Pre-detection history of extensively drug-resistant tuberculosis in KwaZulu-Natal, South Africa

Tyler S Brown, Lavanya Challagundla, Evan H Baugh, Shaheed Vally Omar, Arkady Mustaev, Sara C Auld, N Sarita Shah, Barry N Kreiswirth, James C M Brust, Kristin N Nelson, Apurva Narechania, Natalia Kurepina, Koleka Mlisana, Richard Bonneau, Vegard Eldholm, Nazir Ismail, Sergios-Orestis Kolokotronis, D Ashley Robinson, Neel R Gandhi, Barun Mathema, Tyler S Brown, Lavanya Challagundla, Evan H Baugh, Shaheed Vally Omar, Arkady Mustaev, Sara C Auld, N Sarita Shah, Barry N Kreiswirth, James C M Brust, Kristin N Nelson, Apurva Narechania, Natalia Kurepina, Koleka Mlisana, Richard Bonneau, Vegard Eldholm, Nazir Ismail, Sergios-Orestis Kolokotronis, D Ashley Robinson, Neel R Gandhi, Barun Mathema

Abstract

Antimicrobial-resistant (AMR) infections pose a major threat to global public health. Similar to other AMR pathogens, both historical and ongoing drug-resistant tuberculosis (TB) epidemics are characterized by transmission of a limited number of predominant Mycobacterium tuberculosis (Mtb) strains. Understanding how these predominant strains achieve sustained transmission, particularly during the critical period before they are detected via clinical or public health surveillance, can inform strategies for prevention and containment. In this study, we employ whole-genome sequence (WGS) data from TB clinical isolates collected in KwaZulu-Natal, South Africa to examine the pre-detection history of a successful strain of extensively drug-resistant (XDR) TB known as LAM4/KZN, first identified in a widely reported cluster of cases in 2005. We identify marked expansion of this strain concurrent with the onset of the generalized HIV epidemic 12 y prior to 2005, localize its geographic origin to a location in northeastern KwaZulu-Natal ∼400 km away from the site of the 2005 outbreak, and use protein structural modeling to propose a mechanism for how strain-specific rpoB mutations offset fitness costs associated with rifampin resistance in LAM4/KZN. Our findings highlight the importance of HIV coinfection, high preexisting rates of drug-resistant TB, human migration, and pathoadaptive evolution in the emergence and dispersal of this critical public health threat. We propose that integrating whole-genome sequencing into routine public health surveillance can enable the early detection and local containment of AMR pathogens before they achieve widespread dispersal.

Keywords: antimicrobial resistance; epidemics; infectious disease; population genetics; tuberculosis.

Conflict of interest statement

The authors declare no competing interest.

Copyright © 2019 the Author(s). Published by PNAS.

Figures

Fig. 1.
Fig. 1.
Bayesian phylogenetic reconstruction for 318 XDR-TB isolates from KZN. Clades are labeled using previously described SNP-based classification for Mtb per Coll et al. (24) and annotated with HIV serostatus and history of prior MDR-TB (turquoise, LAM4/KZN/4.3.3; orange, non–LAM4/KZN lineage 4; red, lineage 2). (A) Terminal branch lengths for a BEAST-estimated phylogenetic tree by clade group. (B) TMRCA for drug-resistant clone groups for each clade (open violin plots, gyrA mutants; closed violin plots, rpoB mutants). All nodes corresponding to SNP-based clade labels (open circles) have posterior probability greater than 0.99.
Fig. 2.
Fig. 2.
Bayesian skyline plot for LAM4/KZN, HIV prevalence in antenatal clinics, TB incidence by year in KZN, and neutrality statistics for LAM4/KZN isolates. (A) BSP estimated using all variant sites. The white line indicates the median values for the product of the Ne, the effective population size, and τ, the generation time over time; 95% HPD range is indicated in turquoise. (B) BSP estimated using synonymous sites only. HIV prevalence and TB incidence data were obtained from publicly reported sources (66). The period following widespread introduction of combination antiretroviral therapy is shown as the gray region on the BSP.
Fig. 3.
Fig. 3.
Population-genetic signatures of range expansion from a common origin for LAM4/KZN isolates. (A) Pairwise FST vs. shortest road distance between isolates grouped by district. (B and C) Linear regression of nucleotide diversity (π) or the directionality index (ψ) vs. shortest road distance from uMkhanyakude district. Black solid lines show regression of π or ψ versus distance from uMkhanyakude for all locations. Red dashed lines show the regression of π or ψ versus distance from uMkhanyakude but excluding the π or ψ values for uMkhanyakude. (D) Average pairwise FST estimates for districts, with kriging interpolation between sampling points; red color indicates greater differentiation. (E and F) Spatial distribution of the correlations in B and C, with kriging interpolation between sampling points; red color indicates better evidence of origin. Districts are abbreviated as follows: eThekwini (ET), iLembe (IL), Ugu (UG), uThukela (UL), uThungulu (UT), uMgungundlovu (UV), uMkhanyakude (UY), uMzinyathi (UZ), and Zululand (ZU). Error bars indicate the SD of π or ψ based on 1,000 bootstrap replicates. The location of Tugela Ferry is indicated with a star.

