Fiber mixture-specific effect on distal colonic fermentation and metabolic health in lean but not in prediabetic men

Emanuel E Canfora, Gerben D A Hermes, Mattea Müller, Jacco Bastings, Elaine E Vaughan, Marco A van Den Berg, Jens J Holst, Koen Venema, Erwin G Zoetendal, Ellen E Blaak, Emanuel E Canfora, Gerben D A Hermes, Mattea Müller, Jacco Bastings, Elaine E Vaughan, Marco A van Den Berg, Jens J Holst, Koen Venema, Erwin G Zoetendal, Ellen E Blaak

Abstract

Infusions of the short-chain fatty acid (SCFA) acetate in the distal colon improved metabolic parameters in men. Here, we hypothesized that combining rapidly and slowly fermentable fibers will enhance distal colonic acetate production and improve metabolic health. In vitro cultivation studies in a validated model of the colon were used to identify fiber mixtures that yielded high distal colonic acetate production. Subsequently, in two randomized crossover studies, lean and prediabetic overweight/obese men were included. In one study, participants received supplements of either long-chain inulin+resistant starch (INU+RS), INU or maltodextrin (PLA) the day prior to a clinical investigation day (CID). The second trial studied beta glucan+RS (BG+RS) versus BG and PLA. During each CID, breath hydrogen, indirect calorimetry, plasma metabolites/hormones were assessed during fasting and postprandial conditions. Additionally, fecal microbiota composition and SCFA were determined. In prediabetic men, INU+RS increased plasma acetate compared to INU or PLA (P < .05), but did not affect metabolic parameters. In lean men, INU+RS increased breath hydrogen and fasting plasma butyrate, which was accompanied by increased energy expenditure, carbohydrate oxidation and PYY and decreased postprandial glucose concentrations (all P < .05) compared to PLA. BG+RS increased plasma butyrate compared to PLA (P < .05) in prediabetic individuals, but did not affect other fermentation/metabolic markers in both phenotypes. Fiber-induced shifts in fecal microbiota were individual-specific and more pronounced with INU+RS versus BG+RS. Administration of INU+RS (not BG+RS) the day prior to investigation improved metabolic parameters in lean but not in prediabetic individuals, demonstrating that effects were phenotype- and fiber-specific. Further research should study whether longer-term supplementation periods are required to elicit beneficial metabolic health in prediabetic individuals. Trial registration numbers: Clinical trial No. NCT03711383 (Inulin study) and Clinical trial No. NCT03714646 (Beta glucan study).

Keywords: Short-chain fatty acids; dietary fibers; gut microbiota; substrate metabolism.

Conflict of interest statement

The authors greatly thank all volunteers participating in the studies. The authors thank Prokopis Konstanti for help with 16S rRNA gene analyses. The authors thank all the consortium partners involved for the critical feedback during the development of this project. EEV is an employee of Sensus. MAvdB is an employee of DSM.

