Insulin treatment guided by subcutaneous continuous glucose monitoring compared to frequent point-of-care measurement in critically ill patients: a randomized controlled trial

Daphne T Boom, Marjolein K Sechterberger, Saskia Rijkenberg, Susanne Kreder, Rob J Bosman, Jos Pj Wester, Ilse van Stijn, J Hans DeVries, Peter Hj van der Voort, Daphne T Boom, Marjolein K Sechterberger, Saskia Rijkenberg, Susanne Kreder, Rob J Bosman, Jos Pj Wester, Ilse van Stijn, J Hans DeVries, Peter Hj van der Voort

Abstract

Introduction: Glucose measurement in intensive care medicine is performed intermittently with the risk of undetected hypoglycemia. The workload for the ICU nursing staff is substantial. Subcutaneous continuous glucose monitoring (CGM) systems are available and may be able to solve some of these issues in critically ill patients.

Methods: In a randomized controlled design in a mixed ICU in a teaching hospital we compared the use of subcutaneous CGM with frequent point of care (POC) to guide insulin treatment. Adult critically ill patients with an expected stay of more than 24 hours and in need of insulin therapy were included. All patients received subcutaneous CGM. CGM data were blinded in the control group, whereas in the intervention group these data were used to feed a computerized glucose regulation algorithm. The same algorithm was used in the control group fed by intermittent POC glucose measurements. Safety was assessed with the incidence of severe hypoglycemia (<2.2 mmol/L), efficacy with the percentage time in target range (5.0 to 9.0 mmol/L). In addition, we assessed nursing workload and costs.

Results: In this study, 87 patients were randomized to the intervention and 90 to the control group. CGM device failure resulted in 78 and 78 patients for analysis. The incidence of severe glycemia and percentage of time within target range was similar in both groups. A significant reduction in daily nursing workload for glucose control was found in the intervention group (17 versus 36 minutes; P <0.001). Mean daily costs per patient were significantly reduced with EUR 12 (95% CI -32 to -18, P = 0.02) in the intervention group.

Conclusions: Subcutaneous CGM to guide insulin treatment in critically ill patients is as safe and effective as intermittent point-of-care measurements and reduces nursing workload and daily costs. A new algorithm designed for frequent measurements may lead to improved performance and should precede clinical implementation.

Trial registration: Clinicaltrials.gov, NCT01526044. Registered 1 February 2012.

Figures

Figure 1
Figure 1
Flow chart of study participants: assessment, randomization and analysis.

