. Epub 1987/09/01.
    1. Manicklal S, Emery VC, Lazzarotto T, Boppana SB, Gupta RK. The "silent" global burden of congenital cytomegalovirus. Clinical microbiology reviews. 2013;26(1):86–102. Epub 2013/01/09. PubMed Central PMCID: PMC3553672. doi:
    1. Istas AS, Demmler GJ, Dobbins JG, Stewart JA. Surveillance for congenital cytomegalovirus disease: a report from the National Congenital Cytomegalovirus Disease Registry. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America. 1995;20(3):665–70. Epub 1995/03/01. .
    1. Ivarsson SA, Jonsson K, Jonsson B. Birth characteristics and growth pattern in children with congenital cytomegalovirus infection. Journal of pediatric endocrinology & metabolism: JPEM. 2003;16(9):1233–8. Epub 2004/01/13. .
    1. Adachi K, Klausner JD, Bristow CC, Xu J, Ank B, Morgado MG, et al. Chlamydia and Gonorrhea in HIV-Infected Pregnant Women and Infant HIV Transmission. Sexually transmitted diseases. 2015;42(10):554–65. Epub 2015/09/16. PubMed Central PMCID: PMC4571193. doi:
    1. Yeganeh N, Watts HD, Camarca M, Soares G, Joao E, Pilotto JH, et al. Syphilis in HIV-infected mothers and infants: results from the NICHD/HPTN 040 study. The Pediatric infectious disease journal. 2015;34(3):e52–7. Epub 2015/03/06. PubMed Central PMCID: PMC4352722. doi:
    1. Nielsen-Saines K, Adachi K., Ank B., Morgado M., Watts H., Mofenson L., Veloso V. for the NICHD HPTN 040 Study Team, editor Increased CMV Co-Infection with In Utero-Acquired HIV-Infection. Pediatric Academic Societies 2013; Washington D.C., United States.
    1. Adachi K, Xu J, Ank B, Watts DH, Mofenson LM, Pilotto JH, et al. Cytomegalovirus Urinary Shedding in HIV-infected Pregnant Women and Congenital Cytomegalovirus Infection. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America. 2017. doi: .
    1. Nielsen-Saines K, Watts DH, Veloso VG, Bryson YJ, Joao EC, Pilotto JH, et al. Three postpartum antiretroviral regimens to prevent intrapartum HIV infection. The New England journal of medicine. 2012;366(25):2368–79. Epub 2012/06/22. PubMed Central PMCID: PMC3590113. doi:
    1. Ghys PD, Fransen K, Diallo MO, Ettiegne-Traore V, Coulibaly IM, Yeboue KM, et al. The associations between cervicovaginal HIV shedding, sexually transmitted diseases and immunosuppression in female sex workers in Abidjan, Cote d'Ivoire. AIDS. 1997;11(12):F85–93. Epub 1997/10/28.
    1. McClelland RS, Wang CC, Mandaliya K, Overbaugh J, Reiner MT, Panteleeff DD, et al. Treatment of cervicitis is associated with decreased cervical shedding of HIV-1. AIDS. 2001;15(1):105–10. Epub 2001/02/24.
    1. Wabwire-Mangen F, Gray RH, Mmiro FA, Ndugwa C, Abramowsky C, Wabinga H, et al. Placental membrane inflammation and risks of maternal-to-child transmission of HIV-1 in Uganda. J Acquir Immune Defic Syndr. 1999;22(4):379–85. Epub 2000/01/14.
    1. Taha TE, Brown ER, Hoffman IF, Fawzi W, Read JS, Sinkala M, et al. A phase III clinical trial of antibiotics to reduce chorioamnionitis-related perinatal HIV-1 transmission. AIDS. 2006;20(9):1313–21. Epub 2006/07/04. doi:
    1. Goldenberg RL, Vermund SH, Goepfert AR, Andrews WW. Choriodecidual inflammation: a potentially preventable cause of perinatal HIV-1 transmission? Lancet. 1998;352(9144):1927–30. Epub 1998/12/24. doi:
    1. Goldenberg RL, Mudenda V, Read JS, Brown ER, Sinkala M, Kamiza S, et al. HPTN 024 study: histologic chorioamnionitis, antibiotics and adverse infant outcomes in a predominantly HIV-1-infected African population. American journal of obstetrics and gynecology. 2006;195(4):1065–74. Epub 2006/08/01. doi:
    1. Mwanyumba F, Gaillard P, Inion I, Verhofstede C, Claeys P, Chohan V, et al. Placental inflammation and perinatal transmission of HIV-1. J Acquir Immune Defic Syndr. 2002;29(3):262–9. Epub 2002/03/02.
    1. King CC, Ellington SR, Kourtis AP. The role of co-infections in mother-to-child transmission of HIV. Current HIV research. 2013;11(1):10–23. Epub 2013/01/12. PubMed Central PMCID: PMC4411038.
    1. Chi BH, Mudenda V, Levy J, Sinkala M, Goldenberg RL, Stringer JS. Acute and chronic chorioamnionitis and the risk of perinatal human immunodeficiency virus-1 transmission. American journal of obstetrics and gynecology. 2006;194(1):174–81. Epub 2006/01/04. doi:
    1. Taha TE, Gray RH. Genital tract infections and perinatal transmission of HIV. Annals of the New York Academy of Sciences. 2000;918:84–98. Epub 2000/12/29.
    1. Fawzi W, Msamanga G, Renjifo B, Spiegelman D, Urassa E, Hashemi L, et al. Predictors of intrauterine and intrapartum transmission of HIV-1 among Tanzanian women. AIDS. 2001;15(9):1157–65. Epub 2001/06/21.
