Effects of Exercise on Cognitive Performance in Children and Adolescents with ADHD: Potential Mechanisms and Evidence-based Recommendations

Lasse Christiansen, Mikkel M Beck, Niels Bilenberg, Jacob Wienecke, Arne Astrup, Jesper Lundbye-Jensen, Lasse Christiansen, Mikkel M Beck, Niels Bilenberg, Jacob Wienecke, Arne Astrup, Jesper Lundbye-Jensen

Abstract

Attention Deficit Hyperactivity Disorder (ADHD) is a neurodevelopmental disorder with a complex symptomatology, and core symptoms as well as functional impairment often persist into adulthood. Recent investigations estimate the worldwide prevalence of ADHD in children and adolescents to be ~7%, which is a substantial increase compared to a decade ago. Conventional treatment most often includes pharmacotherapy with central nervous stimulants, but the number of non-responders and adverse effects call for treatment alternatives. Exercise has been suggested as a safe and low-cost adjunctive therapy for ADHD and is reported to be accompanied by positive effects on several aspects of cognitive functions in the general child population. Here we review existing evidence that exercise affects cognitive functions in children with and without ADHD and present likely neurophysiological mechanisms of action. We find well-described associations between physical activity and ADHD, as well as causal evidence in the form of small to moderate beneficial effects following acute aerobic exercise on executive functions in children with ADHD. Despite large heterogeneity, meta-analyses find small positive effects of exercise in population-based control (PBC) children, and our extracted effect sizes from long-term interventions suggest consistent positive effects in children and adolescents with ADHD. Paucity of studies probing the effect of different exercise parameters impedes finite conclusions in this regard. Large-scale clinical trials with appropriately timed exercise are needed. In summary, the existing preliminary evidence suggests that exercise can improve cognitive performance intimately linked to ADHD presentations in children with and without an ADHD diagnosis. Based on the findings from both PBC and ADHD children, we cautiously provide recommendations for parameters of exercise.

Keywords: ADHD; cognition; executive functions; exercise; physical activity.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure A1
Figure A1
Flow-chart of the study selection process.
Figure 1
Figure 1
Neurophysiological differences between PBC and children with ADHD and the potential counteractive effects of exercise. (A) Identified neurophysiological and anatomical differences between children and adolescent with ADHD and their PBC peers divided into analysis level (‘neurochemical’, ‘functional’ and ‘structural’) in colour-coded boxes. Due to the substantial amount of experimental work conducted on differences in task-related activation between indiviudals with ADHD and PBC peers, the citations all refer to meta-analyses. (B) Potential counteracting effects of ‘acute’ and ‘chronic’ exercise are listed in representative colours. Please note that ‘chronic exercise’ encompasses both long-term intervention and associations. Delta and Nabla denote the sign of the physiological change. Abbreviations are listed below. Abbreviations: ACC (anterior cingulate cortex), BDNF (brain-derived neurotrophic factor), BG (basal ganglia), CB (cerebellum), CC (corpus callosum), CR (corona radiata), CrB (cerebral), DA (dopamine), DAN (dorsal attention network), DRD2 (dopamine receptor D2), DS (dorsal striatum), EN (executive networks), FAc (frontoaccumbal) FC (functional connectivity), FP (frontoparietal), FrC (frontal cotex), FT (frontotemporal), GM (grey matter), NE (norepinephrine), NET (norepinephrine transporter), PC (parietal cortex), PFC (prefrontal cortex), PPC (posterior parietal cortex), RN (reward networks), SLF (superior longitudinal fasciculus), STR (striatum), TBR (theta/beta ratio), TC (temporal cortex), TH (tyrosine hydroxylase), TR (task-related), UF (uncinate fasciculus), VAN (ventral attention network), WM (white matter).
Figure 2
Figure 2
The effects of acute exercise on cognitive performance for children with ADHD. The three parts of the figure depict effect sizes extracted from studies systematically identified and categorized by cognitive domain (inhibitory Control (INH, purple); Cognitive Flexibility (CF, red); Working Memory (WM; orange), Sustained Attention (SA, green) and Psychomotor Speed (PS, blue) as a function of exercise intensity (A), duration (B) and volume (intensity x duration, (C)). The size of the circles denotes the number children with ADHD (within subject design) allocated to the active group or groups (between subject design) that completed the study.
Figure 3
Figure 3
The effects of long-term exercise on cognitive performance for children with ADHD. The multi-plot illustrates extracted effect sizes color-coded by cognitive domain and plotted against exercise intensity (A), session duration (B), study duration (C) and volume (session-duration x session frequency x study duration, (D)).
Figure 4
Figure 4
The effects exercise on cognitive performance for children with and without ADHD. Dual-plot presenting extracted effect sizes for acute (A) and long-term (B) exercise interventions color-coded by cognitive domain and plotted next to effects sizes derived from published meta-analyses in children with (circles) and without (triangles) ADHD. Effects sizes across executive functions are depicted in grey. Please, note that scale of the ordinate differ between the two plots.

References

    1. American Psychiatric Association . Diagnostic and Statistical Manual of Mental Disorders (DSM-5®) American Psychiatric Pub; Washington, DC, USA: 2013.
    1. Colvin M.K., Stern T.A. Diagnosis, evaluation, and treatment of attention-deficit/hyperactivity disorder. J. Clin. Psychiatry. 2015;76:e1148. doi: 10.4088/JCP.12040vr1c.
    1. Polanczyk G., De Lima M.S., Horta B.L., Biederman J., Rohde L.A. The worldwide prevalence of ADHD: A systematic review and metaregression analysis. Am. J. Psychiatry. 2007;164:942–948. doi: 10.1176/ajp.2007.164.6.942.
    1. Thomas R., Sanders S., Doust J., Beller E., Glasziou P. Prevalence of attention-deficit/hyperactivity disorder: A systematic review and meta-analysis. Pediatrics. 2015;135:e994–e1001. doi: 10.1542/peds.2014-3482.
    1. Fayyad J., Sampson N.A., Hwang I., Adamowski T., Aguilar-Gaxiola S., Al-Hamzawi A., Andrade L.H., Borges G., de Girolamo G., Florescu S. The descriptive epidemiology of DSM-IV Adult ADHD in the world health organization world mental health surveys. Adhd Atten. Deficit Hyperact. Disord. 2017;9:47–65. doi: 10.1007/s12402-016-0208-3.
    1. Coelho L., Chaves E., Vasconcelos S., Fonteles M., De Sousa F., Viana G. Attention Deficit Hyperactivity Disorder (ADHD) in children: Neurobiological aspects, diagnosis and therapeutic approach. Acta Med. Port. 2010;23:689–696.
    1. Barkley R.A., Fischer M. Hyperactive Child Syndrome and Estimated Life Expectancy at Young Adult Follow-Up: The Role of ADHD Persistence and Other Potential Predictors. J. Atten. Disord. 2018 doi: 10.1177/1087054718816164.
    1. Rydén E., Thase M.E., Stråht D., Åberg-Wistedt A., Bejerot S., Landén M. A history of childhood attention-deficit hyperactivity disorder (ADHD) impacts clinical outcome in adult bipolar patients regardless of current ADHD. Acta Psychiatr. Scand. 2009;120:239–246. doi: 10.1111/j.1600-0447.2009.01399.x.
    1. Biederman J., Wilens T., Mick E., Milberger S., Spencer T.J., Faraone S.V. Psychoactive substance use disorders in adults with attention deficit hyperactivity disorder (ADHD): Effects of ADHD and psychiatric comorbidity. Am. J. Psychiatry. 1995;152:1652–1658.
    1. Peasgood T., Bhardwaj A., Biggs K., Brazier J.E., Coghill D., Cooper C.L., Daley D., De Silva C., Harpin V., Hodgkins P. The impact of ADHD on the health and well-being of ADHD children and their siblings. Eur. Child Adolesc. Psychiatry. 2016;25:1217–1231. doi: 10.1007/s00787-016-0841-6.
    1. Childress A.C., Sallee F.R. Attention-deficit/hyperactivity disorder with inadequate response to stimulants: Approaches to management. CNS Drugs. 2014;28:121–129. doi: 10.1007/s40263-013-0130-6.
    1. Shyu Y.-C., Yuan S.-S., Lee S.-Y., Yang C.-J., Yang K.-C., Lee T.-L., Wang L.-J. Attention-deficit/hyperactivity disorder, methylphenidate use and the risk of developing schizophrenia spectrum disorders: A nationwide population-based study in Taiwan. Schizophr. Res. 2015;168:161–167. doi: 10.1016/j.schres.2015.08.033.
    1. Martinez-Raga J., Knecht C., Szerman N., Martinez M.I. Risk of serious cardiovascular problems with medications for attention-deficit hyperactivity disorder. CNS Drugs. 2013;27:15–30. doi: 10.1007/s40263-012-0019-9.
    1. Fusar-Poli P., Rubia K., Rossi G., Sartori G., Balottin U. Striatal Dopamine Transporter Alterations in ADHD: Pathophysiology or Adaptation to Psychostimulants? A Meta-Anal. Am. J. Psychiatry. 2012;169:264–272. doi: 10.1176/appi.ajp.2011.11060940.
    1. Wang G.-J., Volkow N.D., Wigal T., Kollins S.H., Newcorn J.H., Telang F., Logan J., Jayne M., Wong C.T., Han H., et al. Long-Term Stimulant Treatment Affects Brain Dopamine Transporter Level in Patients with Attention Deficit Hyperactive Disorder. PLoS ONE. 2013;8:e63023. doi: 10.1371/journal.pone.0063023.
    1. Scherer E.B.S., da Cunha M.J., Matté C., Schmitz F., Netto C.A., Wyse A.T. Methylphenidate affects memory, brain-derived neurotrophic factor immunocontent and brain acetylcholinesterase activity in the rat. Neurobiol. Learn. Mem. 2010;94:247–253. doi: 10.1016/j.nlm.2010.06.002.
    1. LeBlanc-Duchin D., Taukulis H.K. Chronic oral methylphenidate administration to periadolescent rats yields prolonged impairment of memory for objects. Neurobiol. Learn. Mem. 2007;88:312–320. doi: 10.1016/j.nlm.2007.04.010.
    1. LeBlanc-Duchin D., Taukulis H.K. Chronic oral methylphenidate induces post-treatment impairment in recognition and spatial memory in adult rats. Neurobiol. Learn. Mem. 2009;91:218–225. doi: 10.1016/j.nlm.2008.12.004.
    1. Taylor M.J., Martin J., Lu Y., Brikell I., Lundström S., Larsson H., Lichtenstein P. Association of genetic risk factors for psychiatric disorders and traits of these disorders in a swedish population twin sample. JAMA Psychiatry. 2018 doi: 10.1001/jamapsychiatry.2018.3652.
    1. Levy F., Hay D.A., McSTEPHEN M., Wood C., Waldman I. Attention-deficit hyperactivity disorder: A category or a continuum? Genetic analysis of a large-scale twin study. J. Am. Acad. Child Adolesc. Psychiatry. 1997;36:737–744. doi: 10.1097/00004583-199706000-00009.
    1. Henrik L., Henrik A., Maria R., Zheng C., Paul L. Childhood attention-deficit hyperactivity disorder as an extreme of a continuous trait: A quantitative genetic study of 8,500 twin pairs. J. Child Psychol. Psychiatry. 2012;53:73–80.
    1. Lubke G.H., Hudziak J.J., Derks E.M., van Bijsterveldt T.C.E.M., Boomsma D.I. Maternal Ratings of Attention Problems in ADHD: Evidence for the Existence of a Continuum. J. Am. Acad. Child Adolesc. Psychiatry. 2009;48:1085–1093. doi: 10.1097/CHI.0b013e3181ba3dbb.
    1. Middeldorp C.M., Hammerschlag A.R., Ouwens K.G., Groen-Blokhuis M.M., Pourcain B.S., Greven C.U., Pappa I., Tiesler C.M., Ang W., Nolte I.M. A genome-wide association meta-analysis of attention-deficit/hyperactivity disorder symptoms in population-based pediatric cohorts. J. Am. Acad. Child Adolesc. Psychiatry. 2016;55:896–905.e896. doi: 10.1016/j.jaac.2016.05.025.
    1. Hillman C.H., Erickson K.I., Kramer A.F. Be smart, exercise your heart: Exercise effects on brain and cognition. Nat. Rev. Neurosci. 2008;9:58. doi: 10.1038/nrn2298.
    1. Penedo F.J., Dahn J.R. Exercise and well-being: A review of mental and physical health benefits associated with physical activity. Curr. Opin. Psychiatry. 2005;18:189–193. doi: 10.1097/00001504-200503000-00013.
    1. Diamond A. Executive functions. Annu. Rev. Psychol. 2013;64:135–168. doi: 10.1146/annurev-psych-113011-143750.
    1. Coghill D.R., Seth S., Matthews K. A comprehensive assessment of memory, delay aversion, timing, inhibition, decision making and variability in attention deficit hyperactivity disorder: Advancing beyond the three-pathway models. Psychol. Med. 2013;44:1989–2001. doi: 10.1017/S0033291713002547.
    1. Silverstein M.J., Faraone S.V., Leon T.L., Biederman J., Spencer T.J., Adler L.A. The Relationship Between Executive Function Deficits and DSM-5-Defined ADHD Symptoms. J. Atten. Disord. 2018 doi: 10.1177/1087054718804347.
    1. Willcutt E.G., Doyle A.E., Nigg J.T., Faraone S.V., Pennington B.F. Validity of the Executive Function Theory of Attention-Deficit/Hyperactivity Disorder: A Meta-Analytic Review. Biol. Psychiatry. 2005;57:1336–1346. doi: 10.1016/j.biopsych.2005.02.006.
    1. Miyake A., Friedman N.P., Emerson M.J., Witzki A.H., Howerter A., Wager T.D. The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cogn. Psychol. 2000;41:49–100. doi: 10.1006/cogp.1999.0734.
    1. Sonuga-Barke E.J.S. Psychological heterogeneity in AD/HD—A dual pathway model of behaviour and cognition. Behav. Brain Res. 2002;130:29–36. doi: 10.1016/S0166-4328(01)00432-6.
    1. Wasserman L.D. The Sensitivity and Specificity of Neuropsychological Tests in the Diagnosis of Attention Deficit Hyperactivity Disorder AU—Wasserman, Theodore. Appl. Neuropsychol. Child. 2012;1:90–99. doi: 10.1080/21622965.2012.702025.
    1. Nigg J.T., Willcutt E.G., Doyle A.E., Sonuga-Barke E.J.S. Causal Heterogeneity in Attention-Deficit/Hyperactivity Disorder: Do We Need Neuropsychologically Impaired Subtypes? Biol. Psychiatry. 2005;57:1224–1230. doi: 10.1016/j.biopsych.2004.08.025.
    1. Snyder H.R., Miyake A., Hankin B.L. Advancing understanding of executive function impairments and psychopathology: Bridging the gap between clinical and cognitive approaches. Front. Psychol. 2015;6:328. doi: 10.3389/fpsyg.2015.00328.
    1. Kofler M.J., Rapport M.D., Sarver D.E., Raiker J.S., Orban S.A., Friedman L.M., Kolomeyer E.G. Reaction time variability in ADHD: A meta-analytic review of 319 studies. Clin. Psychol. Rev. 2013;33:795–811. doi: 10.1016/j.cpr.2013.06.001.