Figures

Figure 1.
Figure 1.
Plasma short-chain fatty acids and breath hydrogen before and after a high fat mixed meal after INU, INU+RS and PLA in lean (n = 12) and prediabetic (n = 11) men as well as BG, BG+RS and PLA supplementation in lean (n = 11) and prediabetic (n = 11) men. Plasma acetate of lean (a) and prediabetic (b), plasma butyrate of lean (c) and prediabetic (d), and breath H2 excretion of lean (e) and prediabetic (f) men in the inulin study. Plasma acetate of lean (g) and prediabetic (h), plasma butyrate of lean (i) and prediabetic (j), and breath H2 excretion of lean (k) and prediabetic (l) men in the beta glucan study. Values are means ± S.E.M. Differences in fasting (t0) and postprandial AUC between the three interventions (PLA, INU, and INU+RS or PLA, BG and BG+RS) were analyzed using a linear mixed model for repeated measures and the indicated P-values represents post-hoc testing
Figure 2.
Figure 2.
Energy Expenditure and Substrate Oxidation before and after a high fat mixed meal after INU, INU+RS and PLA supplementation in lean (n = 12) and prediabetic (n = 11) men. Energy expenditure of lean (a) and prediabetic (b), carbohydrate oxidation of lean (c) and prediabetic (d), fat oxidization of lean (e) and prediabetic (f) and respiratory quotient of lean (g) and prediabetic (h) men. Values are means ± S.E.M. Differences in fasting (t0) and postprandial AUC between the three interventions (PLA, INU, and INU+RS) were analyzed using a linear mixed model for repeated measures and the indicated P-values represents post-hoc testing
Figure 3.
Figure 3.
Plasma metabolite and insulin concentrations before and after a high fat mixed meal after INU, INU+RS and PLA supplementation in lean (n = 12) and prediabetic (n = 11). Plasma glucose concentrations of lean (a) and prediabetic (b), FFA concentrations of lean (c) and prediabetic (d), insulin concentrations of lean (e) and prediabetic (f), PYY concentrations of lean (g) and prediabetic (h) individuals. Values are means ± S.E.M. Differences in fasting (t0) and postprandial AUC between the three interventions (PLA, INU, and INU+RS) were analyzed using a linear mixed model for repeated measures and the indicated P-values represents post-hoc testing
Figure 4.
Figure 4.
Changes in fecal microbiota composition (weighted and unweighed UniFrac) after INU, INU+RS and PLA in lean (n = 8, four individuals were not able to sample feces on all 3 days) and prediabetic (n = 10, one individual was not able to sample feces on all day) men as well as after BG, BG+RS and PLA supplementation in lean (n = 10, one individual was not able to sample feces on all day) and prediabetic (n = 11) men. A & B: PCoA plots of weighted (a) and unweighted UniFrac (b): the longer the arrow, the larger the change. The start point for each arrow is the composition after PLA intervention while lighter gray depicts the change due to INU, darker gray to INU+RS, lighter gray BG and darker gray BG+RS. The random direction of the arrows after each intervention shows the individual effects. C & D: Intra-individual microbiota changes compared to placebo after fiber intervention in lean (c) and prediabetic (d) men
Figure 5.
Figure 5.
Impact of (a) INU, INU+RS and placebo (b) BG, BG+RS and placebo supplementation on microbiota alpha diversity (ASV richness and Shannon) of lean (light gray) and prediabetic (dark gray) individuals. The fecal microbiota of 8 lean (four individuals were not able to sample feces on all 3 days) and 10 prediabetic (one individual was not able to sample feces on all day) men in the inulin study and 10 lean (one individual was not able to sample feces on all day) and 11 prediabetic men in the beta glucan study was used