References

    1. Deleo F. R., et al. , Molecular dissection of the evolution of carbapenem-resistant multilocus sequence type 258 Klebsiella pneumoniae. Proc. Natl. Acad. Sci. U.S.A. 111, 4988–4993 (2014).
    1. Seybold U., et al. , Emergence of community-associated methicillin-resistant Staphylococcus aureus USA300 genotype as a major cause of health care-associated blood stream infections. Clin. Infect. Dis. 42, 647–656 (2006).
    1. Eldholm V., et al. , Four decades of transmission of a multidrug-resistant Mycobacterium tuberculosis outbreak strain. Nat. Commun. 6, 7119 (2015).
    1. Casali N., et al. , Evolution and transmission of drug-resistant tuberculosis in a Russian population. Nat. Genet. 46, 279–286 (2014).
    1. Bifani P. J., et al. , Origin and interstate spread of a New York City multidrug-resistant Mycobacterium tuberculosis clone family. JAMA 275, 452–457 (1996).
    1. Shah N. S., et al. , Transmission of extensively drug-resistant tuberculosis in South Africa. N. Engl. J. Med. 376, 243–253 (2017).
    1. Cohen K. A., et al. , Evolution of extensively drug-resistant tuberculosis over four decades: Whole genome sequencing and dating analysis of Mycobacterium tuberculosis isolates from KwaZulu-Natal. PLoS Med. 12, e1001880 (2015).
    1. Levin B. R., et al. , The population genetics of antibiotic resistance. Clin. Infect. Dis. 24 (suppl. 1), S9–S16 (1997).
    1. Andersson D. I., Levin B. R., The biological cost of antibiotic resistance. Curr. Opin. Microbiol. 2, 489–493 (1999).
    1. Holt K. E., et al. , Frequent transmission of the Mycobacterium tuberculosis Beijing lineage and positive selection for the EsxW Beijing variant in Vietnam. Nat. Genet. 50, 849–856 (2018).
    1. Comas I., et al. , Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes. Nat. Genet. 44, 106–110 (2011).
    1. Merker M., et al. , Compensatory evolution drives multidrug-resistant tuberculosis in Central Asia. eLife 7, e38200 (2018).
    1. Borrell S., et al. , Epistasis between antibiotic resistance mutations drives the evolution of extensively drug-resistant tuberculosis. Evol. Med. Public Health 2013, 65–74 (2013).
    1. Sherman D. R., et al. , Compensatory ahpC gene expression in isoniazid-resistant Mycobacterium tuberculosis. Science 272, 1641–1643 (1996).
    1. Munoz-Price L. S., et al. , Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect. Dis. 13, 785–796 (2013).
    1. Wielders C. L., Fluit A. C., Brisse S., Verhoef J., Schmitz F. J., mecA gene is widely disseminated in Staphylococcus aureus population. J. Clin. Microbiol. 40, 3970–3975 (2002).
    1. Takala-Harrison S., et al. , Independent emergence of artemisinin resistance mutations among Plasmodium falciparum in Southeast Asia. J. Infect. Dis. 211, 670–679 (2015).
    1. Howard N. C., et al. , Mycobacterium tuberculosis carrying a rifampicin drug resistance mutation reprograms macrophage metabolism through cell wall lipid changes. Nat. Microbiol. 3, 1099–1108 (2018).
    1. Zaw M. T., Emran N. A., Lin Z., Mutations inside rifampicin-resistance determining region of rpoB gene associated with rifampicin-resistance in Mycobacterium tuberculosis. J. Infect. Public Health 11, 605–610 (2018).
    1. Holmes A. H., et al. , Understanding the mechanisms and drivers of antimicrobial resistance. Lancet 387, 176–187 (2016).
    1. Lipsitch M., The rise and fall of antimicrobial resistance. Trends Microbiol. 9, 438–444 (2001).
    1. Gandhi N. R., et al. , Extensively drug-resistant tuberculosis as a cause of death in patients co-infected with tuberculosis and HIV in a rural area of South Africa. Lancet 368, 1575–1580 (2006).
    1. Sarita Shah N., et al. , Extensively drug-resistant Mycobacterium tuberculosis. National Center for Biotechnology Information. . Deposited 3 July 2018.