    1. Schwartz K., Verhaeghen P. ADHD and Stroop interference from age 9 to age 41 years: A meta-analysis of developmental effects. Psychol. Med. 2008;38:1607–1616. doi: 10.1017/S003329170700267X.
    1. Metin B., Roeyers H., Wiersema J.R., van der Meere J., Sonuga-Barke E. A Meta-Analytic Study of Event Rate Effects on Go/No-Go Performance in Attention-Deficit/Hyperactivity Disorder. Biol. Psychiatry. 2012;72:990–996. doi: 10.1016/j.biopsych.2012.08.023.
    1. Lijffijt M., Kenemans J.L., Verbaten M.N., van Engeland H. A meta-analytic review of stopping performance in attention-deficit/hyperactivity disorder: Deficient inhibitory motor control? J. Abnorm. Psychol. 2005;114:216. doi: 10.1037/0021-843X.114.2.216.
    1. Pauli-Pott U., Becker K. Neuropsychological basic deficits in preschoolers at risk for ADHD: A meta-analysis. Clin. Psychol. Rev. 2011;31:626–637. doi: 10.1016/j.cpr.2011.02.005.
    1. Wells E.L., Kofler M.J., Soto E.F., Schaefer H.S., Sarver D.E. Assessing working memory in children with ADHD: Minor administration and scoring changes may improve digit span backward’s construct validity. Res. Dev. Disabil. 2018;72:166–178. doi: 10.1016/j.ridd.2017.10.024.
    1. Kofler M.J., Irwin L.N., Soto E.F., Groves N.B., Harmon S.L., Sarver D.E. Executive Functioning Heterogeneity in Pediatric ADHD. J. Abnorm. Child Psychol. 2018:1–14. doi: 10.1007/s10802-018-0438-2.
    1. Hervey A.S., Epstein J.N., Curry J.F., Tonev S., Eugene Arnold L., Keith Conners C., Hinshaw S.P., Swanson J.M., Hechtman L. Reaction time distribution analysis of neuropsychological performance in an ADHD sample. Child Neuropsychol. 2006;12:125–140. doi: 10.1080/09297040500499081.
    1. Castellanos F.X., Sonuga-Barke E.J., Scheres A., Di Martino A., Hyde C., Walters J.R. Varieties of attention-deficit/hyperactivity disorder-related intra-individual variability. Biol. Psychiatry. 2005;57:1416–1423. doi: 10.1016/j.biopsych.2004.12.005.
    1. Klein C., Wendling K., Huettner P., Ruder H., Peper M. Intra-subject variability in attention-deficit hyperactivity disorder. Biol. Psychiatry. 2006;60:1088–1097. doi: 10.1016/j.biopsych.2006.04.003.
    1. Sonuga-Barke E.J., Castellanos F.X. Spontaneous attentional fluctuations in impaired states and pathological conditions: A neurobiological hypothesis. Neurosci. Biobehav. Rev. 2007;31:977–986. doi: 10.1016/j.neubiorev.2007.02.005.
    1. Alderson R.M., Rapport M.D., Kofler M.J. Attention-Deficit/Hyperactivity Disorder and Behavioral Inhibition: A Meta-Analytic Review of the Stop-signal Paradigm. J. Abnorm. Child Psychol. 2007;35:745–758. doi: 10.1007/s10802-007-9131-6.
    1. Martinussen R., Hayden J., Hogg-Johnson S., Tannock R. A Meta-Analysis of Working Memory Impairments in Children With Attention-Deficit/Hyperactivity Disorder. J. Am. Acad. Child Adolesc. Psychiatry. 2005;44:377–384. doi: 10.1097/01.chi.0000153228.72591.73.
    1. Patros C.H.G., Alderson R.M., Kasper L.J., Tarle S.J., Lea S.E., Hudec K.L. Choice-impulsivity in children and adolescents with attention-deficit/hyperactivity disorder (ADHD): A meta-analytic review. Clin. Psychol. Rev. 2016;43:162–174. doi: 10.1016/j.cpr.2015.11.001.
    1. Kang K., Choi J., Kang S., Han D. Sports therapy for attention, cognitions and sociality. Int. J. Sports Med. 2011;32:953–959. doi: 10.1055/s-0031-1283175.
    1. Anderson P. Assessment and Development of Executive Function (EF) During Childhood. Child Neuropsychol. 2002;8:71–82. doi: 10.1076/chin.8.2.71.8724.
    1. Rubia K. Neuro-anatomic evidence for the maturational delay hypothesis of ADHD. Proc. Natl. Acad. Sci. USA. 2007;104:19663–19664. doi: 10.1073/pnas.0710329105.
    1. Berger I., Slobodin O., Aboud M., Melamed J., Cassuto H. Maturational delay in ADHD: Evidence from CPT. Front. Hum. Neurosci. 2013;7:691. doi: 10.3389/fnhum.2013.00691.
    1. Shaw P., Eckstrand K., Sharp W., Blumenthal J., Lerch J., Greenstein D., Clasen L., Evans A., Giedd J., Rapoport J. Attention-deficit/hyperactivity disorder is characterized by a delay in cortical maturation. Proc. Natl. Acad. Sci. USA. 2007;104:19649–19654. doi: 10.1073/pnas.0707741104.
    1. Colomer C., Berenguer C., Roselló B., Baixauli I., Miranda A. The Impact of Inattention, Hyperactivity/Impulsivity Symptoms, and Executive Functions on Learning Behaviors of Children with ADHD. Front. Psychol. 2017;8:540. doi: 10.3389/fpsyg.2017.00540.
    1. Martel M., Nikolas M., Nigg J.T. Executive Function in Adolescents With ADHD. J. Am. Acad. Child Adolesc. Psychiatry. 2007;46:1437–1444. doi: 10.1097/chi.0b013e31814cf953.
    1. Biederman J., Petty C.R., Fried R., Doyle A.E., Spencer T., Seidman L.J., Gross L., Poetzl K., Faraone S.V. Stability of executive function deficits into young adult years: A prospective longitudinal follow-up study of grown up males with ADHD. Acta Psychiatr. Scand. 2007;116:129–136. doi: 10.1111/j.1600-0447.2007.01008.x.
    1. Biederman J., Monuteaux M.C., Doyle A.E., Seidman L.J., Wilens T.E., Ferrero F., Morgan C.L., Faraone S.V. Impact of executive function deficits and attention-deficit/hyperactivity disorder (ADHD) on academic outcomes in children. J. Consult. Clin. Psychol. 2004;72:757. doi: 10.1037/0022-006X.72.5.757.
    1. Tsatsoulis A., Fountoulakis S. The Protective Role of Exercise on Stress System Dysregulation and Comorbidities. Ann. N. Y. Acad. Sci. 2006;1083:196–213. doi: 10.1196/annals.1367.020.
    1. Binder E., Droste S.K., Ohl F., Reul J.M.H.M. Regular voluntary exercise reduces anxiety-related behaviour and impulsiveness in mice. Behav. Brain Res. 2004;155:197–206. doi: 10.1016/j.bbr.2004.04.017.
    1. McKercher C.M., Schmidt M.D., Sanderson K.A., Patton G.C., Dwyer T., Venn A.J. Physical activity and depression in young adults. Am. J. Prev. Med. 2009;36:161–164. doi: 10.1016/j.amepre.2008.09.036.
    1. Garcia D., Archer T., Moradi S., Andersson-Arntén A.-C. Exercise frequency, high activation positive affect, and psychological well-being: Beyond age, gender, and occupation. Psychology. 2012;3:328. doi: 10.4236/psych.2012.34047.
    1. Caspersen C.J., Powell K.E., Christenson G.M. Physical activity, exercise, and physical fitness: Definitions and distinctions for health-related research. Public Health Rep. 1985;100:126–131.
    1. Diamond A. Effects of physical exercise on executive functions: Going beyond simply moving to moving with thought. Ann. Sports Med. Res. 2015;2:1011.
    1. Ludyga S., Gerber M., Brand S., Holsboer-Trachsler E., Pühse U. Acute effects of moderate aerobic exercise on specific aspects of executive function in different age and fitness groups: A meta-analysis. Psychophysiology. 2016;53:1611–1626. doi: 10.1111/psyp.12736.
    1. De Greeff J.W., Bosker R.J., Oosterlaan J., Visscher C., Hartman E. Effects of physical activity on executive functions, attention and academic performance in preadolescent children: A meta-analysis. J. Sci. Med. Sport. 2018;21:501–507. doi: 10.1016/j.jsams.2017.09.595.
    1. Chang Y.K., Labban J.D., Gapin J.I., Etnier J.L. The effects of acute exercise on cognitive performance: A meta-analysis. Brain Res. 2012;1453:87–101. doi: 10.1016/j.brainres.2012.02.068.
    1. Verburgh L., Königs M., Scherder E.J.A., Oosterlaan J. Physical exercise and executive functions in preadolescent children, adolescents and young adults: A meta-analysis. Br. J. Sports Med. 2014;48:973–979. doi: 10.1136/bjsports-2012-091441.
    1. Tan B.W.Z., Pooley J.A., Speelman C.P. A Meta-Analytic Review of the Efficacy of Physical Exercise Interventions on Cognition in Individuals with Autism Spectrum Disorder and ADHD. J. Autism Dev. Disord. 2016;46:3126–3143. doi: 10.1007/s10803-016-2854-x.
    1. Cerrillo-Urbina A., García-Hermoso A., Sánchez-López M., Pardo-Guijarro M.J., Santos Gomez J., Martínez-Vizcaíno V. The effects of physical exercise in children with attention deficit hyperactivity disorder: A systematic review and meta-analysis of randomized control trials. Child Carehealth Dev. 2015;41:779–788. doi: 10.1111/cch.12255.
    1. Cornelius C., Fedewa A.L., Ahn S. The Effect of Physical Activity on Children With ADHD: A Quantitative Review of the Literature. J. Appl. Sch. Psychol. 2017;33:136–170. doi: 10.1080/15377903.2016.1265622.
    1. Vysniauske R., Verburgh L., Oosterlaan J., Molendijk M.L. The effects of physical exercise on functional outcomes in the treatment of ADHD: A meta-analysis. J. Atten. Disord. 2016 doi: 10.1177/1087054715627489.
    1. Drollette E.S., Scudder M.R., Raine L.B., Moore R.D., Saliba B.J., Pontifex M.B., Hillman C.H. Acute exercise facilitates brain function and cognition in children who need it most: An ERP study of individual differences in inhibitory control capacity. Dev. Cogn. Neurosci. 2014;7:53–64. doi: 10.1016/j.dcn.2013.11.001.
    1. Silva A.P., Prado S.O., Scardovelli T.A., Boschi S.R., Campos L.C., Frère A.F. Measurement of the effect of physical exercise on the concentration of individuals with ADHD. PLoS ONE. 2015;10:e0122119. doi: 10.1371/journal.pone.0122119.
    1. Gawrilow C., Stadler G., Langguth N., Naumann A., Boeck A. Physical activity, affect, and cognition in children with symptoms of ADHD. J. Atten. Disord. 2016;20:151–162. doi: 10.1177/1087054713493318.
    1. Chuang L.-Y., Tsai Y.-J., Chang Y.-K., Huang C.-J., Hung T.-M. Effects of acute aerobic exercise on response preparation in a Go/No Go Task in children with ADHD: An ERP study. J. Sport Health Sci. 2015;4:82–88. doi: 10.1016/j.jshs.2014.11.002.
    1. Ludyga S., Brand S., Gerber M., Weber P., Brotzmann M., Habibifar F., Pühse U. An event-related potential investigation of the acute effects of aerobic and coordinative exercise on inhibitory control in children with ADHD. Dev. Cogn. Neurosci. 2017;28:21–28. doi: 10.1016/j.dcn.2017.10.007.
    1. Benzing V., Chang Y.-K., Schmidt M. Acute Physical Activity Enhances Executive Functions in Children with ADHD. Sci. Rep. 2018;8:12382. doi: 10.1038/s41598-018-30067-8.
    1. Pontifex M.B., Saliba B.J., Raine L.B., Picchietti D.L., Hillman C.H. Exercise improves behavioral, neurocognitive, and scholastic performance in children with attention-deficit/hyperactivity disorder. J. Pediatrics. 2013;162:543–551. doi: 10.1016/j.jpeds.2012.08.036.
    1. Piepmeier A.T., Shih C.-H., Whedon M., Williams L.M., Davis M.E., Henning D.A., Park S., Calkins S.D., Etnier J.L. The effect of acute exercise on cognitive performance in children with and without ADHD. J. Sport Health Sci. 2015;4:97–104. doi: 10.1016/j.jshs.2014.11.004.
    1. Gapin J.I., Labban J.D., Bohall S.C., Wooten J.S., Chang Y.-K. Acute exercise is associated with specific executive functions in college students with ADHD: A preliminary study. J. Sport Health Sci. 2015;4:89–96. doi: 10.1016/j.jshs.2014.11.003.
    1. Chang Y.-K., Liu S., Yu H.-H., Lee Y.-H. Effect of acute exercise on executive function in children with attention deficit hyperactivity disorder. Arch. Clin. Neuropsychol. 2012;27:225–237. doi: 10.1093/arclin/acr094.
    1. Hung C.-L., Huang C.-J., Tsai Y.-J., Chang Y.-K., Hung T.-M. Neuroelectric and behavioral effects of acute exercise on task switching in children with attention-deficit/hyperactivity disorder. Front. Psychol. 2016;7:1589. doi: 10.3389/fpsyg.2016.01589.
    1. Ludyga S., Gerber M., Mücke M., Brand S., Weber P., Brotzmann M., Pühse U. The acute effects of aerobic exercise on cognitive flexibility and task-related heart rate variability in children with ADHD and healthy controls. J. Atten. Disord. 2018 doi: 10.1177/1087054718757647.
    1. Fritz K.M., O’Connor P.J. Acute Exercise Improves Mood and Motivation in Young Men with ADHD Symptoms. Med. Sci. Sports Exerc. 2016;48:1153–1160. doi: 10.1249/MSS.0000000000000864.
    1. Craft D.H. Effect of prior exercise on cognitive performance tasks by hyperactive and normal young boys. Percept. Mot. Ski. 1983;56:979–982. doi: 10.2466/pms.1983.56.3.979.
    1. O’Halloran L., Cao Z., Ruddy K., Jollans L., Albaugh M.D., Aleni A., Potter A.S., Vahey N., Banaschewski T., Hohmann S., et al. Neural circuitry underlying sustained attention in healthy adolescents and in ADHD symptomatology. NeuroImage. 2018;169:395–406. doi: 10.1016/j.neuroimage.2017.12.030.
    1. Mahon A.D., Dean R.S., McIntosh D.E., Marjerrison A.D., Cole A.S., Woodruff M.E., Lee M.P. Acute exercise effects on measures of attention and impulsivity in children with attention deficit/hyperactivity disorder. J. Educ. Dev. Psychol. 2013;3:65. doi: 10.5539/jedp.v3n2p65.
    1. Rowlands A.V. Accelerometer assessment of physical activity in children: An update. Pediatric Exerc. Sci. 2007;19:252–266. doi: 10.1123/pes.19.3.252.