References

    1. Sanna S, van Zuydam NR, Mahajan A, Kurilshikov A, Vich Vila A, Võsa U, Mujagic Z, Masclee AAM, Jonkers DMAE, Oosting M, et al. Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat Genet. 2019;51:600–19. doi:10.1038/s41588-019-0350-x
    1. Delzenne NM, Neyrinck AM, Baeckhed F, Cani PD.. Targeting gut microbiota in obesity: effects of prebiotics and probiotics. Nat Rev Endocrinol. 2011;7:639–646. doi:10.1038/nrendo.2011.126
    1. Canfora EE, Meex RC, Venema K, Blaak EE. Gut microbial metabolites in obesity, NAFLD and T2DM. Nat Rev Endocrinol. 2019;1:261–273.
    1. Reynolds A, Mann J, Cummings J, Winter N, Mete E, Te Morenga L. Carbohydrate quality and human health: a series of systematic reviews and meta-analyses. Lancet. 2019;393:434–445. doi:10.1016/S0140-6736(18)31809-9
    1. Canfora EE, Jocken JW, Blaak EE. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol. 2015;11:577–591. doi:10.1038/nrendo.2015.128
    1. Blaak E, Canfora E, Theis S, Frost G, Groen AK, Mithieux G, Nauta A, Scott K, Stahl B, van Harsselaar J, et al. Short chain fatty acids in human gut and metabolic health. Benef Microbes. 2020;11:411–455. doi:10.3920/BM2020.0057
    1. Frost G, Sleeth ML, Sahuri-Arisoylu M, Lizarbe B, Cerdan S, Brody L, Anastasovska J, Ghourab S, Hankir M, Zhang S, et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat Commun. 2014;5. doi:10.1038/ncomms4611
    1. Sahuri-Arisoylu M, Brody L, Parkinson J, Parkes H, Navaratnam N, Miller AD, Thomas EL, Frost G, Bell JD. Reprogramming of hepatic fat accumulation and’browning’of adipose tissue by the short-chain fatty acid acetate. Int J Obes. 2016;40:955–963. doi:10.1038/ijo.2016.23
    1. Brooks L, Viardot A, Tsakmaki A, Stolarczyk E, Howard JK, Cani PD, Everard A, Sleeth ML, Psichas A, Anastasovskaj J, et al. Fermentable carbohydrate stimulates FFAR2-dependent colonic PYY cell expansion to increase satiety. Mol Metabol. 2017;6:48–60. doi:10.1016/j.molmet.2016.10.011
    1. Kimura I, Ozawa K, Inoue D, Imamura T, Kimura K, Maeda T, Terasawa K, Kashihara D, Hirano K, Tani T, et al. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun. 2013;4:1829. doi:10.1038/ncomms2852
    1. Li X, Chen H, Guan Y, Li X, Lei L, Liu J, Yin L, Liu G, Wang Z. Acetic acid activates the AMP-activated protein kinase signaling pathway to regulate lipid metabolism in bovine hepatocytes. PloS One. 2013;8:e67880. doi:10.1371/journal.pone.0067880
    1. Den Besten G, Gerding A, van Dijk TH, Ciapaite J, Bleeker A, van Eunen K, Havinga R, Groen AK, Reijngoud D-J, Bakker BM, et al. Protection against the metabolic syndrome by guar gum-derived short-chain fatty acids depends on peroxisome proliferator-activated receptor γ and glucagon-like peptide-1. PloS One. 2015;10:e0136364. doi:10.1371/journal.pone.0136364
    1. Everard A, Lazarevic V, Gaïa N, Johansson M, Ståhlman M, Backhed F, Delzenne NM, Schrenzel J, François P, Cani PD, et al. Microbiome of prebiotic-treated mice reveals novel targets involved in host response during obesity. ISME J. 2014;8:2116–2130. doi:10.1038/ismej.2014.45
    1. Lu Y, Fan C, Li P, Lu Y, Chang X, Qi K. Short chain fatty acids prevent high-fat-diet-induced obesity in mice by regulating G protein-coupled receptors and gut microbiota. Sci Rep. 2016;6. doi:10.1038/srep37589
    1. McNelis JC, Lee YS, Mayoral R, van der Kant R, Johnson AMF, Wollam J, Olefsky JM. GPR43 potentiates β-cell function in obesity. Diabetes. 2015;64:3203–3217. doi:10.2337/db14-1938
    1. Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell. 2016;165:1332–1345. doi:10.1016/j.cell.2016.05.041
    1. van der Beek CM, Canfora EE, Lenaerts K, Troost F, Olde Damink SWM, Holst J, Masclee AM, Dejong CC, Blaak E. Distal, not proximal, colonic acetate infusions promote fat oxidation and improve metabolic markers in overweight/obese men. Clin Sci. 2016;130(22):2073–2082. doi:10.1042/CS20160263
    1. Canfora EE, Beek CM, Jocken JW, Goossens GH, Holst JJ, Olde Damink SWM, Lenaerts K, Dejong CHC, Blaak EE. Colonic infusions of short-chain fatty acid mixtures promote energy metabolism in overweight/obese men: a randomized crossover trial. Sci Rep. 2017;7:2360. doi:10.1038/s41598-017-02546-x
