Protocol for a parallel economic evaluation of a trial comparing two surgical strategies in severe complicated intra-abdominal sepsis: the COOL-cost study

Joshua S Ng-Kamstra, Elissa Rennert-May, Jessica McKee, Skyla Lundgren, Braden Manns, Andrew W Kirkpatrick, Joshua S Ng-Kamstra, Elissa Rennert-May, Jessica McKee, Skyla Lundgren, Braden Manns, Andrew W Kirkpatrick

Abstract

Background: The risk of death in severe complicated intra-abdominal sepsis (SCIAS) remains high despite decades of surgical and antimicrobial research. New management strategies are required to improve outcomes. The Closed Or Open after Laparotomy (COOL) trial investigates an open-abdomen (OA) approach with active negative pressure peritoneal therapy. This therapy is hypothesized to better manage peritoneal bacterial contamination, drain inflammatory ascites, and reduce the risk of intra-abdominal hypertension leading to improved survival and decreased complications. The total costs and cost-effectiveness of this therapy (as compared with standard fascial closure) are unknown.

Methods: We propose a parallel cost-utility analysis of this intervention to be conducted alongside the 1-year trial, extrapolating beyond that using decision analysis. Using resource use metrics (e.g., length of stay, re-admissions) from patients at all study sites and microcosting data from patients enrolled in Calgary, Alberta, the mean cost difference between treatment arms will be established from a publicly-funded health care payer perspective. Quality of life will be measured at 6 months and 1 year postoperatively with the Euroqol EQ-5D-5 L and SF-36 surveys. A within-trial analysis will establish cost and utility at 1 year, using a bootstrapping approach to provide confidence intervals around an estimated incremental cost-effectiveness ratio. If neither operative strategy is economically dominant, Markov modeling will be used to extrapolate the cost per quality-adjusted life years gained to 2-, 5-, 10-year, and lifetime horizons. Future costs and benefits will be discounted at 1.5% per annum. A cost-effectiveness acceptability curve will be generated using Monte Carlo simulation. If all trial outcomes are similar, the primary analysis will default to a cost-minimization approach. Subgroup analysis will be carried out for patients with and without septic shock at presentation, and for patients whose initial APACHE II scores are > 20 versus ≤ 20.

Discussion: In addition to an estimate of the clinical effectiveness of an OA approach for SCIAS, an understanding of its cost effectiveness will be required prior to its adoption in any resource-constrained environment. We will estimate this key parameter for use by clinicians and policymakers.

Trial registration: ClinicalTrials.gov, NCT03163095, registered May 22, 2017.

Keywords: Cost-effectiveness analysis; Cost-utility analysis; Intra-abdominal infections; Laparotomy; Quality of life; Randomized controlled trial; Sepsis.

Conflict of interest statement

The authors declare that they have no competing interests.

References

    1. Moore LJ, Moore FA, Todd SR, Jones SL, Turner KL, Bass BL. Sepsis in general surgery: the 2005-2007 national surgical quality improvement program perspective. Arch Surg. 2010;145(7):695–700. doi: 10.1001/archsurg.2010.107.
    1. Szakmany T, Lundin RM, Sharif B, et al. Sepsis prevalence and outcome on the general wards and emergency departments in Wales: results of a multi-centre, observational, point prevalence study. PLoS One. 2016;11(12):e0167230. doi: 10.1371/journal.pone.0167230.
    1. Sartelli M, Catena F, Ansaloni L, et al. Complicated intra-abdominal infections worldwide: the definitive data of the CIAOW study. World J Emerg Surg. 2014;9:37. doi: 10.1186/1749-7922-9-37.
    1. Opmeer BC, Boer KR, van Ruler O, et al. Costs of relaparotomy on-demand versus planned relaparotomy in patients with severe peritonitis: an economic evaluation within a randomized controlled trial. Crit Care. 2010;14(3):R97. doi: 10.1186/cc9032.
    1. Kriwanek S, Armbruster C, Dittrich K, Beckerhinn P, Schwarzmaier A, Redl E. Long-term outcome after open treatment of severe intra-abdominal infection and pancreatic necrosis. Arch Surg. 1998;133(2):140–144. doi: 10.1001/archsurg.133.2.140.
    1. van Ruler O, Mahler CW, Boer KR, et al. Comparison of on-demand vs planned relaparotomy strategy in patients with severe peritonitis: a randomized trial. JAMA. 2007;298(8):865–872. doi: 10.1001/jama.298.8.865.
    1. Kirkpatrick AW, Coccolini F, Ansaloni L, et al. Closed Or Open after Source Control Laparotomy for severe complicated intra-abdominal sepsis (the COOL trial): study protocol for a randomized controlled trial. World J Emer Surg. 2018;13:26. doi: 10.1186/s13017-018-0183-4.
    1. Emr B, Sadowsky D, Azhar N, et al. Removal of inflammatory ascites is associated with dynamic modification of local and systemic inflammation along with prevention of acute lung injury: in vivo and in silico studies. Shock. 2014;41(4):317–323. doi: 10.1097/SHK.0000000000000121.
    1. Kubiak BD, Albert SP, Gatto LA, et al. Peritoneal negative pressure therapy prevents multiple organ injury in a chronic porcine sepsis and ischemia/reperfusion model. Shock. 2010;34(5):525–534. doi: 10.1097/SHK.0b013e3181e14cd2.
    1. Coccolini F, Montori G, Ceresoli M, et al. The role of open abdomen in non-trauma patient: WSES consensus paper. World J Emerg Surg. 2017;12:39. doi: 10.1186/s13017-017-0146-1.
    1. Coccolini F, Roberts D, Ansaloni L, et al. The open abdomen in trauma and non-trauma patients: WSES guidelines. World J Emerg Surg. 2018;13:7. doi: 10.1186/s13017-018-0167-4.
    1. Frick KD. Microcosting quantity data collection methods. Med Care. 2009;47(7 Suppl 1):S76–S81. doi: 10.1097/MLR.0b013e31819bc064.
    1. Canadian Institute for Health Information . Standards for management information systems in Canadian Health Service Organizations. Ottawa: Canadian Institute for Health Information; 2019.
    1. Sharma R, Abdulla I, Fairgrieve-Park L, Mahdavi S, Burkart B, Bakal J. Surgical approaches in total hip arthroplasty cost per case analysis: a retrospective, matched, micro-costing analysis in a socialised healthcare system. Hip Int. 2019;1120700019839039.
    1. Reardon PM, Fernando SM, Van Katwyk S, et al. Characteristics, outcomes, and cost patterns of high-cost patients in the intensive care unit. Crit Care Res Pract. 2018;2018:5452683.
    1. Koopmanschap MA, Rutten FF, van Ineveld BM, van Roijen L. The friction cost method for measuring indirect costs of disease. J Health Econ. 1995;14(2):171–189. doi: 10.1016/0167-6296(94)00044-5.
    1. CADTH. Guidelines for the economic evaluation of health technologies: Canada. Ottawa; 2017.

Source: PubMed

3
Abonnere