    1. Coe D.P., Pivarnik J.M., Womack C.J., Reeves M.J., Malina R.M. Effect of physical education and activity levels on academic achievement in children. Med. Sci. Sports Exerc. 2006;38:1515–1519. doi: 10.1249/01.mss.0000227537.13175.1b.
    1. Chaddock L., Erickson K.I., Prakash R.S., VanPatter M., Voss M.W., Pontifex M.B., Raine L.B., Hillman C.H., Kramer A.F. Basal ganglia volume is associated with aerobic fitness in preadolescent children. Dev. Neurosci. 2010;32:249–256. doi: 10.1159/000316648.
    1. Chaddock L., Erickson K.I., Prakash R.S., Voss M.W., VanPatter M., Pontifex M.B., Hillman C.H., Kramer A.F. A functional MRI investigation of the association between childhood aerobic fitness and neurocognitive control. Biol. Psychol. 2012;89:260–268. doi: 10.1016/j.biopsycho.2011.10.017.
    1. Chaddock L., Hillman C.H., Pontifex M.B., Johnson C.R., Raine L.B., Kramer A.F. Childhood aerobic fitness predicts cognitive performance one year later. J. Sports Sci. 2012;30:421–430. doi: 10.1080/02640414.2011.647706.
    1. Chaddock-Heyman L., Erickson K.I., Chappell M.A., Johnson C.L., Kienzler C., Knecht A., Drollette E.S., Raine L.B., Scudder M.R., Kao S.-C., et al. Aerobic fitness is associated with greater hippocampal cerebral blood flow in children. Dev. Cogn. Neurosci. 2016;20:52–58. doi: 10.1016/j.dcn.2016.07.001.
    1. Chaddock-Heyman L., Erickson K.I., Holtrop J.L., Voss M.W., Pontifex M.B., Raine L.B., Hillman C.H., Kramer A.F. Aerobic fitness is associated with greater white matter integrity in children. Front. Hum. Neurosci. 2014;8:584. doi: 10.3389/fnhum.2014.00584.
    1. Fedewa A.L., Ahn S. The Effects of Physical Activity and Physical Fitness on Children’s Achievement and Cognitive Outcomes. Res. Q. Exerc. Sport. 2011;82:521–535. doi: 10.1080/02701367.2011.10599785.
    1. Etnier J.L., Salazar W., Landers D.M., Petruzzello S.J., Han M., Nowell P. The influence of physical fitness and exercise upon cognitive functioning: A meta-analysis. J. Sport Exerc. Psychol. 1997;19:249–277. doi: 10.1123/jsep.19.3.249.
    1. Sibley B.A., Etnier J.L. The relationship between physical activity and cognition in children: A meta-analysis. Pediatric Exerc. Sci. 2003;15:243–256. doi: 10.1123/pes.15.3.243.
    1. Cook B.G., Li D., Heinrich K.M. Obesity, Physical Activity, and Sedentary Behavior of Youth With Learning Disabilities and ADHD. J. Learn. Disabil. 2015;48:563–576. doi: 10.1177/0022219413518582.
    1. Kim J., Mutyala B., Agiovlasitis S., Fernhall B. Health behaviors and obesity among US children with attention deficit hyperactivity disorder by gender and medication use. Prev. Med. 2011;52:218–222. doi: 10.1016/j.ypmed.2011.01.003.
    1. Brassell A.A., Shoulberg E.K., Pontifex M.B., Smith A.L., Delli Paoli A.G., Hoza B. Aerobic fitness and inhibition in young children: Moderating roles of ADHD status and age. J. Clin. Child Adolesc. Psychol. 2017;46:646–652. doi: 10.1080/15374416.2015.1063431.
    1. Tsai Y.-J., Hung C.-L., Tsai C.-L., Chang Y.-K., Huang C.-J., Hung T.-M. The Relationship between physical fitness and inhibitory ability in children with attention deficit hyperactivity disorder: An event-related potential study. Psychol. Sport Exerc. 2017;31:149–157. doi: 10.1016/j.psychsport.2016.05.006.
    1. Gapin J., Etnier J.L. The relationship between physical activity and executive function performance in children with attention-deficit hyperactivity disorder. J. Sport Exerc. Psychol. 2010;32:753–763. doi: 10.1123/jsep.32.6.753.
    1. Álvarez-Bueno C., Pesce C., Cavero-Redondo I., Sánchez-López M., Martínez-Hortelano J.A., Martínez-Vizcaíno V. The Effect of Physical Activity Interventions on Children’s Cognition and Metacognition: A Systematic Review and Meta-Analysis. J. Am. Acad. Child Adolesc. Psychiatry. 2017;56:729–738. doi: 10.1016/j.jaac.2017.06.012.
    1. Xue Y., Yang Y., Huang T. Effects of chronic exercise interventions on executive function among children and adolescents: A systematic review with meta-analysis. Br. J. Sports Med. 2019 doi: 10.1136/bjsports-2018-099825.
    1. Gallotta M.C., Emerenziani G.P., Iazzoni S., Meucci M., Baldari C., Guidetti L. Impacts of coordinative training on normal weight and overweight/obese children’s attentional performance. Front. Hum. Neurosci. 2015;9:577. doi: 10.3389/fnhum.2015.00577.
    1. Brickenkamp R., Schmidt-Atzert L., Liepmann D., Zillmer E. d2-R: Test d2-Revision: Aufmerksamkeits-und Konzentrationstest. Hogrefe; Oxford, UK: 2010.
    1. Allen J.I. Jogging can modify disruptive behaviors. Teach. Except. Child. 1980;12:66–70. doi: 10.1177/004005998001200207.
    1. Zhang L., Ji W., Fan Y., Wu H., Liu K. Effect of Physical Exercise on Cognition and Emotion in Children with ADHD. Destech Trans. Comput. Sci. Eng. 2015 doi: 10.12783/dtcse/cib2015/16180.
    1. Verret C., Guay M.-C., Berthiaume C., Gardiner P., Béliveau L. A Physical Activity Program Improves Behavior and Cognitive Functions in Children with ADHD: An Exploratory Study. J. Atten. Disord. 2012;16:71–80. doi: 10.1177/1087054710379735.
    1. Pan C.-Y., Chu C.-H., Tsai C.-L., Lo S.-Y., Cheng Y.-W., Liu Y.-J. A racket-sport intervention improves behavioral and cognitive performance in children with attention-deficit/hyperactivity disorder. Res. Dev. Disabil. 2016;57:1–10. doi: 10.1016/j.ridd.2016.06.009.
    1. Pan C.-Y., Tsai C.-L., Chu C.-H., Sung M.-C., Huang C.-Y., Ma W.-Y. Effects of physical exercise intervention on motor skills and executive functions in children with ADHD: A pilot study. J. Atten. Disord. 2015 doi: 10.1177/1087054715569282.
    1. Memarmoghaddam M., Torbati H., Sohrabi M., Mashhadi A., Kashi A. Effects of a selected exercise program on executive function of children with attention deficit hyperactivity disorder. J. Med. Life. 2016;9:373.
    1. Geladé K., Janssen T., Bink M., Maras A., Oosterlaan J. Behavioral effects of neurofeedback compared to stimulants and physical activity in attention-deficit/hyperactivity disorder: A randomized controlled trial. J. Clin. Psychiatry. 2016;77:e1270–e1277. doi: 10.4088/JCP.15m10149.
    1. Choi J.W., Han D.H., Kang K.D., Jung H.Y., Renshaw P.F. Aerobic exercise and attention deficit hyperactivity disorder: Brain research. Med. Sci. Sports Exerc. 2015;47:33. doi: 10.1249/MSS.0000000000000373.
    1. Chang Y.-K., Hung C.-L., Huang C.-J., Hatfield B.D., Hung T.-M. Effects of an aquatic exercise program on inhibitory control in children with ADHD: A preliminary study. Arch. Clin. Neuropsychol. 2014;29:217–223. doi: 10.1093/arclin/acu003.
    1. Ahmed G., Mohamed S. Effect of regular aerobic exercises on behavioral, cognitive and psychological response in patients with attention deficit-hyperactivity disorder. Life Sci. J. 2011;8:366–371.
    1. Kim J.-K. The effects of a home-based sensorimotor program on executive and motor functions in children with ADHD: A case series. J. Phys. Ther. Sci. 2018;30:1138–1140. doi: 10.1589/jpts.30.1138.
    1. Frazier W., Wilson S. Does physical activity in children improve ADHD symptoms? Evid.-Based Pract. 2018;21:12.
    1. Rommel A.-S., Halperin J.M., Mill J., Asherson P., Kuntsi J. Protection From Genetic Diathesis in Attention-Deficit/Hyperactivity Disorder: Possible Complementary Roles of Exercise. J. Am. Acad. Child Adolesc. Psychiatry. 2013;52:900–910. doi: 10.1016/j.jaac.2013.05.018.
    1. Reeves M.J., Bailey R.P. The effects of physical activity on children diagnosed with attention deficit hyperactivity disorder: A review. Education 3-13. 2016;44:591–603. doi: 10.1080/03004279.2014.918160.
    1. Halperin J.M., Berwid O.G., O’Neill S. Healthy body, healthy mind? The effectiveness of physical activity to treat ADHD in children. Child Adolesc. Psychiatr. Clin. 2014;23:899–936. doi: 10.1016/j.chc.2014.05.005.
    1. Jeyanthi S., Arumugam N., Parasher R.K. Effect of physical exercises on attention, motor skill and physical fitness in children with attention deficit hyperactivity disorder: A systematic review. ADHD Atten. Deficit Hyperact. Disord. 2018 doi: 10.1007/s12402-018-0270-0.
    1. Suarez-Manzano S., Ruiz-Ariza A., De La Torre-Cruz M., Martínez-López E.J. Acute and chronic effect of physical activity on cognition and behaviour in young people with ADHD: A systematic review of intervention studies. Res. Dev. Disabil. 2018;77:12–23. doi: 10.1016/j.ridd.2018.03.015.
    1. Neudecker C., Mewes N., Reimers A.K., Woll A. Exercise interventions in children and adolescents with ADHD: A systematic review. J. Atten. Disord. 2015 doi: 10.1177/1087054715584053.
    1. Kamp C.F., Sperlich B., Holmberg H.C. Exercise reduces the symptoms of attention-deficit/hyperactivity disorder and improves social behaviour, motor skills, strength and neuropsychological parameters. Acta Paediatr. 2014;103:709–714. doi: 10.1111/apa.12628.
    1. Abdul-Kareem I.A., Stancak A., Parkes L.M., Sluming V. Increased gray matter volume of left pars opercularis in male orchestral musicians correlate positively with years of musical performance. J. Magn. Reson. Imaging. 2011;33:24–32. doi: 10.1002/jmri.22391.
    1. Hyde K.L., Lerch J., Norton A., Forgeard M., Winner E., Evans A.C., Schlaug G. Musical training shapes structural brain development. J. Neurosci. 2009;29:3019–3025. doi: 10.1523/JNEUROSCI.5118-08.2009.
    1. Driemeyer J., Boyke J., Gaser C., Büchel C., May A. Changes in Gray Matter Induced by Learning—Revisited. PLoS ONE. 2008;3:e2669. doi: 10.1371/journal.pone.0002669.
    1. Kooij J.J.S., Bijlenga D., Salerno L., Jaeschke R., Bitter I., Balázs J., Thome J., Dom G., Kasper S., Nunes Filipe C., et al. Updated European Consensus Statement on diagnosis and treatment of adult ADHD. Eur. Psychiatry. 2019;56:14–34. doi: 10.1016/j.eurpsy.2018.11.001.
    1. Muster R., Choudhury S., Sharp W., Kasparek S., Sudre G., Shaw P. Mapping the neuroanatomic substrates of cognition in familial attention deficit hyperactivity disorder. Psychol. Med. 2018;49:590–597. doi: 10.1017/S0033291718001241.
    1. Frodl T., Skokauskas N. Meta-analysis of structural MRI studies in children and adults with attention deficit hyperactivity disorder indicates treatment effects. Acta Psychiatr. Scand. 2012;125:114–126. doi: 10.1111/j.1600-0447.2011.01786.x.
    1. Almeida L.G., Ricardo-Garcell J., Prado H., Barajas L., Fernández-Bouzas A., Ávila D., Martínez R.B. Reduced right frontal cortical thickness in children, adolescents and adults with ADHD and its correlation to clinical variables: A cross-sectional study. J. Psychiatr. Res. 2010;44:1214–1223. doi: 10.1016/j.jpsychires.2010.04.026.
    1. Amico F., Stauber J., Koutsouleris N., Frodl T. Anterior cingulate cortex gray matter abnormalities in adults with attention deficit hyperactivity disorder: A voxel-based morphometry study. Psychiatry Res. Neuroimaging. 2011;191:31–35. doi: 10.1016/j.pscychresns.2010.08.011.
    1. Makris N., Seidman L.J., Valera E.M., Biederman J., Monuteaux M.C., Kennedy D.N., Caviness V.S., Jr., Bush G., Crum K., Brown A.B. Anterior cingulate volumetric alterations in treatment-naive adults with ADHD: A pilot study. J. Atten. Disord. 2010;13:407–413. doi: 10.1177/1087054709351671.
    1. Hoogman M., Bralten J., Hibar D.P., Mennes M., Zwiers M.P., Schweren L.S., van Hulzen K.J., Medland S.E., Shumskaya E., Jahanshad N. Subcortical brain volume differences in participants with attention deficit hyperactivity disorder in children and adults: A cross-sectional mega-analysis. Lancet Psychiatry. 2017;4:310–319. doi: 10.1016/S2215-0366(17)30049-4.
    1. Berquin P.C., Giedd J.N., Jacobsen L.K., Hamburger S.D., Krain A.L., Rapoport J.L., Castellanos F.X. Cerebellum in attention-deficit hyperactivity disorder. A Morphometric MRI Study. Neurology. 1998;50:1087–1093.
    1. Stoodley C.J. Distinct regions of the cerebellum show gray matter decreases in autism, ADHD, and developmental dyslexia. Front. Syst. Neurosci. 2014;8:92. doi: 10.3389/fnsys.2014.00092.
    1. McAlonan G.M., Cheung V., Cheung C., Chua S.E., Murphy D.G.M., Suckling J., Tai K.-S., Yip L.K.C., Leung P., Ho T.P. Mapping brain structure in attention deficit-hyperactivity disorder: A voxel-based MRI study of regional grey and white matter volume. Psychiatry Res. Neuroimaging. 2007;154:171–180. doi: 10.1016/j.pscychresns.2006.09.006.
    1. Vilgis V., Sun L., Chen J., Silk T.J., Vance A. Global and local grey matter reductions in boys with ADHD combined type and ADHD inattentive type. Psychiatry Res. Neuroimaging. 2016;254:119–126. doi: 10.1016/j.pscychresns.2016.06.008.
    1. Valera E.M., Faraone S.V., Murray K.E., Seidman L.J. Meta-analysis of structural imaging findings in attention-deficit/hyperactivity disorder. Biol. Psychiatry. 2007;61:1361–1369. doi: 10.1016/j.biopsych.2006.06.011.
    1. Cha J., Fekete T., Siciliano F., Biezonski D., Greenhill L., Pliszka S.R., Blader J.C., Roy A.K., Leibenluft E., Posner J. Neural correlates of aggression in medication-naive children with ADHD: Multivariate analysis of morphometry and tractography. Neuropsychopharmacology. 2015;40:1717. doi: 10.1038/npp.2015.18.