References

    1. Bagshaw SM, Egi M, George C, Bellomo R. Early blood glucose control and mortality in critically ill patients in Australia. Crit Care Med. 2009;37:463–470. doi: 10.1097/CCM.0b013e318194b097.
    1. Dungan KM, Braithwaite SS, Preiser JC. Stress hyperglycaemia. Lancet. 2009;373:1798–1807. doi: 10.1016/S0140-6736(09)60553-5.
    1. van den Berghe G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M, Vlasselaers D, Ferdinande P, Lauwers P, Bouillon R. Intensive insulin therapy in critically ill patients. N Engl J Med. 2001;345:1359–1367. doi: 10.1056/NEJMoa011300.
    1. The NICE-SUGAR Study Investigators. Finfer S, Chittock DR, Su SY, Blair D, Foster D, Dhingra V, Bellomo R, Cook D, Dodek P, Henderson WR, Hébert PC, Heritier S, Heyland DK, McArthur C, McDonald E, Mitchell I, Myburgh JA, Norton R, Potter J, Robinson BG, Ronco JJ. Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009;360:1283–1297. doi: 10.1056/NEJMoa0810625.
    1. Marik PE, Preiser JC. Toward understanding tight glycemic control in the ICU: a systematic review and metaanalysis. Chest. 2010;137:544–551. doi: 10.1378/chest.09-1737.
    1. Hermanides J, Bosman RJ, Vriesendorp TM, Dotch R, Rosendaal FR, Zandstra DF, Hoekstra JBL, De Vries JH. Hypoglycemia is associated with intensive care unit mortality. Crit Care Med. 2010;38:1430–1434. doi: 10.1097/CCM.0b013e3181de562c.
    1. The NICE-SUGAR Study Investigators, Finfer S. Liu B, Chittock DR, Norton R, Myburgh JA, McArthur C, Mitchell I, Foster D, Dhingra V, Henderson WR, Ronco JJ, Bellomo R, Cook D, McDonald E, Dodek P, Hébert PC, Heyland DK, Robinson BG. Hypoglycemia and risk of death in critically ill patients. N Engl J Med. 2012;367:1108–1118. doi: 10.1056/NEJMoa1204942.
    1. Hermanides J, Vriesendorp TM, Bosman RJ, Zandstra DF, Hoekstra JB, DeVries JH. Glucose variability is associated with intensive care unit mortality. Crit Care Med. 2010;38:838–842. doi: 10.1097/CCM.0b013e3181cc4be9.
    1. Mesotten D, van den Berghe G. Glycemic targets and approaches to management of the patient with critical illness. Curr Diab Rep. 2012;12:101–107. doi: 10.1007/s11892-011-0241-8.
    1. Moghissi ES, Korytkowski MT, DiNardo M, Einhorn D, Hellman R, Hirsch IB, Inzucchi SE, Ismail-Beigi F, Kirkman MS, Umpierrez GE. American Association of Clinical Endocrinologists and American Diabetes Association consensus statement on inpatient glycemic control. Diabetes Care. 2009;32:1119–1131. doi: 10.2337/dc09-9029.
    1. Westhoff D, Bosman RJ, Oudemans-van Straaten HM, DeVries JH, Wester JPJ, van Stijn I, Zandstra DF, van der Voort PHJ. Validation and feasibility of two Continuous Glucose Monitoring Systems (CGMS) against point-of-care AccuChek® in critically ill patients; a pilot study. Neth J Crit Care. 2010;14:381–387. doi: 10.1186/cc8613.
    1. Brunner R, Kitzberger R, Miehsler W, Herkner H, Madl C, Holzinger U. Accuracy and reliability of a subcutaneous continuous glucose-monitoring system in critically ill patients. Crit Care Med. 2011;39:659–664. doi: 10.1097/CCM.0b013e318206bf2e.
    1. Holzinger U, Warszawska J, Kitzberger R, Herkner H, Metnitz PG, Madl C. Impact of shock requiring norepinephrine on the accuracy and reliability of subcutaneous continuous glucose monitoring. Intensive Care Med. 2009;35:1383–1389. doi: 10.1007/s00134-009-1471-y.
    1. Siegelaar SE, Barwari T, Hermanides J, Stooker W, van der Voort PH, DeVries JH. Accuracy and reliability of continuous glucose monitoring in the intensive care unit: a head-to-head comparison of two subcutaneous glucose sensors in cardiac surgery patients. Diabetes Care. 2011;34:e31. doi: 10.2337/dc10-1882.
    1. Rice MJ, Coursin DB. Continuous measurement of glucose. Facts and challenges. Anesthesiology. 2012;116:199–204. doi: 10.1097/ALN.0b013e318236abf6.
    1. Holzinger U, Warszawska J, Kitzberger R, Wewalka M, Miehsler W, Herkner H, Madl C. Real-time continuous glucose monitoring in critically ill patients: a prospective randomized trial. Diabetes Care. 2010;33:467–472. doi: 10.2337/dc09-1352.
    1. Rood E, Bosman RJ, van der Spoel JI, Taylor P, Zandstra DF. Use of a computerized guideline for glucose regulation in the intensive care unit improved both guideline adherence and glucose regulation. J Am Med Inform Assoc. 2005;12:172–180. doi: 10.1197/jamia.M1598.
    1. Hakkaart-van Roijen L, Tan SS, Bouwmans CAM. Guidelines for cost calculations, methods and recommended prices for economic evaluations in health care (in Dutch) Amstelveen: College voor Zorgverzekeringen; 2010. p. 2004.
    1. Kaukonen KM, Bailey M, Pilcher D, Orford N, Finfer S, Bellomo R. Glycaemic control in Australia and New Zealand before and after the NICE-SUGAR trial: a translational study. Crit Care. 2013;17:R215. doi: 10.1186/cc13030.
    1. Okawa M, Kunimoto F, Kanamoto M, Narahara H, Hinohara H, Tobe M, Yanagisawa A, Saito S. Effect of different blood glucose target levels on the incidence of hypoglycemia during insulin therapy in the intensive care unit. J Diabetes. 2013;5:51–56. doi: 10.1111/1753-0407.12010.
    1. Aragon D. Evaluation of nursing work effort and perceptions about blood glucose testing in tight glycemic control. Am J Crit Care. 2006;15:370–377.
    1. Gartemann J, Caffrey E, Hadker N, Crean S, Creed GM, Rausch C. Nurse workload in implementing a tight glycaemic control protocol in a UK hospital: a pilot time-in-motion study. Nurs Crit Care. 2012;17:279–284. doi: 10.1111/j.1478-5153.2012.00506.x.
    1. Malesker MA, Foral PA, McPhillips AC, Christensen KJ, Chang JA, Hilleman DE. An efficiency evaluation of protocols for tight glycemic control in intensive care units. Am J Crit Care. 2007;16:589–598.
    1. Leelarathna L, English SW, Thabit H, Caldwell K, Allen JM, Kumareswaran K, Wilinska ME, Nodale M, Haidar A, Evans ML, Burnstein R, Hovorka R. Accuracy of subcutaneous continuous glucose monitoring in critically ill adults: improved sensor performance with enhanced calibrations. Diabetes Technol Ther. 2014;16:97–101. doi: 10.1089/dia.2013.0221.
    1. Leelarathna L, English SW, Thabit H, Caldwell K, Allen JM, Kumareswaran K, Wilinska ME, Nodale M, Mangat J, Evans ML, Burnstein R, Hovorka R. Feasibility of fully automated closed-loop glucose control utilizing continuous subcutaneous glucose measurements in critical illness: a randomised controlled trial. Crit Care. 2013;17:R159. doi: 10.1186/cc12838.

Source: PubMed

3
Abonnere