    1. Coll F., et al. , A robust SNP barcode for typing Mycobacterium tuberculosis complex strains. Nat. Commun. 5, 4812 (2014).
    1. Ford C. B., et al. , Mycobacterium tuberculosis mutation rate estimates from different lineages predict substantial differences in the emergence of drug-resistant tuberculosis. Nat. Genet. 45, 784–790 (2013).
    1. Coll F., et al. , Genome-wide analysis of multi- and extensively drug-resistant Mycobacterium tuberculosis. Nat. Genet. 50, 307–316 (2018).
    1. Ioerger T. R., et al. , Genome analysis of multi- and extensively-drug-resistant tuberculosis from KwaZulu-Natal, South Africa. PLoS One 4, e7778 (2009).
    1. Molodtsov V., Scharf N. T., Stefan M. A., Garcia G. A., Murakami K. S., Structural basis for rifamycin resistance of bacterial RNA polymerase by the three most clinically important RpoB mutations found in Mycobacterium tuberculosis. Mol. Microbiol. 103, 1034–1045 (2017).
    1. Song T., et al. , Fitness costs of rifampicin resistance in Mycobacterium tuberculosis are amplified under conditions of nutrient starvation and compensated by mutation in the β′ subunit of RNA polymerase. Mol. Microbiol. 91, 1106–1119 (2014).
    1. Lawn S. D., Bekker L. G., Middelkoop K., Myer L., Wood R., Impact of HIV infection on the epidemiology of tuberculosis in a peri-urban community in South Africa: The need for age-specific interventions. Clin. Infect. Dis. 42, 1040–1047 (2006).
    1. Hermans S., Horsburgh C. R. Jr, Wood R., A century of tuberculosis epidemiology in the Northern and Southern Hemisphere: The differential impact of control interventions. PLoS One 10, e0135179 (2015).
    1. Abdool Karim S. S., Churchyard G. J., Karim Q. A., Lawn S. D., HIV infection and tuberculosis in South Africa: An urgent need to escalate the public health response. Lancet 374, 921–933 (2009).
    1. Lapierre M., Blin C., Lambert A., Achaz G., Rocha E. P., The impact of selection, gene conversion, and biased sampling on the assessment of microbial demography. Mol. Biol. Evol. 33, 1711–1725 (2016).
    1. zur Wiesch P. A., Kouyos R., Engelstädter J., Regoes R. R., Bonhoeffer S., Population biological principles of drug-resistance evolution in infectious diseases. Lancet Infect. Dis. 11, 236–247 (2011).
    1. Pillay M., Sturm A. W., Evolution of the extensively drug-resistant F15/LAM4/KZN strain of Mycobacterium tuberculosis in KwaZulu-Natal, South Africa. Clin. Infect. Dis. 45, 1409–1414 (2007).
    1. Brust J. C., Gandhi N. R., Carrara H., Osburn G., Padayatchi N., High treatment failure and default rates for patients with multidrug-resistant tuberculosis in KwaZulu-Natal, South Africa, 2000-2003. Int. J. Tuberc. Lung Dis. 14, 413–419 (2010).
    1. Smith K. L., et al. , Reduced virulence of an extensively drug-resistant outbreak strain of Mycobacterium tuberculosis in a murine model. PLoS One 9, e94953 (2014).
    1. Gandhi N. R., et al. , Nosocomial transmission of extensively drug-resistant tuberculosis in a rural hospital in South Africa. J. Infect. Dis. 207, 9–17 (2013).
    1. Gandhi N. R., et al. , Risk factors for mortality among MDR- and XDR-TB patients in a high HIV prevalence setting. Int. J. Tuberc. Lung Dis. 16, 90–97 (2012).
    1. Eldholm V., et al. , Impact of HIV co-infection on the evolution and transmission of multidrug-resistant tuberculosis. eLife 5, e16644 (2016).
    1. Glynn J. R., et al. , Whole genome sequencing shows a low proportion of tuberculosis disease is attributable to known close contacts in rural Malawi. PLoS One 10, e0132840 (2015).
    1. Guerra-Assunção J. A., et al. , Large-scale whole genome sequencing of M. tuberculosis provides insights into transmission in a high prevalence area. eLife 4, e05166 (2015).
    1. Nelson K. N., et al. , Spatial patterns of extensively drug-resistant tuberculosis (XDR-tuberculosis) transmission in KwaZulu-Natal, South Africa. J. Infect. Dis. 218, 1964–1973 (2018).