    1. Nagel B.J., Bathula D., Herting M., Schmitt C., Kroenke C.D., Fair D., Nigg J.T. Altered white matter microstructure in children with attention-deficit/hyperactivity disorder. J. Am. Acad. Child Adolesc. Psychiatry. 2011;50:283–292. doi: 10.1016/j.jaac.2010.12.003.
    1. Shaw P., Sudre G., Wharton A., Weingart D., Sharp W., Sarlls J. White matter microstructure and the variable adult outcome of childhood attention deficit hyperactivity disorder. Neuropsychopharmacology. 2015;40:746. doi: 10.1038/npp.2014.241.
    1. Almeida Montes L.G., Ricardo-Garcell J., Barajas De La Torre L.B., Prado Alcántara H., Martínez García R.B., Fernández-Bouzas A., Avila Acosta D. Clinical correlations of grey matter reductions in the caudate nucleus of adults with attention deficit hyperactivity disorder. J. Psychiatry Neurosci. 2010;35:238–246.
    1. Bartus R.T., Levere T. Frontal decortication in rhesus monkeys: A test of the interference hypothesis. Brain Res. 1977;119:233–248. doi: 10.1016/0006-8993(77)90103-2.
    1. Wilkins A.J., Shallice T., McCarthy R. Frontal lesions and sustained attention. Neuropsychologia. 1987;25:359–365. doi: 10.1016/0028-3932(87)90024-8.
    1. Woods D.L., Knight R.T. Electrophysiologic evidence of increased distractibility after dorsolateral prefrontal lesions. Neurology. 1986;36:212. doi: 10.1212/WNL.36.2.212.
    1. Chao L.L., Knight R.T. Human prefrontal lesions increase distractibility to irrelevant sensory inputs. Neuroreport Int. J. Rapid Commun. Res. Neurosci. 1995;6:1605–1610. doi: 10.1097/00001756-199508000-00005.
    1. Ma C.-L., Qi X.-L., Peng J.-Y., Li B.-M. Selective deficit in no-go performance induced by blockade of prefrontal cortical α2-adrenoceptors in monkeys. NeuroReport. 2003;14:1013–1016. doi: 10.1097/01.wnr.0000070831.57864.7b.
    1. Ma C.-L., Arnsten A.F., Li B.-M. Locomotor hyperactivity induced by blockade of prefrontal cortical α2-adrenoceptors in monkeys. Biol. Psychiatry. 2005;57:192–195. doi: 10.1016/j.biopsych.2004.11.004.
    1. Voss M.W., Vivar C., Kramer A.F., van Praag H. Bridging animal and human models of exercise-induced brain plasticity. Trends Cogn. Sci. 2013;17:525–544. doi: 10.1016/j.tics.2013.08.001.
    1. Van Praag H., Christie B.R., Sejnowski T.J., Gage F.H. Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc. Natl. Acad. Sci. USA. 1999;96:13427–13431. doi: 10.1073/pnas.96.23.13427.
    1. Van Praag H., Kempermann G., Gage F.H. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat. Neurosci. 1999;2:266. doi: 10.1038/6368.
    1. Eddy M.C., Green J.T. Running wheel exercise reduces renewal of extinguished instrumental behavior and alters medial prefrontal cortex neurons in adolescent, but not adult, rats. Behav. Neurosci. 2017;131:460–469. doi: 10.1037/bne0000218.
    1. Chaddock L., Erickson K.I., Prakash R.S., Kim J.S., Voss M.W., VanPatter M., Pontifex M.B., Raine L.B., Konkel A., Hillman C.H. A neuroimaging investigation of the association between aerobic fitness, hippocampal volume, and memory performance in preadolescent children. Brain Res. 2010;1358:172–183. doi: 10.1016/j.brainres.2010.08.049.
    1. Weinstein A.M., Voss M.W., Prakash R.S., Chaddock L., Szabo A., White S.M., Wojcicki T.R., Mailey E., McAuley E., Kramer A.F. The association between aerobic fitness and executive function is mediated by prefrontal cortex volume. Brainbehav. Immun. 2012;26:811–819. doi: 10.1016/j.bbi.2011.11.008.
    1. Pontifex M.B., Raine L.B., Johnson C.R., Chaddock L., Voss M.W., Cohen N.J., Kramer A.F., Hillman C.H. Cardiorespiratory Fitness and the Flexible Modulation of Cognitive Control in Preadolescent Children. J. Cogn. Neurosci. 2011;23:1332–1345. doi: 10.1162/jocn.2010.21528.
    1. Voss M.W., Chaddock L., Kim J.S., VanPatter M., Pontifex M.B., Raine L.B., Cohen N.J., Hillman C.H., Kramer A.F. Aerobic fitness is associated with greater efficiency of the network underlying cognitive control in preadolescent children. Neuroscience. 2011;199:166–176. doi: 10.1016/j.neuroscience.2011.10.009.
    1. Colcombe S.J., Erickson K.I., Scalf P.E., Kim J.S., Prakash R., McAuley E., Elavsky S., Marquez D.X., Hu L., Kramer A.F. Aerobic exercise training increases brain volume in aging humans. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2006;61:1166–1170. doi: 10.1093/gerona/61.11.1166.
    1. Chaddock-Heyman L., Erickson K.I., Kienzler C., King M., Pontifex M.B., Raine L.B., Hillman C.H., Kramer A.F. The role of aerobic fitness in cortical thickness and mathematics achievement in preadolescent children. PLoS ONE. 2015;10:e0134115.
    1. Sowell E.R., Thompson P.M., Leonard C.M., Welcome S.E., Kan E., Toga A.W. Longitudinal Mapping of Cortical Thickness and Brain Growth in Normal Children. J. Neurosci. 2004;24:8223–8231. doi: 10.1523/JNEUROSCI.1798-04.2004.
    1. Gogtay N., Giedd J.N., Lusk L., Hayashi K.M., Greenstein D., Vaituzis A.C., Nugent T.F., Herman D.H., Clasen L.S., Toga A.W., et al. Dynamic mapping of human cortical development during childhood through early adulthood. Proc. Natl. Acad. Sci. USA. 2004;101:8174–8179. doi: 10.1073/pnas.0402680101.
    1. Krafft C.E., Schaeffer D.J., Schwarz N.F., Chi L., Weinberger A.L., Pierce J.E., Rodrigue A.L., Allison J.D., Yanasak N.E., Liu T., et al. Improved Frontoparietal White Matter Integrity in Overweight Children Is Associated with Attendance at an After-School Exercise Program. Dev. Neurosci. 2014;36:1–9. doi: 10.1159/000356219.
    1. Schaeffer D.J., Krafft C.E., Schwarz N.F., Chi L., Rodrigue A.L., Pierce J.E., Allison J.D., Yanasak N.E., Liu T., Davis C.L., et al. An 8-month exercise intervention alters frontotemporal white matter integrity in overweight children. Psychophysiology. 2014;51:728–733. doi: 10.1111/psyp.12227.
    1. Smith S.M., Fox P.T., Miller K.L., Glahn D.C., Fox P.M., Mackay C.E., Filippini N., Watkins K.E., Toro R., Laird A.R. Correspondence of the brain’s functional architecture during activation and rest. Proc. Natl. Acad. Sci. USA. 2009;106:13040–13045. doi: 10.1073/pnas.0905267106.
    1. Greicius M.D., Krasnow B., Reiss A.L., Menon V. Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proc. Natl. Acad. Sci. USA. 2003;100:253–258. doi: 10.1073/pnas.0135058100.
    1. Fassbender C., Zhang H., Buzy W.M., Cortes C.R., Mizuiri D., Beckett L., Schweitzer J.B. A lack of default network suppression is linked to increased distractibility in ADHD. Brain Res. 2009;1273:114–128. doi: 10.1016/j.brainres.2009.02.070.
    1. Rubia K., Alegria A.A., Cubillo A.I., Smith A.B., Brammer M.J., Radua J. Effects of Stimulants on Brain Function in Attention-Deficit/Hyperactivity Disorder: A Systematic Review and Meta-Analysis. Biol. Psychiatry. 2014;76:616–628. doi: 10.1016/j.biopsych.2013.10.016.
    1. Liddle E.B., Hollis C., Batty M.J., Groom M.J., Totman J.J., Liotti M., Scerif G., Liddle P.F. Task-related default mode network modulation and inhibitory control in ADHD: Effects of motivation and methylphenidate. J. Child Psychol. Psychiatry. 2011;52:761–771. doi: 10.1111/j.1469-7610.2010.02333.x.
    1. Jasper H.H., Solomon P., Bradley C. Electroencephalographic analyses of behavior problem children. Am. J. Psychiatry. 1938;95:641–658. doi: 10.1176/ajp.95.3.641.
    1. Satterfield J.H., Dawson M.E. Electrodermal correlates of hyperactivity in children. Psychophysiology. 1971;8:191–197. doi: 10.1111/j.1469-8986.1971.tb00450.x.
    1. Kirkland A.E., Holton K.F. Measuring Treatment Response in Pharmacological and Lifestyle Interventions Using Electroencephalography in ADHD: A Review. Clin. EEG Neurosci. 2019 doi: 10.1177/1550059418817966.
    1. Arns M., Conners C.K., Kraemer H.C. A Decade of EEG Theta/Beta Ratio Research in ADHD: A Meta-Analysis. J. Atten. Disord. 2013;17:374–383. doi: 10.1177/1087054712460087.
    1. Arns M. EEG-Based Personalized Medicine in ADHD: Individual Alpha Peak Frequency as an Endophenotype Associated with Nonresponse. J. Neurother. 2012;16:123–141. doi: 10.1080/10874208.2012.677664.
    1. Lansbergen M.M., Arns M., van Dongen-Boomsma M., Spronk D., Buitelaar J.K. The increase in theta/beta ratio on resting-state EEG in boys with attention-deficit/hyperactivity disorder is mediated by slow alpha peak frequency. Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 2011;35:47–52. doi: 10.1016/j.pnpbp.2010.08.004.
    1. Vollebregt M.A., van Dongen-Boomsma M., Slaats-Willemse D., Buitelaar J.K., Oostenveld R. How the Individual Alpha Peak Frequency Helps Unravel the Neurophysiologic Underpinnings of Behavioral Functioning in Children With Attention-Deficit/Hyperactivity Disorder. Clin. EEG Neurosci. 2015;46:285–291. doi: 10.1177/1550059414537257.
    1. Jann K., Koenig T., Dierks T., Boesch C., Federspiel A. Association of individual resting state EEG alpha frequency and cerebral blood flow. NeuroImage. 2010;51:365–372. doi: 10.1016/j.neuroimage.2010.02.024.
    1. Jin Y., O’Halloran J.P., Plon L., Sandman C.A., Potkin S.G. Alpha EEG predicts visual reaction time. Int. J. Neurosci. 2006;116:1035–1044. doi: 10.1080/00207450600553232.
    1. Klimesch W. EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Res. Rev. 1999;29:169–195. doi: 10.1016/S0165-0173(98)00056-3.
    1. Cortese S., Kelly C., Chabernaud C., Proal E., Di Martino A., Milham M.P., Xavier Castellanos F. Toward Systems Neuroscience of ADHD: A Meta-Analysis of 55 fMRI Studies. Am. J. Psychiatry. 2012;169:1038–1055. doi: 10.1176/appi.ajp.2012.11101521.
    1. Dickstein S.G., Bannon K., Xavier Castellanos F., Milham M.P. The neural correlates of attention deficit hyperactivity disorder: An ALE meta-analysis. J. Child Psychol. Psychiatry. 2006;47:1051–1062. doi: 10.1111/j.1469-7610.2006.01671.x.
    1. Sonuga-Barke E.J.S., Fairchild G. Neuroeconomics of Attention-Deficit/Hyperactivity Disorder: Differential Influences of Medial, Dorsal, and Ventral Prefrontal Brain Networks on Suboptimal Decision Making? Biol. Psychiatry. 2012;72:126–133. doi: 10.1016/j.biopsych.2012.04.004.
    1. Hart H., Radua J., Nakao T., Mataix-Cols D., Rubia K. Meta-analysis of functional magnetic resonance imaging studies of inhibition and attention in attention-deficit/hyperactivity disorder: Exploring task-specific, stimulant medication, and age effects. JAMA Psychiatry. 2013;70:185–198. doi: 10.1001/jamapsychiatry.2013.277.
    1. Plichta M.M., Scheres A. Ventral–striatal responsiveness during reward anticipation in ADHD and its relation to trait impulsivity in the healthy population: A meta-analytic review of the fMRI literature. Neurosci. Biobehav. Rev. 2014;38:125–134. doi: 10.1016/j.neubiorev.2013.07.012.
    1. Scheres A., Milham M.P., Knutson B., Castellanos F.X. Ventral striatal hyporesponsiveness during reward anticipation in attention-deficit/hyperactivity disorder. Biol. Psychiatry. 2007;61:720–724. doi: 10.1016/j.biopsych.2006.04.042.
    1. Van Hulst B.M., de Zeeuw P., Bos D.J., Rijks Y., Neggers S.F., Durston S. Children with ADHD symptoms show decreased activity in ventral striatum during the anticipation of reward, irrespective of ADHD diagnosis. J. Child Psychol. Psychiatry. 2017;58:206–214. doi: 10.1111/jcpp.12643.
    1. Luman M., Tripp G., Scheres A. Identifying the neurobiology of altered reinforcement sensitivity in ADHD: A review and research agenda. Neurosci. Biobehav. Rev. 2010;34:744–754. doi: 10.1016/j.neubiorev.2009.11.021.
    1. Wu A., Ying Z., Gomez-Pinilla F. Docosahexaenoic acid dietary supplementation enhances the effects of exercise on synaptic plasticity and cognition. Neuroscience. 2008;155:751–759. doi: 10.1016/j.neuroscience.2008.05.061.
    1. Yeo B.T.T., Krienen F.M., Sepulcre J., Sabuncu M.R., Lashkari D., Hollinshead M., Roffman J.L., Smoller J.W., Zöllei L., Polimeni J.R., et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 2011;106:1125–1165.
    1. Tegelbeckers J., Kanowski M., Krauel K., Haynes J.-D., Breitling C., Flechtner H.-H., Kahnt T. Orbitofrontal Signaling of Future Reward is Associated with Hyperactivity in Attention-Deficit/Hyperactivity Disorder. J. Neurosci. 2018;38:6779–6786. doi: 10.1523/JNEUROSCI.0411-18.2018.
    1. Corbetta M., Shulman G.L. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 2002;3:201. doi: 10.1038/nrn755.
    1. Corbetta M., Patel G., Shulman G.L. The reorienting system of the human brain: From environment to theory of mind. Neuron. 2008;58:306–324. doi: 10.1016/j.neuron.2008.04.017.
    1. McCarthy H., Skokauskas N., Mulligan A., Donohoe G., Mullins D., Kelly J., Johnson K., Fagan A., Gill M., Meaney J., et al. Attention Network Hypoconnectivity With Default and Affective Network Hyperconnectivity in Adults Diagnosed With Attention-Deficit/Hyperactivity Disorder in ChildhoodAttention and Affective Changes in Adult ADHDAttention and Affective Changes in Adult ADHD. JAMA Psychiatry. 2013;70:1329–1337. doi: 10.1001/jamapsychiatry.2013.2174.
