Importance of the Immune Microenvironment in the Spontaneous Regression of Cervical Squamous Intraepithelial Lesions (cSIL) and Implications for Immunotherapy

Caroline L P Muntinga, Peggy J de Vos van Steenwijk, Ruud L M Bekkers, Edith M G van Esch, Caroline L P Muntinga, Peggy J de Vos van Steenwijk, Ruud L M Bekkers, Edith M G van Esch

Abstract

Cervical high-grade squamous intraepithelial lesions (cHSILs) develop as a result of a persistent high-risk human papilloma virus (hrHPV) infection. The natural course of cHSIL is hard to predict, depending on a multitude of viral, clinical, and immunological factors. Local immunity is pivotal in the pathogenesis, spontaneous regression, and progression of cervical dysplasia; however, the underlying mechanisms are unknown. The aim of this review is to outline the changes in the immune microenvironment in spontaneous regression, persistence, and responses to (immuno)therapy. In lesion persistence and progression, the immune microenvironment of cHSIL is characterized by a lack of intraepithelial CD3+, CD4+, and CD8+ T cell infiltrates and Langerhans cells compared to the normal epithelium and by an increased number of CD25+FoxP3+ regulatory T cells (Tregs) and CD163+ M2 macrophages. Spontaneous regression is characterized by low numbers of Tregs, more intraepithelial CD8+ T cells, and a high CD4+/CD25+ T cell ratio. A 'hot' immune microenvironment appears to be essential for spontaneous regression of cHSIL. Moreover, immunotherapy, such as imiquimod and therapeutic HPV vaccination, may enhance a preexisting pro-inflammatory immune environment contributing to lesion regression. The preexisting immune composition may reflect the potential for lesion regression, leading to a possible immune biomarker for immunotherapy in cHSILs.

Keywords: cervical high-grade squamous intraepithelial lesions; human papillomavirus; imiquimod; immune microenvironment; immunology; immunotherapy; spontaneous regression.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Immunological and clinical factors contributing to the spontaneous regression, persistence, or progression of cHSIL. This figure was created using adapted images of Servier Medical Art, licensed under a Creative Commons Attribution 3.0 Unported License.