    1. Wawer MJ, Sewankambo NK, Serwadda D, Quinn TC, Paxton LA, Kiwanuka N, et al. Control of sexually transmitted diseases for AIDS prevention in Uganda: a randomised community trial. Rakai Project Study Group. Lancet. 1999;353(9152):525–35. Epub 1999/02/24.
    1. Gray RH, Wabwire-Mangen F, Kigozi G, Sewankambo NK, Serwadda D, Moulton LH, et al. Randomized trial of presumptive sexually transmitted disease therapy during pregnancy in Rakai, Uganda. American journal of obstetrics and gynecology. 2001;185(5):1209–17. Epub 2001/11/22. doi:
    1. Khamduang W, Jourdain G, Sirirungsi W, Layangool P, Kanjanavanit S, Krittigamas P, et al. The interrelated transmission of HIV-1 and cytomegalovirus during gestation and delivery in the offspring of HIV-infected mothers. J Acquir Immune Defic Syndr. 2011;58(2):188–92. Epub 2011/07/28. PubMed Central PMCID: PMC3237680. doi:
    1. Workowski KA, Berman S. Sexually transmitted diseases treatment guidelines, 2010. MMWR Recommendations and reports: Morbidity and mortality weekly report Recommendations and reports / Centers for Disease Control. 2010;59(RR-12): 1–110. Epub 2010/12/17. .
    1. LeFevre ML. Screening for Chlamydia and Gonorrhea: U.S. Preventive Services Task Force Recommendation Statement. Annals of internal medicine. 2014. Epub 2014/09/23. doi: .
    1. Chaisilwattana P, Chuachoowong R, Siriwasin W, Bhadrakom C, Mangclaviraj Y, Young NL, et al. Chlamydial and gonococcal cervicitis in HIV-seropositive and HIV-seronegative pregnant women in Bangkok: prevalence, risk factors, and relation to perinatal HIV transmission. Sexually transmitted diseases. 1997;24(9):495–502. Epub 1997/10/27.
    1. Sullivan EA, Koro S, Tabrizi S, Kaldor J, Poumerol G, Chen S, et al. Prevalence of sexually transmitted diseases and human immunodeficiency virus among women attending prenatal services in Apia, Samoa. International journal of STD & AIDS. 2004;15(2):116–9. Epub 2004/03/10. doi: .
    1. Maupin R Jr., Lyman R, Fatsis J, Prystowiski E, Nguyen A, Wright C, et al. Characteristics of women who deliver with no prenatal care. The journal of maternal-fetal & neonatal medicine: the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstet. 2004;16(1):45–50. Epub 2004/09/17. doi: .
    1. Silveira MF, Erbelding EJ, Ghanem KG, Johnson HL, Burke AE, Zenilman JM. Risk of Chlamydia trachomatis infection during pregnancy: effectiveness of guidelines-based screening in identifying cases. International journal of STD & AIDS. 2010;21(5):367–70. Epub 2010/05/26. doi: .
    1. Yamamoto AY, Castellucci RA, Aragon DC, Mussi-Pinhata MM. Early high CMV seroprevalence in pregnant women from a population with a high rate of congenital infection. Epidemiology and infection. 2013;141(10):2187–91. doi:
    1. Mwaanza N, Chilukutu L, Tembo J, Kabwe M, Musonda K, Kapasa M, et al. High Rates of Congenital Cytomegalovirus Infection Linked With Maternal HIV Infection Among Neonatal Admissions at a Large Referral Center in Sub-Saharan Africa. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America. 2013. Epub 2013/11/23. doi: .
    1. Johnson EL, Chakraborty R. HIV-1 at the placenta: immune correlates of protection and infection. Current opinion in infectious diseases. 2016;29(3):248–55. doi:
    1. Ellington SR, Clarke KE, Kourtis AP. Cytomegalovirus Infection in Human Immunodeficiency Virus (HIV)-Exposed and HIV-Infected Infants: A Systematic Review. The Journal of infectious diseases. 2016;213(6):891–900. doi:
    1. Rotchford K, Strum AW, Wilkinson D. Effect of coinfection with STDs and of STD treatment on HIV shedding in genital-tract secretions: systematic review and data synthesis. Sexually transmitted diseases. 2000;27(5):243–8. Epub 2000/05/23.
    1. Johnson LF, Lewis DA. The effect of genital tract infections on HIV-1 shedding in the genital tract: a systematic review and meta-analysis. Sexually transmitted diseases. 2008;35(11):946–59. Epub 2008/08/08. doi:
    1. Chen KT, Segu M, Lumey LH, Kuhn L, Carter RJ, Bulterys M, et al. Genital herpes simplex virus infection and perinatal transmission of human immunodeficiency virus. Obstetrics and gynecology. 2005;106(6):1341–8. Epub 2005/12/02. doi:
    1. Drake AL, John-Stewart GC, Wald A, Mbori-Ngacha DA, Bosire R, Wamalwa DC, et al. Herpes simplex virus type 2 and risk of intrapartum human immunodeficiency virus transmission. Obstetrics and gynecology. 2007;109(2 Pt 1):403–9. Epub 2007/02/03. doi: .
    1. Lurain NS, Robert ES, Xu J, Camarca M, Landay A, Kovacs AA, et al. HIV type 1 and cytomegalovirus coinfection in the female genital tract. The Journal of infectious diseases. 2004;190(3):619–23. Epub 2004/07/10. PubMed Central PMCID: PMC3119023. doi:
    1. Johnson EL, Howard CL, Thurman J, Pontiff K, Johnson ES, Chakraborty R. Cytomegalovirus upregulates expression of CCR5 in central memory cord blood mononuclear cells, which may facilitate in utero HIV type 1 transmission. The Journal of infectious diseases. 2015;211(2):187–96. PubMed Central PMCID: PMCPMC4342694. doi:

Source: PubMed

3
Abonnere