    1. Berger A., Posner M.I. Pathologies of brain attentional networks. Neurosci. Biobehav. Rev. 2000;24:3–5. doi: 10.1016/S0149-7634(99)00046-9.
    1. Posner M.I., Petersen S.E. The attention system of the human brain. Annu. Rev. Neurosci. 1990;13:25–42. doi: 10.1146/annurev.ne.13.030190.000325.
    1. Luck S.J., Woodman G.F., Vogel E.K. Event-related potential studies of attention. Trends Cogn. Sci. 2000;4:432–440. doi: 10.1016/S1364-6613(00)01545-X.
    1. Picton T.W. The P300 wave of the human event-related potential. J. Clin. Neurophysiol. 1992;9:456–479. doi: 10.1097/00004691-199210000-00002.
    1. Johnstone S.J., Barry R.J., Clarke A.R. Ten years on: A follow-up review of ERP research in attention-deficit/hyperactivity disorder. Clin. Neurophysiol. 2013;124:644–657. doi: 10.1016/j.clinph.2012.09.006.
    1. Polich J. Updating P300: An integrative theory of P3a and P3b. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 2007;118:2128–2148. doi: 10.1016/j.clinph.2007.04.019.
    1. Gutmann B., Mierau A., Hülsdünker T., Hildebrand C., Przyklenk A., Hollmann W., Strüder H.K. Effects of Physical Exercise on Individual Resting State EEG Alpha Peak Frequency. Neural Plast. 2015;2015:717312. doi: 10.1155/2015/717312.
    1. Moraes H., Ferreira C., Deslandes A., Cagy M., Pompeu F., Ribeiro P., Piedade R. Beta and alpha electroencephalographic activity changes after acute exercise. Arq. De Neuro-Psiquiatr. 2007;65:637–641. doi: 10.1590/S0004-282X2007000400018.
    1. Choi H., Park S., Kim K.K., Lee K., Rhyu H.-S. Acute effects of aerobic stretching, health and happiness improving movement exercise on cortical activity of children. J. Exerc. Rehabil. 2016;12:320–327. doi: 10.12965/jer.1632602.301.
    1. Huang C.-J., Huang C.-W., Tsai Y.-J., Tsai C.-L., Chang Y.-K., Hung T.-M. A preliminary examination of aerobic exercise effects on resting EEG in children with ADHD. J. Atten. Disord. 2017;21:898–903. doi: 10.1177/1087054714554611.
    1. Huang C.-J., Huang C.-W., Hung C.-L., Tsai Y.-J., Chang Y.-K., Wu C.-T., Hung T.-M. Effects of Acute Exercise on Resting EEG in Children with Attention-Deficit/Hyperactivity Disorder. Child Psychiatry Hum. Dev. 2018;49:993–1002. doi: 10.1007/s10578-018-0813-9.
    1. Weng T.B., Pierce G.L., Darling W.G., Falk D., Magnotta V.A., Voss M.W. The acute effects of aerobic exercise on the functional connectivity of human brain networks. Brain Plast. 2017;2:171–190. doi: 10.3233/BPL-160039.
    1. Hillman C.H., Snook E.M., Jerome G.J. Acute cardiovascular exercise and executive control function. Int. J. Psychophysiol. 2003;48:307–314. doi: 10.1016/S0167-8760(03)00080-1.
    1. Kao S.-C., Drollette E.S., Ritondale J.P., Khan N., Hillman C.H. The acute effects of high-intensity interval training and moderate-intensity continuous exercise on declarative memory and inhibitory control. Psychol. Sport Exerc. 2018;38:90–99. doi: 10.1016/j.psychsport.2018.05.011.
    1. Li L., Men W.-W., Chang Y.-K., Fan M.-X., Ji L., Wei G.-X. Acute Aerobic Exercise Increases Cortical Activity during Working Memory: A Functional MRI Study in Female College Students. PLoS ONE. 2014;9:e99222. doi: 10.1371/journal.pone.0099222.
    1. Chen A.-G., Zhu L.-N., Yan J., Yin H.-C. Neural Basis of Working Memory Enhancement after Acute Aerobic Exercise: fMRI Study of Preadolescent Children. Front. Psychol. 2016;7:1804. doi: 10.3389/fpsyg.2016.01804.
    1. Bediz C.S., Oniz A., Guducu C., Ural Demirci E., Ogut H., Gunay E., Cetinkaya C., Ozgoren M. Acute Supramaximal Exercise Increases the Brain Oxygenation in Relation to Cognitive Workload. Front. Hum. Neurosci. 2016;10:174. doi: 10.3389/fnhum.2016.00174.
    1. Byun K., Hyodo K., Suwabe K., Ochi G., Sakairi Y., Kato M., Dan I., Soya H. Positive effect of acute mild exercise on executive function via arousal-related prefrontal activations: An fNIRS study. NeuroImage. 2014;98:336–345. doi: 10.1016/j.neuroimage.2014.04.067.
    1. Kujach S., Byun K., Hyodo K., Suwabe K., Fukuie T., Laskowski R., Dan I., Soya H. A transferable high-intensity intermittent exercise improves executive performance in association with dorsolateral prefrontal activation in young adults. NeuroImage. 2018;169:117–125. doi: 10.1016/j.neuroimage.2017.12.003.
    1. Yanagisawa H., Dan I., Tsuzuki D., Kato M., Okamoto M., Kyutoku Y., Soya H. Acute moderate exercise elicits increased dorsolateral prefrontal activation and improves cognitive performance with Stroop test. NeuroImage. 2010;50:1702–1710. doi: 10.1016/j.neuroimage.2009.12.023.
    1. Lambrick D., Stoner L., Grigg R., Faulkner J. Effects of continuous and intermittent exercise on executive function in children aged 8–10 years. Psychophysiology. 2016;53:1335–1342. doi: 10.1111/psyp.12688.
    1. Budde H., Voelcker-Rehage C., Pietraßyk-Kendziorra S., Ribeiro P., Tidow G. Acute coordinative exercise improves attentional performance in adolescents. Neurosci. Lett. 2008;441:219–223. doi: 10.1016/j.neulet.2008.06.024.
    1. Davis C.L., Tomporowski P.D., McDowell J.E., Austin B.P., Miller P.H., Yanasak N.E., Allison J.D., Naglieri J.A. Exercise improves executive function and achievement and alters brain activation in overweight children: A randomized, controlled trial. Health Psychol. Off. J. Div. Health Psychol. Am. Psychol. Assoc. 2011;30:91–98. doi: 10.1037/a0021766.
    1. Chaddock-Heyman L., Erickson K.I., Voss M., Knecht A., Pontifex M.B., Castelli D., Hillman C., Kramer A. The effects of physical activity on functional MRI activation associated with cognitive control in children: A randomized controlled intervention. Front. Hum. Neurosci. 2013;7:72. doi: 10.3389/fnhum.2013.00072.
    1. Krafft C.E., Schwarz N.F., Chi L., Weinberger A.L., Schaeffer D.J., Pierce J.E., Rodrigue A.L., Yanasak N.E., Miller P.H., Tomporowski P.D., et al. An 8-month randomized controlled exercise trial alters brain activation during cognitive tasks in overweight children. Obesity. 2014;22:232–242. doi: 10.1002/oby.20518.
    1. Hillman C.H., Pontifex M.B., Castelli D.M., Khan N.A., Raine L.B., Scudder M.R., Drollette E.S., Moore R.D., Wu C.-T., Kamijo K. Effects of the FITKids randomized controlled trial on executive control and brain function. Pediatrics. 2014;134:e1063–e1071. doi: 10.1542/peds.2013-3219.
    1. Ludyga S., Koutsandréou F., Reuter E.-M., Voelcker-Rehage C., Budde H. A Randomized Controlled Trial on the Effects of Aerobic and Coordinative Training on Neural Correlates of Inhibitory Control in Children. J. Clin. Med. 2019;8:184. doi: 10.3390/jcm8020184.
    1. Ludyga S., Gerber M., Herrmann C., Brand S., Pühse U. Chronic effects of exercise implemented during school-break time on neurophysiological indices of inhibitory control in adolescents. Trends Neurosci. Educ. 2018;10:1–7. doi: 10.1016/j.tine.2017.11.001.
    1. Lardon M.T., Polich J. EEG changes from long-term physical exercise. Biol. Psychol. 1996;44:19–30. doi: 10.1016/S0301-0511(96)05198-8.
    1. Madsen P.L., Sperling B.R.K., Warming T., Schmidt J., Secher N., Wildschiodtz G., Holm S., Lassen N. Middle cerebral artery blood velocity and cerebral blood flow and O2 uptake during dynamic exercise. J. Appl. Physiol. 1993;74:245–250. doi: 10.1152/jappl.1993.74.1.245.
    1. Isaacs K.R., Anderson B.J., Alcantara A.A., Black J.E., Greenough W.T. Exercise and the brain: Angiogenesis in the adult rat cerebellum after vigorous physical activity and motor skill learning. J. Cereb. Blood Flow Metab. 1992;12:110–119. doi: 10.1038/jcbfm.1992.14.
    1. Black J.E., Isaacs K.R., Anderson B.J., Alcantara A.A., Greenough W.T. Learning causes synaptogenesis, whereas motor activity causes angiogenesis, in cerebellar cortex of adult rats. Proc. Natl. Acad. Sci. USA. 1990;87:5568–5572. doi: 10.1073/pnas.87.14.5568.
    1. Swain R.A., Harris A.B., Wiener E.C., Dutka M.V., Morris H.D., Theien B.E., Konda S., Engberg K., Lauterbur P.C., Greenough W.T. Prolonged exercise induces angiogenesis and increases cerebral blood volume in primary motor cortex of the rat. Neuroscience. 2003;117:1037–1046. doi: 10.1016/S0306-4522(02)00664-4.
    1. Kleim J.A., Cooper N.R., VandenBerg P.M. Exercise induces angiogenesis but does not alter movement representations within rat motor cortex. Brain Res. 2002;934:1–6. doi: 10.1016/S0006-8993(02)02239-4.
    1. Rhyu I., Bytheway J., Kohler S., Lange H., Lee K., Boklewski J., McCormick K., Williams N., Stanton G., Greenough W. Effects of aerobic exercise training on cognitive function and cortical vascularity in monkeys. Neuroscience. 2010;167:1239–1248. doi: 10.1016/j.neuroscience.2010.03.003.
    1. Ding Y.-H., Luan X.-D., Li J., Rafols J.A., Guthinkonda M., Diaz F.G., Ding Y. Exercise-induced overexpression of angiogenic factors and reduction of ischemia/reperfusion injury in stroke. Curr. Neurovascular Res. 2004;1:411–420. doi: 10.2174/1567202043361875.
    1. Yun H.-S., Park M.-S., Ji E.-S., Kim T.-W., Ko I.-G., Kim H.-B., Kim H. Treadmill exercise ameliorates symptoms of attention deficit/hyperactivity disorder through reducing Purkinje cell loss and astrocytic reaction in spontaneous hypertensive rats. J. Exerc. Rehabil. 2014;10:22–30. doi: 10.12965/jer.140092.
    1. Pickel V.M., Segal M., Bloom F.E. A radioautographic study of the efferent pathways of the nucleus locus coeruleus. J. Comp. Neurol. 1974;155:15–41. doi: 10.1002/cne.901550103.
    1. Fallon J.H. Collateralization of monoamine neurons: Mesotelencephalic dopamine projections to caudate, septum, and frontal cortex. J. Neurosci. 1981;1:1361–1368. doi: 10.1523/JNEUROSCI.01-12-01361.1981.
    1. Bush G., Valera E.M., Seidman L.J. Functional neuroimaging of attention-deficit/hyperactivity disorder: A review and suggested future directions. Biol. Psychiatry. 2005;57:1273–1284. doi: 10.1016/j.biopsych.2005.01.034.
    1. Marco R., Miranda A., Schlotz W., Melia A., Mulligan A., Müller U., Andreou P., Butler L., Christiansen H., Gabriels I. Delay and reward choice in ADHD: An experimental test of the role of delay aversion. Neuropsychology. 2009;23:367. doi: 10.1037/a0014914.
    1. Luman M., Oosterlaan J., Sergeant J.A. The impact of reinforcement contingencies on AD/HD: A review and theoretical appraisal. Clin. Psychol. Rev. 2005;25:183–213. doi: 10.1016/j.cpr.2004.11.001.
    1. Schultz W. Getting formal with dopamine and reward. Neuron. 2002;36:241–263. doi: 10.1016/S0896-6273(02)00967-4.
    1. Faraone S.V. The pharmacology of amphetamine and methylphenidate: Relevance to the neurobiology of attention-deficit/hyperactivity disorder and other psychiatric comorbidities. Neurosci. Biobehav. Rev. 2018;87:255–270. doi: 10.1016/j.neubiorev.2018.02.001.
    1. Avelar A.J., Juliano S.A., Garris P.A. Amphetamine augments vesicular dopamine release in the dorsal and ventral striatum through different mechanisms. J. Neurochem. 2013;125:373–385. doi: 10.1111/jnc.12197.
    1. Easton N., Steward C., Marshall F., Fone K., Marsden C. Effects of amphetamine isomers, methylphenidate and atomoxetine on synaptosomal and synaptic vesicle accumulation and release of dopamine and noradrenaline in vitro in the rat brain. Neuropharmacology. 2007;52:405–414. doi: 10.1016/j.neuropharm.2006.07.035.
    1. Ren J., Xu H., Choi J.K., Jenkins B.G., Chen Y.I. Dopaminergic response to graded dopamine concentration elicited by four amphetamine doses. Synapse. 2009;63:764–772. doi: 10.1002/syn.20659.
    1. Carson R.E., Breier A., De Bartolomeis A., Saunders R.C., Su T.P., Schmall B., Der M.G., Pickar D., Eckelman W.C. Quantification of amphetamine-induced changes in [11C] raclopride binding with continuous infusion. J. Cereb. Blood Flow Metab. 1997;17:437–447. doi: 10.1097/00004647-199704000-00009.
    1. Jedema H.P., Narendran R., Bradberry C.W. Amphetamine-induced release of dopamine in primate prefrontal cortex and striatum: Striking differences in magnitude and timecourse. J. Neurochem. 2014;130:490–497. doi: 10.1111/jnc.12743.
    1. Volkow N.D., Wang G.-J., Tomasi D., Kollins S.H., Wigal T.L., Newcorn J.H., Telang F.W., Fowler J.S., Logan J., Wong C.T. Methylphenidate-elicited dopamine increases in ventral striatum are associated with long-term symptom improvement in adults with attention deficit hyperactivity disorder. J. Neurosci. 2012;32:841–849. doi: 10.1523/JNEUROSCI.4461-11.2012.
    1. Moeller S.J., Honorio J., Tomasi D., Parvaz M.A., Woicik P.A., Volkow N.D., Goldstein R.Z. Methylphenidate enhances executive function and optimizes prefrontal function in both health and cocaine addiction. Cereb. Cortex. 2012;24:643–653. doi: 10.1093/cercor/bhs345.
    1. Tomasi D., Volkow N.D., Wang G.-J., Wang R., Telang F., Caparelli E.C., Wong C., Jayne M., Fowler J.S. Methylphenidate enhances brain activation and deactivation responses to visual attention and working memory tasks in healthy controls. Neuroimage. 2011;54:3101–3110. doi: 10.1016/j.neuroimage.2010.10.060.