    1. Jonathan MC, Haenen D, Da Silva CS, Bosch G, Schols HA, Gruppen H. Influence of a diet rich in resistant starch on the degradation of non-starch polysaccharides in the large intestine of pigs. Carbohydr Polym. 2013;93:232–239. doi:10.1016/j.carbpol.2012.06.057
    1. Castaner O, Goday A, Park Y-M, Lee SH, Magkos F, Shiow SA, Schröder H. The gut microbiome profile in obesity: a systematic review. Int J Endocrinol. 2018;2018:9.
    1. Sun L, Ma L, Ma Y, Zhang F, Zhao C, Nie Y. Insights into the role of gut microbiota in obesity: pathogenesis, mechanisms, and therapeutic perspectives. Protein Cell. 2018;9:397–403. doi:10.1007/s13238-018-0546-3
    1. Lim J, Henry CJ, Haldar S. Vinegar as a functional ingredient to improve postprandial glycemic control—human intervention findings and molecular mechanisms. Mol Nutr Food Res. 2016;60:1837–1849. doi:10.1002/mnfr.201600121
    1. Canfora EE, van der Beek CM, Hermes GD, Goossens GH, Jocken JWE, Holst JJ, van Eijk HM, Venema K, Smidt H, Zoetendal EG, et al. Supplementation of diet with Galacto-oligosaccharides increases bifidobacteria, but not insulin sensitivity, in obese prediabetic individuals. Gastroenterology. 2017;153:87–97.e3. doi:10.1053/j.gastro.2017.03.051
    1. Vulevic J, Juric A, Walton GE, Claus SP, Tzortzis G, Toward RE, Gibson GR. Influence of galacto-oligosaccharide mixture (B-GOS) on gut microbiota, immune parameters and metabonomics in elderly persons. Br J Nutr. 2015;114:586–595. doi:10.1017/S0007114515001889
    1. Fernandes J, Vogt J, Wolever TM. Intravenous acetate elicits a greater free fatty acid rebound in normal than hyperinsulinaemic humans. Eur J Clin Nutr. 2012;66:1029–1034. doi:10.1038/ejcn.2012.98
    1. Minekus M, Smeets-Peeters M, Bernalier A, Marol-Bonnin S, Havenaar R, Marteau P, Alric M, Fonty G, Huis In’t Veld JHJ. A computer-controlled system to simulate conditions of the large intestine with peristaltic mixing, water absorption and absorption of fermentation products. Appl Microbiol Biotechnol. 1999;53(1):108–114. doi:10.1007/s002530051622
    1. Cuevas-Tena M, Alegria A, Lagarda MJ, Venema K. Impact of plant sterols enrichment dose on gut microbiota from lean and obese subjects using TIM-2 in vitro fermentation model. J Funct Foods. 2019;54:164–174. doi:10.1016/j.jff.2019.01.005
    1. Weir JB. New methods for calculating metabolic rate with special reference to protein metabolism. J Physiol. 1949;109:1–9. doi:10.1113/jphysiol.1949.sp004363
    1. Toräng S, Bojsen-Møller KN, Svane MS, Hartmann B, Rosenkilde MM, Madsbad S, Holst JJ. In vivo and in vitro degradation of peptide YY 3–36 to inactive peptide YY 3–34 in humans. Am J Physiol Regulat Integr Compar Physiol. 2016;310:R866–R874. doi:10.1152/ajpregu.00394.2015
    1. Orskov C, Rabenhoj L, Wettergren A, Kofod H, Holst JJ. Tissue and plasma concentrations of amidated and glycine-extended glucagon-like peptide I in humans. Diabetes. 1994;43:535–539. doi:10.2337/diab.43.4.535
    1. Frayn KN. Calculation of substrate oxidation rates in vivo from gaseous exchange. J Appl Physiol Respir Environ Exerc Physiol. 1983;55:628–634. doi:10.1152/jappl.1983.55.2.628
    1. Deroover L, Boets E, Tie Y, Vandermeulen G, Verbeke K. Quantification of plasma or serum short-chain fatty acids: choosing the correct blood tube. J Nutr Health Food Sci. 2017;5:1–6. doi:10.15226/jnhfs.2017.001112
    1. Powers L, Osborn MK, Yang D, Kien CL, Murray RD, Beylot M, Brunengraber H. Assay of the concentration and stable isotope enrichment of short‐chain fatty acids by gas chromatography/mass spectrometry. J Mass Spectrom. 1995;30:747–754. doi:10.1002/jms.1190300514
    1. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci. 2011;108:4516–4522. doi:10.1073/pnas.1000080107
    1. Ramiro-Garcia J, Hermes GD, Giatsis C, Sipkema D, Zoetendal EG, Schaap PJ, Smidt H. NG-Tax, a highly accurate and validated pipeline for analysis of 16S rRNA amplicons from complex biomes. F1000Research. 2016;5:1791. doi:10.12688/f1000research.9227.1
    1. Poncheewin W, Hermes GD, Van Dam JC, Koehorst JJ, Smidt H, Schaap PJ. NG-Tax 2.0: a semantic framework for high-throughput amplicon analysis. Front Genet. 2020;10:1366. doi:10.3389/fgene.2019.01366
    1. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012;41:D590–D596. doi:10.1093/nar/gks1219