    1. Basu S., et al. , Averting epidemics of extensively drug-resistant tuberculosis. Proc. Natl. Acad. Sci. U.S.A. 106, 7672–7677 (2009).
    1. Wallengren K., et al. , Drug-resistant tuberculosis, KwaZulu-Natal, South Africa, 2001-2007. Emerg. Infect. Dis. 17, 1913–1916 (2011).
    1. National Department of Health , The National Antenatal Sentinel HIV & Syphilis Prevalence Survey in South Africa, 2011 (South African National Department of Health, Pretoria, South Africa, 2012).
    1. Lurie M. N., Williams B. G., Migration and health in southern Africa: 100 years and still circulating. Health Psychol. Behav. Med. 2, 34–40 (2014).
    1. Fallah M. P., Skrip L. A., Enders J., Preventing rural to urban spread of Ebola: Lessons from Liberia. Lancet 392, 279–280 (2018).
    1. Gandhi N. R., et al. , Minimal diversity of drug-resistant Mycobacterium tuberculosis strains, South Africa. Emerg. Infect. Dis. 20, 426–433 (2014).
    1. Miotto P., Cabibbe A. M., Borroni E., Degano M., Cirillo D. M., Role of disputed mutations in the rpoB gene in interpretation of automated liquid MGIT culture results for rifampin susceptibility testing of Mycobacterium tuberculosis. J. Clin. Microbiol. 56, e01599-17 (2018).
    1. Dookie N., Sturm A. W., Moodley P., Mechanisms of first-line antimicrobial resistance in multi-drug and extensively drug resistant strains of Mycobacterium tuberculosis in KwaZulu-Natal, South Africa. BMC Infect. Dis. 16, 609 (2016).
    1. Portelli S., Phelan J. E., Ascher D. B., Clark T. G., Furnham N., Understanding molecular consequences of putative drug resistant mutations in Mycobacterium tuberculosis. Sci. Rep. 8, 15356 (2018).
    1. Stefan M. A., Ugur F. S., Garcia G. A., Source of the fitness defect in rifamycin-resistant Mycobacterium tuberculosis RNA polymerase and the mechanism of compensation by mutations in the β′ subunit. Antimicrob. Agents Chemother. 62, e00164-18 (2018).
    1. Reynolds M. G., Compensatory evolution in rifampin-resistant Escherichia coli. Genetics 156, 1471–1481 (2000).
    1. Black P. A., et al. , Energy metabolism and drug efflux in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 58, 2491–2503 (2014).
    1. Brust J. C. M., et al. , Improved survival and cure rates with concurrent treatment for multidrug-resistant tuberculosis-human immunodeficiency virus coinfection in South Africa. Clin. Infect. Dis. 66, 1246–1253 (2018).
    1. Nanoo A., et al. , Nationwide and regional incidence of microbiologically confirmed pulmonary tuberculosis in South Africa, 2004-12: A time series analysis. Lancet Infect. Dis. 15, 1066–1076 (2015).
    1. Drummond A. J., Rambaut A., BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214 (2007).
    1. Hasegawa M., Kishino H., Yano T., Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol. 22, 160–174 (1985).
    1. Maddison W. P., Maddison D. R., Mesquite: A Modular System for Evolutionary Analysis (Version 3.51, 2018). . Accessed 10 October 2019.
    1. Drummond A. J., Rambaut A., Shapiro B., Pybus O. G., Bayesian coalescent inference of past population dynamics from molecular sequences. Mol. Biol. Evol. 22, 1185–1192 (2005).
    1. Heller R., Chikhi L., Siegismund H. R., The confounding effect of population structure on Bayesian skyline plot inferences of demographic history. PLoS One 8, e62992 (2013).
    1. Challagundla L., et al. , Range expansion and the origin of USA300 North American epidemic methicillin-resistant Staphylococcus aureus. MBio 9, e02016-17 (2018).
    1. Paradis E., pegas: An R package for population genetics with an integrated-modular approach. Bioinformatics 26, 419–420 (2010).
    1. Peter B. M., Slatkin M., Detecting range expansions from genetic data. Evolution 67, 3274–3289 (2013).
    1. Health Systems Trust , Health Indicator Database. . Accessed 20 July 2017.

Source: PubMed

3
Abonnere