    1. Faraone S.V., Asherson P., Banaschewski T., Biederman J., Buitelaar J.K., Ramos-Quiroga J.A., Rohde L.A., Sonuga-Barke E.J.S., Tannock R., Franke B. Attention-deficit/hyperactivity disorder. Nat. Rev. Dis. Primers. 2015;1:15020. doi: 10.1038/nrdp.2015.20.
    1. Sagvolden T. Behavioral validation of the spontaneously hypertensive rat (SHR) as an animal model of attention-deficit/hyperactivity disorder (AD/HD) Neurosci. Biobehav. Rev. 2000;24:31–39. doi: 10.1016/S0149-7634(99)00058-5.
    1. Russell V.A., Oades R.D., Tannock R., Killeen P.R., Auerbach J.G., Johansen E.B., Sagvolden T. Response variability in attention-deficit/hyperactivity disorder: A neuronal and glial energetics hypothesis. Behav. Brain Funct. 2006;2:30. doi: 10.1186/1744-9081-2-30.
    1. Sagvolden T., Xu T. l-Amphetamine improves poor sustained attention while d-amphetamine reduces overactivity and impulsiveness as well as improves sustained attention in an animal model of Attention-Deficit/Hyperactivity Disorder (ADHD) Behav. Brain Funct. 2008;4:3. doi: 10.1186/1744-9081-4-3.
    1. Sagvolden T., Johansen E.B. Rat models of ADHD. In Behavioral Neuroscience of Attention Deficit Hyperactivity Disorder and Its Treatment. Springer; Berlin/Heidelberg, Germany: 2011. pp. 301–315.
    1. Sagvolden T., Russell V.A., Aase H., Johansen E.B., Farshbaf M. Rodent models of attention-deficit/hyperactivity disorder. Biol. Psychiatry. 2005;57:1239–1247. doi: 10.1016/j.biopsych.2005.02.002.
    1. Watanabe Y., Fujita M., Ito Y., Okada T. Brain dopamine transporter in spontaneously hypertensive rats. J. Nucl. Med. 1997;38:470.
    1. Russell V.A. Dopamine hypofunction possibly results from a defect in glutamate-stimulated release of dopamine in the nucleus accumbens shell of a rat model for attention deficit hyperactivity disorder—The spontaneously hypertensive rat. Neurosci. Biobehav. Rev. 2003;27:671–682. doi: 10.1016/j.neubiorev.2003.08.010.
    1. Russell V., de Villiers A., Sagvolden T., Lamm M., Taljaard J. Altered dopaminergic function in the prefrontal cortex, nucleus accumbens and caudate-putamen of an animal model of attention-deficit hyperactivity disorder—The spontaneously hypertensive rat. Brain Res. 1995;676:343–351. doi: 10.1016/0006-8993(95)00135-D.
    1. Faraone S.V., Larsson H. Genetics of attention deficit hyperactivity disorder. Mol. Psychiatry. 2018;24:562–575. doi: 10.1038/s41380-018-0070-0.
    1. Demontis D., Walters R.K., Martin J., Mattheisen M., Als T.D., Agerbo E., Baldursson G., Belliveau R., Bybjerg-Grauholm J., Bækvad-Hansen M. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat. Genet. Adv. Online Publ. 2018;51:63–75. doi: 10.1038/s41588-018-0269-7.
    1. Mortensen O.V., Larsen M.B., Prasad B.M., Amara S.G. Genetic complementation screen identifies a mitogen-activated protein kinase phosphatase, MKP3, as a regulator of dopamine transporter trafficking. Mol. Biol. Cell. 2008;19:2818–2829. doi: 10.1091/mbc.e07-09-0980.
    1. Gizer I.R., Ficks C., Waldman I.D. Candidate gene studies of ADHD: A meta-analytic review. Hum. Genet. 2009;126:51–90. doi: 10.1007/s00439-009-0694-x.
    1. Akutagava-Martins G.C., Salatino-Oliveira A., Kieling C., Genro J.P., Polanczyk G.V., Anselmi L., Menezes A.M., Gonçalves H., Wehrmeister F.C., Barros F.C. COMT and DAT1 genes are associated with hyperactivity and inattention traits in the 1993 Pelotas Birth Cohort: Evidence of sex-specific combined effect. J. Psychiatry Neurosci. 2016;41:405. doi: 10.1503/jpn.150270.
    1. Skriver K., Roig M., Lundbye-Jensen J., Pingel J., Helge J.W., Kiens B., Nielsen J.B. Acute exercise improves motor memory: Exploring potential biomarkers. Neurobiol. Learn. Mem. 2014;116:46–58. doi: 10.1016/j.nlm.2014.08.004.
    1. Arnsten A.F., Steere J.C., Hunt R.D. The contribution of α2-noradrenergic mechanisms to prefrontal cortical cognitive function: Potential significance for attention-deficit hyperactivity disorder. Arch. Gen. Psychiatry. 1996;53:448–455. doi: 10.1001/archpsyc.1996.01830050084013.
    1. Russell V.A., Wiggins T.M. Increased Glutamate-Stimulated Norepinephrine Release from Prefrontal Cortex Slices of Spontaneously Hypertensive Rats. Metab. Brain Dis. 2000;15:297–304. doi: 10.1023/A:1011175225512.
    1. Sara S.J. The locus coeruleus and noradrenergic modulation of cognition. Nat. Rev. Neurosci. 2009;10:211. doi: 10.1038/nrn2573.
    1. Aston-Jones G., Chiang C., Alexinsky T. Chapter 35—Discharge of noradrenergic locus coeruleus neurons in behaving rats and monkeys suggests a role in vigilance. In: Barnes C.D., Pompeiano O., editors. Progress in Brain Research. Volume 88. Elsevier; Amsterdam, The Netherlands: 1991. pp. 501–520.
    1. Smith A., Nutt D. Noradrenaline and attention lapses. Nature. 1996 doi: 10.1038/380291a0.
    1. Wigal S.B., Nemet D., Swanson J.M., Regino R., Trampush J., Ziegler M.G., Cooper D.M. Catecholamine response to exercise in children with attention deficit hyperactivity disorder. Pediatric Res. 2003;53:756. doi: 10.1203/01.PDR.0000061750.71168.23.
    1. Finnema S.J., Hughes Z.A., Haaparanta-Solin M., Stepanov V., Nakao R., Varnäs K., Varrone A., Arponen E., Marjamäki P., Pohjanoksa K. Amphetamine decreases α2C-adrenoceptor binding of [11C] ORM-13070: A PET study in the primate brain. Int. J. Neuropsychopharmacol. 2015:18. doi: 10.1093/ijnp/pyu081.
    1. Scahill L., Aman M.G., McDougle C.J., McCracken J.T., Tierney E., Dziura J., Arnold L.E., Posey D., Young C., Shah B. AProspective Open Trial of Guanfacine in Children with Pervasive Developmental Disorders. J. Child Adolesc. Psychopharmacol. 2006;16:589–598. doi: 10.1089/cap.2006.16.589.
    1. Kent L., Doerry U., Hardy E., Parmar R., Gingell K., Hawi Z., Kirley A., Lowe N., Fitzgerald M., Gill M., et al. Evidence that variation at the serotonin transporter gene influences susceptibility to attention deficit hyperactivity disorder (ADHD): Analysis and pooled analysis. Mol. Psychiatry. 2002;7:908. doi: 10.1038/sj.mp.4001100.
    1. Malhotra S., Santosh P.J. An Open Clinical Trial of Buspirone in Children With Attention-Deficit/Hyperactivity Disorder. J. Am. Acad. Child Adolesc. Psychiatry. 1998;37:364–371. doi: 10.1097/00004583-199804000-00013.
    1. Oades R.D. Role of the serotonin system in ADHD: Treatment implications. Expert Rev. Neurother. 2007;7:1357–1374. doi: 10.1586/14737175.7.10.1357.
    1. Ding Y.S., Naganawa M., Gallezot J.D., Nabulsi N., Lin S.F., Ropchan J., Weinzimmer D., McCarthy T.J., Carson R.E., Huang Y., et al. Clinical doses of atomoxetine significantly occupy both norepinephrine and serotonin transports: Implications on treatment of depression and ADHD. NeuroImage. 2014;86:164–171. doi: 10.1016/j.neuroimage.2013.08.001.
    1. Li H., Shuai L., Yang L., Cao Q., Wang Y., Chan R.C.K. Comparative study of OROS-MPH and atomoxetine on executive function improvement in ADHD: A randomized controlled trial. Int. J. Neuropsychopharmacol. 2012;15:15–26.
    1. Chamberlain S.R., del Campo N., Dowson J., Müller U., Clark L., Robbins T.W., Sahakian B.J. Atomoxetine Improved Response Inhibition in Adults with Attention Deficit/Hyperactivity Disorder. Biol. Psychiatry. 2007;62:977–984. doi: 10.1016/j.biopsych.2007.03.003.
    1. Volkow N.D., Wang G.-J., Kollins S.H., Wigal T.L., Newcorn J.H., Telang F., Fowler J.S., Zhu W., Logan J., Ma Y., et al. Evaluating Dopamine Reward Pathway in ADHD: Clinical Implications. JAMA. 2009;302:1084–1091. doi: 10.1001/jama.2009.1308.
    1. Heijnen S., Hommel B., Kibele A., Colzato L.S. Neuromodulation of Aerobic Exercise—A Review. Front. Psychol. 2016:6. doi: 10.3389/fpsyg.2015.01890.
    1. Meeusen R., De Meirleir K. Exercise and brain neurotransmission. Sports Med. 1995;20:160–188. doi: 10.2165/00007256-199520030-00004.
    1. Koch G., Johansson U., Arvidsson E. Radioenzymatic determination of epinephrine, norepinephrine and dopamine in 0.1 ml plasma samples. Plasma catecholamine response to submaximal and near maximal exercise. Clin. Chem. Lab. Med. 1980;18:367–372. doi: 10.1515/cclm.1980.18.6.367.
    1. Van Loon G.R., Schwartz L., Sole M.J. Plasma dopamine responses to standing and exercise in man. Life Sci. 1979;24:2273–2277. doi: 10.1016/0024-3205(79)90104-8.
    1. Winter B., Breitenstein C., Mooren F.C., Voelker K., Fobker M., Lechtermann A., Krueger K., Fromme A., Korsukewitz C., Floel A., et al. High impact running improves learning. Neurobiol. Learn. Mem. 2007;87:597–609. doi: 10.1016/j.nlm.2006.11.003.
    1. Sutoo D., Akiyama K. Regulation of brain function by exercise. Neurobiol. Dis. 2003;13:1–14. doi: 10.1016/S0969-9961(03)00030-5.
    1. Sutoo D., Akiyama K. The mechanism by which exercise modifies brain function. Physiol. Behav. 1996;60:177–181. doi: 10.1016/0031-9384(96)00011-X.
    1. Meeusen R., Smolders I., Sarre S., De Meirleir K., Keizer H., Serneels M., Ebinger G., Michotte Y. Endurance training effects on neurotransmitter release in rat striatum: An in vivo microdialysis study. Acta Physiol. Scand. 1997;159:335–341. doi: 10.1046/j.1365-201X.1997.00118.x.
    1. Heyes M.P., Garnett E.S., Coates G. Nigrostriatal dopaminergic activity is increased during exhaustive exercise stress in rats. Life Sci. 1988;42:1537–1542. doi: 10.1016/0024-3205(88)90011-2.
    1. Hattori S., Naoi M., Nishino H. Striatal dopamine turnover during treadmill running in the rat: Relation to the speed of running. Brain Res. Bull. 1994;35:41–49. doi: 10.1016/0361-9230(94)90214-3.
    1. Eddy M.C., Stansfield K.J., Green J.T. Voluntary exercise improves performance of a discrimination task through effects on the striatal dopamine system. Learn. Mem. 2014;21:334–337. doi: 10.1101/lm.034462.114.
    1. Dey S., Singh R., Dey P. Exercise training: Significance of regional alterations in serotonin metabolism of rat brain in relation to antidepressant effect of exercise. Physiol. Behav. 1992;52:1095–1099. doi: 10.1016/0031-9384(92)90465-E.
    1. Wang G.-J., Volkow N.D., Fowler J.S., Franceschi D., Logan J., Pappas N.R., Wong C.T., Netusil N. PET studies of the effects of aerobic exercise on human striatal dopamine release. J. Nucl. Med. 2000;41:1352–1356.
    1. Blomstrand E., Perrett D., Parry-billings M., Newsholme E.A. Effect of sustained exercise on plasma amino acid concentrations and on 5-hydroxytryptamine metabolism in six different brain regions in the rat. Acta Physiol. Scand. 1989;136:473–482. doi: 10.1111/j.1748-1716.1989.tb08689.x.
    1. Pagliari R., Peyrin L. Norepinephrine release in the rat frontal cortex under treadmill exercise: A study with microdialysis. J. Appl. Physiol. 1995;78:2121–2130. doi: 10.1152/jappl.1995.78.6.2121.
    1. Foley T.E., Fleshner M. Neuroplasticity of dopamine circuits after exercise: Implications for central fatigue. Neuromolecular Med. 2008;10:67–80. doi: 10.1007/s12017-008-8032-3.
    1. Baek D.-J., Lee C.-B., Baek S.-S. Effect of treadmill exercise on social interaction and tyrosine hydroxylase expression in the attention-deficit/hyperactivity disorder rats. J. Exerc. Rehabil. 2014;10:252. doi: 10.12965/jer.140162.
    1. Kim H., Heo H.-I., Kim D.-H., Ko I.-G., Lee S.-S., Kim S.-E., Kim B.-K., Kim T.-W., Ji E.-S., Kim J.-D., et al. Treadmill exercise and methylphenidate ameliorate symptoms of attention deficit/hyperactivity disorder through enhancing dopamine synthesis and brain-derived neurotrophic factor expression in spontaneous hypertensive rats. Neurosci. Lett. 2011;504:35–39. doi: 10.1016/j.neulet.2011.08.052.
    1. Ji E.-S., Kim C.-J., Park J.H., Bahn G.H. Duration-dependence of the effect of treadmill exercise on hyperactivity in attention deficit hyperactivity disorder rats. J. Exerc. Rehabil. 2014;10:75–80. doi: 10.12965/jer.140107.
    1. Cho H.S., Baek D.J., Baek S.S. Effect of exercise on hyperactivity, impulsivity and dopamine D2 receptor expression in the substantia nigra and striatum of spontaneous hypertensive rats. J. Exerc. Nutr. Biochem. 2014;18:379. doi: 10.5717/jenb.2014.18.4.379.
    1. Östman I., Nybäck H. Adaptive changes in central and peripheral noradrenergic neurons in rats following chronic exercise. Neuroscience. 1976;1:41–47. doi: 10.1016/0306-4522(76)90046-4.
    1. Brown B.S., Payne T., Kim C., Moore G., Krebs P., Martin W. Chronic response of rat brain norepinephrine and serotonin levels to endurance training. J. Appl. Physiol. 1979;46:19–23. doi: 10.1152/jappl.1979.46.1.19.
    1. Robinson A.M., Buttolph T., Green J.T., Bucci D.J. Physical exercise affects attentional orienting behavior through noradrenergic mechanisms. Behav. Neurosci. 2015;129:361. doi: 10.1037/bne0000054.