    1. Lozupone C, Knight R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol. 2005;71:8228–8235. doi:10.1128/AEM.71.12.8228-8235.2005
    1. McMurdie PJ, Holmes S, Watson M. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PloS One. 2013;8:e61217. doi:10.1371/journal.pone.0061217
    1. Wickham H. ggplot2: elegant graphics for data analysis. springer; doi:10.1007/978-0-387-98141-3; 2016.
    1. Den Besten G, Bleeker A, Gerding A, van Eunen K, Havinga R, van Dijk TH, Oosterveer MH, Jonker JW, Groen AK, Reijngoud DJ, et al. Short-chain fatty acids protect against high-fat diet-induced obesity via a PPARγ-dependent switch from lipogenesis to fat oxidation. Diabetes. 2015;64:db141213.
    1. Sandberg JC, Björck IM, Nilsson AC. Effects of whole grain rye, with and without resistant starch type 2 supplementation, on glucose tolerance, gut hormones, inflammation and appetite regulation in an 11–14.5 hour perspective; a randomized controlled study in healthy subjects. Nutr J. 2017;16:25. doi:10.1186/s12937-017-0246-5
    1. Bouter K, Bakker G, Levin E, Hartstra AV, Kootte RS, Udayappan SD, Katiraei S, Bahler L, Gilijamse PW, Tremaroli V, et al. Differential metabolic effects of oral butyrate treatment in lean versus metabolic syndrome subjects. Clin Transl Gastroenterol. 2018;9:e155. doi:10.1038/s41424-018-0025-4
    1. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490:55–60. doi:10.1038/nature11450
    1. Karlsson FH, Tremaroli V, Nookaew I, Bergström G, Behre CJ, Fagerberg B, Nielsen J, Bäckhed F. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature. 2013;498:99–103. doi:10.1038/nature12198
    1. Rossi M, Corradini C, Amaretti A, Nicolini M, Pompei A, Zanoni S, Matteuzzi D. Fermentation of fructooligosaccharides and inulin by bifidobacteria: a comparative study of pure and fecal cultures. Appl Environ Microbiol. 2005;71:6150–6158. doi:10.1128/AEM.71.10.6150-6158.2005
    1. Scott KP, Martin JC, Campbell G, Mayer C-D, Flint HJ. Whole-genome transcription profiling reveals genes up-regulated by growth on fucose in the human gut bacterium “roseburia inulinivorans”. J Bacteriol. 2006;188:4340–4349. doi:10.1128/JB.00137-06
    1. Boets E, Gomand SV, Deroover L, Preston T, Vermeulen K, De Preter V, Hamer HM, Van Den Mooter G, De Vuyst L, Courtin CM, et al. Systemic availability and metabolism of colonic-derived short-chain fatty acids in healthy subjects: a stable isotope study. J Physiol. 2017;595:541–555. doi:10.1113/JP272613
    1. Den Besten G, Lange K, Havinga R, van Dijk TH, Gerding A, van Eunen K, Müller M, Groen AK, Hooiveld GJ, Bakker BM, et al. Gut-derived short-chain fatty acids are vividly assimilated into host carbohydrates and lipids. Am Jurnal of Physiol Gastrointest Liver Physiol. 2013;305:G900–G910. doi:10.1152/ajpgi.00265.2013
    1. Serino M, Luche E, Gres S, Baylac A, Bergé M, Cenac C, Waget A, Klopp P, Iacovoni J, Klopp C, et al. Metabolic adaptation to a high-fat diet is associated with a change in the gut microbiota. Gut. 2012;61:543–553. doi:10.1136/gutjnl-2011-301012
    1. Neis EP, van Eijk HM, Lenaerts K, Olde Damink SW, Blaak EE, Dejong CH, Rensen SS. Distal versus proximal intestinal short-chain fatty acid release in man. Gut. 2019;68:764–765. doi:10.1136/gutjnl-2018-316161
    1. Freeland KR, Wolever T. Acute effects of intravenous and rectal acetate on glucagon-like peptide-1, peptide YY, ghrelin, adiponectin and tumour necrosis factor-alpha. Br J Nutr. 2010;103:460–466. doi:10.1017/S0007114509991863
    1. Kaji I, Karaki S-I, Tanaka R, Kuwahara A. Density distribution of free fatty acid receptor 2 (FFA2)-expressing and GLP-1-producing enteroendocrine L cells in human and rat lower intestine, and increased cell numbers after ingestion of fructo-oligosaccharide. J Mol Histol. 2011;42:27–38. doi:10.1007/s10735-010-9304-4
    1. Albrechtsen NJW, Kuhre RE, Toräng S, Teixeira LR, Guerra MR, Chaoubah A. The intestinal distribution pattern of appetite-and glucose regulatory peptides in mice, rats and pigs. BMC Res Notes. 2016;9:1–6. doi:10.1186/s13104-015-1837-x
    1. Adrian T, Ferri GL, Bacarese-Hamilton A, Fuessl HS, Polak JM, Bloom SR. Human distribution and release of a putative new gut hormone, peptide YY. Gastroenterology. 1985;89:1070–1077. doi:10.1016/0016-5085(85)90211-2

Source: PubMed

3
Abonnere