References

    1. Khieu M., Butler S. Definitions. StatPearls Publishing; Treasure Island, FL, USA: 2020. High Grade Squamous Intraepithelial Lesion.
    1. Woodman C.B.J., Collins S.I., Young L.S. The Natural History of Cervical HPV Infection: Unresolved Issues. Nat. Rev. Cancer. 2007;7:11–22. doi: 10.1038/nrc2050.
    1. Santesso N., Mustafa R.A., Schünemann H.J., Arbyn M., Blumenthal P.D., Cain J., Chirenje M., Denny L., de Vuyst H., Eckert L.O., et al. World Health Organization Guidelines for Treatment of Cervical Intraepithelial Neoplasia 2-3 and Screen-and-Treat Strategies to Prevent Cervical Cancer. Int. J. Gynecol. Obstet. 2016;132:252–258. doi: 10.1016/j.ijgo.2015.07.038.
    1. Koutsky L. Epidemiology of Genital Human Papillomavirus Infection. Am. J. Med. 1997;102:3–8. doi: 10.1016/S0002-9343(97)00177-0.
    1. Baseman J.G., Koutsky L.A. The Epidemiology of Human Papillomavirus Infections. J. Clin. Virol. 2005;32:16–24. doi: 10.1016/j.jcv.2004.12.008.
    1. Ho G.Y.F., Bierman R., Beardsley L., Chang C.J., Burk R.D. Natural History of Cervicovaginal Papillomavirus Infection in Young Women. N. Engl. J. Med. 1998;338:423–428. doi: 10.1056/NEJM199802123380703.
    1. Koshiol J., Lindsay L., Pimenta J.M., Poole C., Jenkins D., Smith J.S. Persistent Human Papillomavirus Infection and Cervical Neoplasia: A Systematic Review and Meta-Analysis. Am. J. Epidemiol. 2008;168:123–137. doi: 10.1093/aje/kwn036.
    1. van der Burg S.H., Palefsky J.M. Human Immunodeficiency Virus and Human Papilloma Virus—Why HPV-Induced Lesions Do Not Spontaneously Resolve and Why Therapeutic Vaccination Can Be Successful. J. Transl. Med. 2009;7:108. doi: 10.1186/1479-5876-7-108.
    1. Schiffman M., Castle P.E., Jeronimo J., Rodriguez A.C., Wacholder S. Human Papillomavirus and Cervical Cancer. Lancet. 2007;370:890–907. doi: 10.1016/S0140-6736(07)61416-0.
    1. Bosch F.X., Burchell A.N., Schiffman M., Giuliano A.R., de Sanjose S., Bruni L., Tortolero-Luna G., Kjaer S.K., Muñoz N. Epidemiology and Natural History of Human Papillomavirus Infections and Type-Specific Implications in Cervical Neoplasia. Vaccine. 2008;26:K1–K16. doi: 10.1016/j.vaccine.2008.05.064.
    1. Wheeler C.M. Natural History of Human Papillomavirus Infections, Cytologic and Histologic Abnormalities, and Cancer. Obstet. Gynecol. Clin. N. Am. 2008;35:519–536. doi: 10.1016/j.ogc.2008.09.006.
    1. Clifford G., Franceschi S., Diaz M., Muñoz N., Villa L.L. Chapter 3: HPV Type-Distribution in Women with and without Cervical Neoplastic Diseases. Vaccine. 2006;24:26–34. doi: 10.1016/j.vaccine.2006.05.026.
    1. Kjær S.K., Frederiksen K., Munk C., Iftner T. Long-Term Absolute Risk of Cervical Intraepithelial Neoplasia Grade 3 or Worse Following Human Papillomavirus Infection: Role of Persistence. J. Natl. Cancer Inst. 2010;102:1478–1488. doi: 10.1093/jnci/djq356.
    1. Snijders P.J.F., Steenbergen R.D.M., Heideman D.A.M., Meijer C.J.L.M. HPV-Mediated Cervical Carcinogenesis: Concepts and Clinical Implications. J. Pathol. 2006;208:152–164. doi: 10.1002/path.1866.
    1. Bosch F.X., Lorincz A., Muñoz N., Meijer C.J.L.M., Shah K.V. The Causal Relation between Human Papillomavirus and Cervical Cancer. J. Clin. Pathol. 2002;55:244–265. doi: 10.1136/jcp.55.4.244.
    1. Doorbar J., Quint W., Banks L., Bravo I.G., Stoler M., Broker T.R., Stanley M.A. The Biology and Life-Cycle of Human Papillomaviruses. Vaccine. 2012;30:F55–F70. doi: 10.1016/j.vaccine.2012.06.083.
    1. Loopik D.L., Bentley H.A., Eijgenraam M.N., Inthout J., Bekkers R.L.M., Bentley J.R. The Natural History of Cervical Intraepithelial Neoplasia Grades 1, 2, and 3: A Systematic Review and Meta-Analysis. J. Low. Genit. Tract Dis. 2021;25:221–231. doi: 10.1097/LGT.0000000000000604.