    1. Wigal S.B., Emmerson N., Gehricke J.-G., Galassetti P. Exercise:Applications to Childhood ADHD. J. Atten. Disord. 2013;17:279–290. doi: 10.1177/1087054712454192.
    1. Christiansen L., Thomas R., Beck M.M., Pingel J., Andersen J.D., Mang C.S., Madsen M.A.J., Roig M., Lundbye-Jensen J. The Beneficial Effect of Acute Exercise on Motor Memory Consolidation is Modulated by Dopaminergic Gene Profile. J. Clin. Med. 2019;8:578. doi: 10.3390/jcm8050578.
    1. Mang C.S., McEwen L.M., MacIsaac J.L., Snow N.J., Campbell K.L., Kobor M.S., Ross C.J., Boyd L.A. Exploring genetic influences underlying acute aerobic exercise effects on motor learning. Sci. Rep. 2017;7:12123. doi: 10.1038/s41598-017-12422-3.
    1. Thomas A., Dennis A., Bandettini P., Johansen-Berg H. The Effects of Aerobic Activity on Brain Structure. Front. Psychol. 2012;3:86. doi: 10.3389/fpsyg.2012.00086.
    1. Barde Y.-A., Edgar D., Thoenen H. Purification of a new neurotrophic factor from mammalian brain. EMBO J. 1982;1:549–553. doi: 10.1002/j.1460-2075.1982.tb01207.x.
    1. Vaynman S., Ying Z., Gomez-Pinilla F. Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur. J. Neurosci. 2004;20:2580–2590. doi: 10.1111/j.1460-9568.2004.03720.x.
    1. Fritsch B., Reis J., Martinowich K., Schambra H.M., Ji Y., Cohen L.G., Lu B. Direct current stimulation promotes BDNF-dependent synaptic plasticity: Potential implications for motor learning. Neuron. 2010;66:198–204. doi: 10.1016/j.neuron.2010.03.035.
    1. Lu Y., Christian K., Lu B. BDNF: A key regulator for protein synthesis-dependent LTP and long-term memory? Neurobiol. Learn. Mem. 2008;89:312–323. doi: 10.1016/j.nlm.2007.08.018.
    1. Egan M.F., Kojima M., Callicott J.H., Goldberg T.E., Kolachana B.S., Bertolino A., Zaitsev E., Gold B., Goldman D., Dean M. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell. 2003;112:257–269. doi: 10.1016/S0092-8674(03)00035-7.
    1. Tsai S.-J. Role of neurotrophic factors in attention deficit hyperactivity disorder. Cytokine Growth Factor Rev. 2017;34:35–41. doi: 10.1016/j.cytogfr.2016.11.003.
    1. Tsai S.-J. Attention-deficit hyperactivity disorder may be associated with decreased central brain-derived neurotrophic factor activity: Clinical and therapeutic implications. Med. Hypotheses. 2007;68:896–899. doi: 10.1016/j.mehy.2006.06.025.
    1. Liu D.-Y., Shen X.-M., Yuan F.-F., Guo O.-Y., Zhong Y., Chen J.-G., Zhu L.-Q., Wu J. The physiology of BDNF and its relationship with ADHD. Mol. Neurobiol. 2015;52:1467–1476. doi: 10.1007/s12035-014-8956-6.
    1. Brooks S.J., Nilsson E.K., Jacobsson J.A., Stein D.J., Fredriksson R., Lind L., Schiöth H.B. BDNF Polymorphisms Are Linked to Poorer Working Memory Performance, Reduced Cerebellar and Hippocampal Volumes and Differences in Prefrontal Cortex in a Swedish Elderly Population. PLoS ONE. 2014;9:e82707. doi: 10.1371/journal.pone.0082707.
    1. Mandelman S.D., Grigorenko E.L. BDNF Val66Met and cognition: All, none, or some? A meta-analysis of the genetic association. Genesbrain Behav. 2012;11:127–136.
    1. Lee Y.H., Song G.G. BDNF 196 G/A and COMT Val158Met Polymorphisms and Susceptibility to ADHD: A Meta-Analysis. J. Atten. Disord. 2015;22:872–877. doi: 10.1177/1087054715570389.
    1. Jasińska K.K., Molfese P.J., Kornilov S.A., Mencl W.E., Frost S.J., Lee M., Pugh K.R., Grigorenko E.L., Landi N. The BDNF Val66Met polymorphism is associated with structural neuroanatomical differences in young children. Behav. Brain Res. 2017;328:48–56. doi: 10.1016/j.bbr.2017.03.014.
    1. De Araujo C.M., Zugman A., Swardfager W., Belangero S.I.N., Ota V.K., Spindola L.M., Hakonarson H., Pellegrino R., Gadelha A., Salum G.A., et al. Effects of the brain-derived neurotropic factor variant Val66Met on cortical structure in late childhood and early adolescence. J. Psychiatr. Res. 2018;98:51–58. doi: 10.1016/j.jpsychires.2017.12.008.
    1. Bergman O., Westberg L., Lichtenstein P., Eriksson E., Larsson H. Study on the possible association of brain-derived neurotrophic factor polymorphism with the developmental course of symptoms of attention deficit and hyperactivity. Int. J. Neuropsychopharmacol. 2011;14:1367–1376. doi: 10.1017/S1461145711000502.
    1. Cho S.-C., Kim H.-W., Kim B.-N., Kim J.-W., Shin M.-S., Chung S., Cho D.-Y., Jung S.-W., Yoo H.J., Chung I.-W., et al. Gender-specific association of the brain-derived neurotrophic factor gene with attention-deficit/hyperactivity disorder. Psychiatry Investig. 2010;7:285–290. doi: 10.4306/pi.2010.7.4.285.
    1. Bonvicini C., Faraone S.V., Scassellati C. Common and specific genes and peripheral biomarkers in children and adults with attention-deficit/hyperactivity disorder. World J. Biol. Psychiatry. 2018;19:80–100. doi: 10.1080/15622975.2017.1282175.
    1. Hawi Z., Cummins T.D.R., Tong J., Arcos-Burgos M., Zhao Q., Matthews N., Newman D.P., Johnson B., Vance A., Heussler H.S., et al. Rare DNA variants in the brain-derived neurotrophic factor gene increase risk for attention-deficit hyperactivity disorder: A next-generation sequencing study. Mol. Psychiatry. 2016;22:580. doi: 10.1038/mp.2016.117.
    1. Karege F., Schwald M., Cisse M. Postnatal developmental profile of brain-derived neurotrophic factor in rat brain and platelets. Neurosci. Lett. 2002;328:261–264. doi: 10.1016/S0304-3940(02)00529-3.
    1. Li H., Liu L., Tang Y., Ji N., Yang L., Qian Q., Wang Y. Sex-specific association of brain-derived neurotrophic factor (BDNF) Val66Met polymorphism and plasma BDNF with attention-deficit/hyperactivity disorder in a drug-naïve Han Chinese sample. Psychiatry Res. 2014;217:191–197. doi: 10.1016/j.psychres.2014.03.011.
    1. Scassellati C., Zanardini R., Tiberti A., Pezzani M., Valenti V., Effedri P., Filippini E., Conte S., Ottolini A., Gennarelli M., et al. Serum brain-derived neurotrophic factor (BDNF) levels in attention deficit–hyperactivity disorder (ADHD) Eur. Child Adolesc. Psychiatry. 2014;23:173–177. doi: 10.1007/s00787-013-0447-1.
    1. Corominas-Roso M., Ramos-Quiroga J.A., Ribases M., Sanchez-Mora C., Palomar G., Valero S., Bosch R., Casas M. Decreased serum levels of brain-derived neurotrophic factor in adults with attention-deficit hyperactivity disorder. Int. J. Neuropsychopharmacol. 2013;16:1267–1275. doi: 10.1017/S1461145712001629.
    1. Bilgiç A., Toker A., Işık Ü., Kılınç İ. Serum brain-derived neurotrophic factor, glial-derived neurotrophic factor, nerve growth factor, and neurotrophin-3 levels in children with attention-deficit/hyperactivity disorder. Eur. Child Adolesc. Psychiatry. 2017;26:355–363. doi: 10.1007/s00787-016-0898-2.
    1. Zhang J., Luo W., Li Q., Xu R., Wang Q., Huang Q. Peripheral brain-derived neurotrophic factor in attention-deficit/hyperactivity disorder: A comprehensive systematic review and meta-analysis. J. Affect. Disord. 2018;227:298–304. doi: 10.1016/j.jad.2017.11.012.
    1. Amiri A., Torabi Parizi G., Kousha M., Saadat F., Modabbernia M.-J., Najafi K., Atrkar Roushan Z. Changes in plasma Brain-derived neurotrophic factor (BDNF) levels induced by methylphenidate in children with Attention deficit–hyperactivity disorder (ADHD) Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 2013;47:20–24. doi: 10.1016/j.pnpbp.2013.07.018.
    1. Erickson K.I., Banducci S.E., Weinstein A.M., MacDonald A.W., Ferrell R.E., Halder I., Flory J.D., Manuck S.B. The Brain-Derived Neurotrophic Factor Val66Met Polymorphism Moderates an Effect of Physical Activity on Working Memory Performance. Psychol. Sci. 2013;24:1770–1779. doi: 10.1177/0956797613480367.
    1. Altar C.A., Cai N., Bliven T., Juhasz M., Conner J.M., Acheson A.L., Lindsay R.M., Wiegand S.J. Anterograde transport of brain-derived neurotrophic factor and its role in the brain. Nature. 1997;389:856. doi: 10.1038/39885.
    1. Yan Q., Rosenfeld R., Matheson C., Hawkins N., Lopez O., Bennett L., Welcher A. Expression of brain-derived neurotrophic factor protein in the adult rat central nervous system. Neuroscience. 1997;78:431–448. doi: 10.1016/S0306-4522(96)00613-6.
    1. Altar C.A., Siuciak J.A., Wright P., Ip N.Y., Lindsay R.M., Wiegand S.J. In situ hybridization of trkB and trkC receptor mRNA in rat forebrain and association with high-affinity binding of [125I] BDNF, [125I] NT-4/5 and [125I] NT-3. Eur. J. Neurosci. 1994;6:1389–1405. doi: 10.1111/j.1460-9568.1994.tb01001.x.
    1. Merlio J.P., Ernfors P., Jaber M., Persson H. Molecular cloning of rat trkC and distribution of cells expressing messenger RNAs for members of the trk family in the rat central nervous system. Neuroscience. 1992;51:513–532. doi: 10.1016/0306-4522(92)90292-A.
    1. Goggi J., Pullar I.A., Carney S.L., Bradford H.F. Modulation of neurotransmitter release induced by brain-derived neurotrophic factor in rat brain striatal slices in vitro. Brain Res. 2002;941:34–42. doi: 10.1016/S0006-8993(02)02505-2.
    1. Goggi J., Pullar I.A., Carney S.L., Bradford H.F. Signalling pathways involved in the short-term potentiation of dopamine release by BDNF. Brain Res. 2003;968:156–161. doi: 10.1016/S0006-8993(03)02234-0.
    1. D’Amore D.E., Tracy B.A., Parikh V. Exogenous BDNF facilitates strategy set-shifting by modulating glutamate dynamics in the dorsal striatum. Neuropharmacology. 2013;75:312–323. doi: 10.1016/j.neuropharm.2013.07.033.
    1. Saylor A.J., McGinty J.F. Amphetamine-induced locomotion and gene expression are altered in BDNF heterozygous mice. Genesbrain Behav. 2008;7:906–914. doi: 10.1111/j.1601-183X.2008.00430.x.
    1. Skodzik T., Holling H., Pedersen A. Long-Term Memory Performance in Adult ADHD: A Meta-Analysis. J. Atten. Disord. 2017;21:267–283. doi: 10.1177/1087054713510561.
    1. Szuhany K.L., Bugatti M., Otto M.W. A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor. J. Psychiatr. Res. 2015;60:56–64. doi: 10.1016/j.jpsychires.2014.10.003.
    1. Rasmussen P., Brassard P., Adser H., Pedersen M.V., Leick L., Hart E., Secher N.H., Pedersen B.K., Pilegaard H. Evidence for a release of brain-derived neurotrophic factor from the brain during exercise. Exp. Physiol. 2009;94:1062–1069. doi: 10.1113/expphysiol.2009.048512.
    1. Pan W., Banks W.A., Fasold M.B., Bluth J., Kastin A.J. Transport of brain-derived neurotrophic factor across the blood–brain barrier. Neuropharmacology. 1998;37:1553–1561. doi: 10.1016/S0028-3908(98)00141-5.
    1. Poduslo J.F., Curran G.L. Permeability at the blood-brain and blood-nerve barriers of the neurotrophic factors: NGF, CNTF, NT-3, BDNF. Mol. Brain Res. 1996;36:280–286. doi: 10.1016/0169-328X(95)00250-V.
    1. Kyeremanteng C., James J., Mackay J., Merali Z. A study of brain and serum brain-derived neurotrophic factor protein in Wistar and Wistar-Kyoto rat strains after electroconvulsive stimulus. Pharmacopsychiatry. 2012;45:244–249. doi: 10.1055/s-0032-1306278.
    1. Pardridge W.M., Wu D., Sakane T. Combined use of carboxyl-directed protein pegylation and vector-mediated blood-brain barrier drug delivery system optimizes brain uptake of brain-derived neurotrophic factor following intravenous administration. Pharm. Res. 1998;15:576–582. doi: 10.1023/A:1011981927620.
    1. Thompson A.B., Stolyarova A., Ying Z., Zhuang Y., Gómez-Pinilla F., Izquierdo A. Methamphetamine blocks exercise effects on Bdnf and Drd2 gene expression in frontal cortex and striatum. Neuropharmacology. 2015;99:658–664. doi: 10.1016/j.neuropharm.2015.08.045.
    1. Neeper S.A., Gómez-Pinilla F., Choi J., Cotman C.W. Physical activity increases mRNA for brain-derived neurotrophic factor and nerve growth factor in rat brain. Brain Res. 1996;726:49–56. doi: 10.1016/0006-8993(96)00273-9.
    1. Lee J.K.W., Koh A.C.H., Koh S.X.T., Liu G.J.X., Nio A.Q.X., Fan P.W.P. Neck cooling and cognitive performance following exercise-induced hyperthermia. Eur. J. Appl. Physiol. 2014;114:375–384. doi: 10.1007/s00421-013-2774-9.
    1. Tsai C.-L., Pan C.-Y., Chen F.-C., Wang C.-H., Chou F.-Y. Effects of acute aerobic exercise on a task-switching protocol and brain-derived neurotrophic factor concentrations in young adults with different levels of cardiorespiratory fitness. Exp. Physiol. 2016;101:836–850. doi: 10.1113/EP085682.
    1. Tsai C.-L., Chen F.-C., Pan C.-Y., Wang C.-H., Huang T.-H., Chen T.-C. Impact of acute aerobic exercise and cardiorespiratory fitness on visuospatial attention performance and serum BDNF levels. Psychoneuroendocrinology. 2014;41:121–131. doi: 10.1016/j.psyneuen.2013.12.014.
    1. Slusher A.L., Patterson V.T., Schwartz C.S., Acevedo E.O. Impact of high intensity interval exercise on executive function and brain derived neurotrophic factor in healthy college aged males. Physiol. Behav. 2018;191:116–122. doi: 10.1016/j.physbeh.2018.04.018.
    1. Tonoli C., Heyman E., Buyse L., Roelands B., Piacentini M.F., Bailey S., Pattyn N., Berthoin S., Meeusen R. Neurotrophins and cognitive functions in T1D compared with healthy controls: Effects of a high-intensity exercise. Appl. Physiol. Nutr. Metab. 2014;40:20–27. doi: 10.1139/apnm-2014-0098.
    1. Ferris L.T., Williams J.S., Shen C.-L. The Effect of Acute Exercise on Serum Brain-Derived Neurotrophic Factor Levels and Cognitive Function. Med. Sci. Sports Exerc. 2007;39:728–734. doi: 10.1249/mss.0b013e31802f04c7.
    1. Griffin É.W., Mullally S., Foley C., Warmington S.A., O’Mara S.M., Kelly Á.M. Aerobic exercise improves hippocampal function and increases BDNF in the serum of young adult males. Physiol. Behav. 2011;104:934–941. doi: 10.1016/j.physbeh.2011.06.005.
    1. Faber Taylor A., Kuo F.E. Children with attention deficits concentrate better after walk in the park. J. Atten. Disord. 2009;12:402–409. doi: 10.1177/1087054708323000.
    1. García-Gómez A., Rodríguez-Jiménez M., Guerrero-Barona E., Rubio-Jiménez J.C., García-Peña I., Moreno-Manso J.M. Benefits of an experimental program of equestrian therapy for children with ADHD. Res. Dev. Disabil. 2016;59:176–185. doi: 10.1016/j.ridd.2016.09.003.
    1. Jensen P.S., Kenny D.T. The effects of yoga on the attention and behavior of boys with attention-deficit/hyperactivity disorder (ADHD) J. Atten. Disord. 2004;7:205–216. doi: 10.1177/108705470400700403.
    1. Haffner J., Roos J., Goldstein N., Parzer P., Resch F. The effectiveness of body-oriented methods of therapy in the treatment of attention-deficit hyperactivity disorder (ADHD): Results of a controlled pilot study. Z. Fur Kinder-Und Jugendpsychiatrie Und Psychother. 2006;34:37–47. doi: 10.1024/1422-4917.34.1.37.
    1. Diamond A., Ling D.S. Conclusions about interventions, programs, and approaches for improving executive functions that appear justified and those that, despite much hype, do not. Dev. Cogn. Neurosci. 2016;18:34–48. doi: 10.1016/j.dcn.2015.11.005.
    1. Lee S.-K., Song J., Park J.-H. Effects of combination exercises on electroencephalography and frontal lobe executive function measures in children with ADHD: A pilot study. Biomed. Res. 2017:S455–S460.
    1. Robertson I.H., Manly T., Andrade J., Baddeley B.T., Yiend J. ‘Oops!’: Performance correlates of everyday attentional failures in traumatic brain injured and normal subjects. Neuropsychologia. 1997;35:747–758. doi: 10.1016/S0028-3932(97)00015-8.
    1. Kortte K.B., Horner M.D., Windham W.K. The Trail Making Test, Part B: Cognitive Flexibility or Ability to Maintain Set? Appl. Neuropsychol. 2002;9:106–109. doi: 10.1207/S15324826AN0902_5.
    1. Ziereis S., Jansen P. Effects of physical activity on executive function and motor performance in children with ADHD. Res. Dev. Disabil. 2015;38:181–191. doi: 10.1016/j.ridd.2014.12.005.
    1. Den Heijer A.E., Groen Y., Tucha L., Fuermaier A.B., Koerts J., Lange K.W., Thome J., Tucha O. Sweat it out? The effects of physical exercise on cognition and behavior in children and adults with ADHD: A systematic literature review. J. Neural Transm. 2017;124:3–26. doi: 10.1007/s00702-016-1593-7.
    1. Grassmann V., Alves M.V., Santos-Galduróz R.F., Galduróz J.C.F. Possible Cognitive Benefits of Acute Physical Exercise in Children With ADHD:A Systematic Review. J. Atten. Disord. 2017;21:367–371. doi: 10.1177/1087054714526041.
    1. Medina J.A., Netto T.L., Muszkat M., Medina A.C., Botter D., Orbetelli R., Scaramuzza L.F., Sinnes E.G., Vilela M., Miranda M.C. Exercise impact on sustained attention of ADHD children, methylphenidate effects. Adhd Atten. Deficit Hyperact. Disord. 2010;2:49–58. doi: 10.1007/s12402-009-0018-y.
    1. Hillman C.H., McAuley E., Erickson K.I., Liu-Ambrose T., Kramer A.F. On mindful and mindless physical activity and executive function: A response to Diamond and Ling (2016) Dev. Cogn. Neurosci. 2018:100529. doi: 10.1016/j.dcn.2018.01.006.
    1. Best J.R. Effects of physical activity on children’s executive function: Contributions of experimental research on aerobic exercise. Dev. Rev. 2010;30:331–351. doi: 10.1016/j.dr.2010.08.001.
    1. Van den Berg V., Saliasi E., de Groot R.H., Jolles J., Chinapaw M.J., Singh A.S. Physical activity in the school setting: Cognitive performance is not affected by three different types of acute exercise. Front. Psychol. 2016;7:723. doi: 10.3389/fpsyg.2016.00723.
    1. Ng Q.X., Ho C.Y.X., Chan H.W., Yong B.Z.J., Yeo W.-S. Managing childhood and adolescent attention-deficit/hyperactivity disorder (ADHD) with exercise: A systematic review. Complementary Ther. Med. 2017;34:123–128. doi: 10.1016/j.ctim.2017.08.018.
    1. Egger F., Conzelmann A., Schmidt M. The effect of acute cognitively engaging physical activity breaks on children’s executive functions: Too much of a good thing? Psychol. Sport Exerc. 2018;36:178–186. doi: 10.1016/j.psychsport.2018.02.014.
    1. KoutsandrÉou F., Wegner M., Niemann C., Budde H. Effects of motor versus cardiovascular exercise training on children’s working memory. Med. Sci. Sports Exerc. 2016;48:1144–1152. doi: 10.1249/MSS.0000000000000869.
    1. Christiansen L., Larsen M.N., Grey M.J., Nielsen J.B., Lundbye-Jensen J. Long-term progressive motor skill training enhances corticospinal excitability for the ipsilateral hemisphere and motor performance of the untrained hand. Eur. J. Neurosci. 2017;45:1490–1500. doi: 10.1111/ejn.13409.
    1. Christiansen L., Madsen M., Bojsen-Møller E., Thomas R., Nielsen J.B., Lundbye-Jensen J. Progressive practice promotes motor learning and repeated transient increases in corticospinal excitability across multiple days. Brain Stimul. 2018;11:346–357. doi: 10.1016/j.brs.2017.11.005.
    1. Crova C., Struzzolino I., Marchetti R., Masci I., Vannozzi G., Forte R., Pesce C. Cognitively challenging physical activity benefits executive function in overweight children. J. Sports Sci. 2014;32:201–211. doi: 10.1080/02640414.2013.828849.
    1. Lambourne K., Tomporowski P. The effect of exercise-induced arousal on cognitive task performance: A meta-regression analysis. Brain Res. 2010;1341:12–24. doi: 10.1016/j.brainres.2010.03.091.
    1. Singh A.S., Saliasi E., van den Berg V., Uijtdewilligen L., de Groot R.H., Jolles J., Andersen L.B., Bailey R., Chang Y.-K., Diamond A. Effects of physical activity interventions on cognitive and academic performance in children and adolescents: A novel combination of a systematic review and recommendations from an expert panel. Br. J. Sports Med. 2018 doi: 10.1136/bjsports-2017-098136.
    1. Hart J.L. Ph.D. Thesis. Proquest LLC; Ann Arbor, MI, USA: 2015. Determining the Duration of Effects on Behavior and Academic Outcomes From Single and Multiple Bouts of Moderate Physical Activity for Students with ADHD.
    1. Lundbye-Jensen J., Skriver K., Nielsen J.B., Roig M. Acute Exercise Improves Motor Memory Consolidation in Preadolescent Children. Front. Hum. Neurosci. 2017;11:182. doi: 10.3389/fnhum.2017.00182.
    1. Thomas R., Beck M.M., Lind R.R., Korsgaard Johnsen L., Geertsen S.S., Christiansen L., Ritz C., Roig M., Lundbye-Jensen J. Acute exercise and motor memory consolidation: The role of exercise timing. Neural Plast. 2016;2016 doi: 10.1155/2016/6205452.
    1. Thomas R., Flindtgaard M., Skriver K., Geertsen S.S., Christiansen L., Korsgaard Johnsen L., Busk D.V.P., Bojsen-Møller E., Madsen M., Ritz C. Acute exercise and motor memory consolidation: Does exercise type play a role? Scand. J. Med. Sci. Sports. 2017;27:1523–1532. doi: 10.1111/sms.12791.
    1. Thomas R., Johnsen L.K., Geertsen S.S., Christiansen L., Ritz C., Roig M., Lundbye-Jensen J. Acute exercise and motor memory consolidation: The role of exercise intensity. PLoS ONE. 2016;11:e0159589. doi: 10.1371/journal.pone.0159589.
    1. Caterina P., Claudia C., Rosalba M., Ilaria S., Ilaria M., Giuseppe V., Roberta F. Searching for cognitively optimal challenge point in physical activity for children with typical and atypical motor development. Ment. Health Phys. Act. 2013;6:172–180.
    1. Hoza B., Smith A.L., Shoulberg E.K., Linnea K.S., Dorsch T.E., Blazo J.A., Alerding C.M., McCabe G.P. A randomized trial examining the effects of aerobic physical activity on attention-deficit/hyperactivity disorder symptoms in young children. J. Abnorm. Child Psychol. 2015;43:655–667. doi: 10.1007/s10802-014-9929-y.
    1. Meßler C.F., Holmberg H.-C., Sperlich B. Multimodal Therapy Involving High-Intensity Interval Training Improves the Physical Fitness, Motor Skills, Social Behavior, and Quality of Life of Boys With ADHD: A Randomized Controlled Study. J. Atten. Disord. 2018;22:806–812. doi: 10.1177/1087054716636936.
    1. Pan C.-Y., Chang Y.-K., Tsai C.-L., Chu C.-H., Cheng Y.-W., Sung M.-C. Effects of Physical Activity Intervention on Motor Proficiency and Physical Fitness in Children With ADHD: An Exploratory Study. J. Atten. Disord. 2017;21:783–795. doi: 10.1177/1087054714533192.
    1. Torabi F., Farahani A., Safakish S., Ramezankhani A., Dehghan F. Evaluation of motor proficiency and adiponectin in adolescent students with attention deficit hyperactivity disorder after high-intensity intermittent training. Psychiatry Res. 2018;261:40–44. doi: 10.1016/j.psychres.2017.12.053.
    1. Banaschewski T., Besmens F., Zieger H., Rothenberger A. Evaluation of Sensorimotor Training in Children with Adhd. Percept. Mot. Ski. 2001;92:137–149. doi: 10.2466/pms.2001.92.1.137.
    1. Kiluk B.D., Weden S., Culotta V.P. Sport Participation and Anxiety in Children with ADHD. J. Atten. Disord. 2009;12:499–506. doi: 10.1177/1087054708320400.
    1. Etscheidt M.A., Ayllon T. Contingent exercise to decrease hyperactivity. J. Child Adolesc. Psychother. 1987;4:192–198.
    1. Smith A.L., Hoza B., Linnea K., McQuade J.D., Tomb M., Vaughn A.J., Shoulberg E.K., Hook H. Pilot physical activity intervention reduces severity of ADHD symptoms in young children. J. Atten. Disord. 2013;17:70–82. doi: 10.1177/1087054711417395.
    1. Vibholm H.A., Pedersen J., Faltinsen E., Marcussen M.H., Gluud C., Storebø O.J. Training, executive, attention and motor skills (TEAMS) training versus standard treatment for preschool children with attention deficit hyperactivity disorder: A randomised clinical trial. BMC Res. Notes. 2018;11:366. doi: 10.1186/s13104-018-3478-3.
    1. Silverstein J.M., Allison D.B. The comparative efficacy of antecedent exercise and methylphenidate: A single-case randomized trial. Child: Care Health Dev. 1994;20:47–60. doi: 10.1111/j.1365-2214.1994.tb00374.x.
    1. McKune A., Pautz J., Lomjbard J. Behavioural response to exercise in children with attention-deficit/hyperactivity disorder. South Afr. J. Sports Med. 2003;15:17–21. doi: 10.17159/2078-516X/2003/v15i3a223.
    1. Åberg M.A., Pedersen N.L., Torén K., Svartengren M., Bäckstrand B., Johnsson T., Cooper-Kuhn C.M., Åberg N.D., Nilsson M., Kuhn H.G. Cardiovascular fitness is associated with cognition in young adulthood. Proc. Natl. Acad. Sci. USA. 2009;106:20906–20911. doi: 10.1073/pnas.0905307106.
    1. Tandon P.S., Tovar A., Jayasuriya A.T., Welker E., Schober D.J., Copeland K., Dev D.A., Murriel A.L., Amso D., Ward D.S. The relationship between physical activity and diet and young children’s cognitive development: A systematic review. Prev. Med. Rep. 2016;3:379–390. doi: 10.1016/j.pmedr.2016.04.003.
    1. Berger N.A., Müller A., Brähler E., Philipsen A., de Zwaan M. Association of symptoms of attention-deficit/hyperactivity disorder with symptoms of excessive exercising in an adult general population sample. BMC Psychiatry. 2014;14:250. doi: 10.1186/s12888-014-0250-7.
    1. Rommel A.-S., Lichtenstein P., Rydell M., Kuja-Halkola R., Asherson P., Kuntsi J., Larsson H. Is physical activity causally associated with symptoms of attention-deficit/hyperactivity disorder? J. Am. Acad. Child Adolesc. Psychiatry. 2015;54:565–570. doi: 10.1016/j.jaac.2015.04.011.
    1. Labban J.D., Gapin J.I., Etnier J.L. Physical activity and cognitive performance in children with attention deficit hyperactivity disorder (ADHD)-A randomized controlled trial testing the effects of a single bout of aerobic exercise on executive function. J. Sport Exerc. Psychol. 2019;31:S12–S13.
    1. Bustamante E.E., Davis C.L., Frazier S.L., Rusch D., Fogg L.F., Atkins M.S., Marquez D.X. Randomized controlled trial of exercise for ADHD and disruptive behavior disorders. Med. Sci. Sports Exerc. 2016;48:1397. doi: 10.1249/MSS.0000000000000891.
    1. Benzing V., Schmidt M. The effect of exergaming on executive functions in children with ADHD: A randomized clinical trial. Scand. J. Med. Sci. Sports. 2019 doi: 10.1111/sms.13446.
    1. Higgins J.P.T., Green S., editors. Cochrane Collaboration: Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011] [(accessed on 15 February 2019)]; Available online: .
    1. Diamond A., Ling D.S. Aerobic-exercise and resistance-training interventions have been among the least effective ways to improve executive functions of any method tried thus far. Dev. Cogn. Neurosci. 2018;10:100572. doi: 10.1016/j.dcn.2018.05.001.

Source: PubMed

3
Abonnere