    1. Tainio K., Athanasiou A., Tikkinen K.A.O., Aaltonen R., Cárdenas J., Hernándes, Glazer-Livson S., Jakobsson M., Joronen K., Kiviharju M., et al. Clinical Course of Untreated Cervical Intraepithelial Neoplasia Grade 2 under Active Surveillance: Systematic Review and Meta-Analysis. BMJ. 2018;360:k499. doi: 10.1136/bmj.k499.
    1. Kyrgiou M., Athanasiou A., Kalliala I.E.J., Paraskevaidi M., Mitra A., Martin-Hirsch P.P.L., Arbyn M., Bennett P., Paraskevaidis E. Obstetric Outcomes after Conservative Treatment for Cervical Intraepithelial Lesions and Early Invasive Disease. Cochrane Database Syst. Rev. 2017;2017 doi: 10.1002/14651858.CD012847.
    1. Spracklen C., Harland K., Stegmann B., Saftlas A. Cervical Surgery for Cervical Intraepithelial Neoplasia and Prolonged Time to Conception of a Live Birth: A Case-Control Study. BJOG Int. J. Obstet. Gynaecol. 2013;120:960–965. doi: 10.1111/1471-0528.12209.
    1. Crane J.M.G. Pregnancy Outcome after Loop Electrosurgical Excision Procedure: A Systematic Review. Obstet. Gynecol. 2003;102:1058–1062. doi: 10.1097/00006250-200311000-00031.
    1. Loopik D.L., van Drongelen J., Bekkers R.L.M., Voorham Q.J.M., Melchers W.J.G., Massuger L.F.A.G., van Kemenade F.J., Siebers A.G. Cervical Intraepithelial Neoplasia and the Risk of Spontaneous Preterm Birth: A Dutch Population-Based Cohort Study with 45,259 Pregnancy Outcomes. PLoS Med. 2021;18:e1003665. doi: 10.1371/journal.pmed.1003665.
    1. Fonseca B.O., Possati-Resende J.C., Salcedo M.P., Schmeler K.M., Accorsi G.S., Fregnani J.H.T.G., Antoniazzi M., Pantano N.P., Santana I.V.V., Matsushita G.M., et al. Topical Imiquimod for the Treatment of High-Grade Squamous Intraepithelial Lesions of the Cervix: A Randomized Controlled Trial. Obstet. Gynecol. 2021;137:1043–1053. doi: 10.1097/AOG.0000000000004384.
    1. Grimm C., Polterauer S., Natter C., Rahhal J., Hefler L., Tempfer C.B., Heinze G., Stary G., Reinthaller A., Speiser P. Treatment of Cervical Intraepithelial Neoplasia with Topical Imiquimod: A Randomized Controlled Trial. Obstet. Gynecol. 2012;120:152–159. doi: 10.1097/AOG.0b013e31825bc6e8.
    1. Westermann C., Fischer A., Clad A. Treatment of Vulvar Intraepithelial Neoplasia with Topical 5% Imiquimod Cream. Int. J. Gynecol. Obstet. 2013;120:266–270. doi: 10.1016/j.ijgo.2012.09.020.
    1. Cokan A., Pakiž M., Serdinšek T., Dovnik A., Kodrič T., Repše Fokter A., Kavalar R., But I. Comparison of Conservative Treatment of Cervical Intraepithelial Lesions with Imiquimod with Standard Excisional Technique Using LLETZ: A Randomized Controlled Trial. J. Clin. Med. 2021;10:5777. doi: 10.3390/jcm10245777.
    1. Hendriks N., Koeneman M.M.M., van de Sande A.J., Penders C.G., Piek J., Kooreman L.F., van Kuijk S.M., Hoosemans L., Sep S.J., de Vos van Steenwijk P.J., et al. Topical Imiquimod Treatment of High-Grade Cervical Intraepithelial Neoplasia (TOPIC-3): A Non-Randomized Multicentre Study. J. Immunother. 2022. accepted .
    1. Cancer Council Australia Cervical Cancer Screening Guidelines Working Party National Cervical Screening Program: Guidelines for the Management of Screen-Detected Abnormalities, Screening in Specific Populations and Investigation of Abnormal Vaginal Bleed. [(accessed on 21 January 2022)]. Available online: .
    1. Arbyn M., Herbert A., Schenck U., Nieminen P., Jordan J., Mcgoogan E., Patnick J., Bergeron C., Baldauf J.-J., Klinkhamer P., et al. European Guidelines for Quality Assurance in Cervical Cancer Screening: Recommendations for Collecting Samples for Conventional and Liquid-Based Cytology*. Cytopathology. 2007;18:133–139. doi: 10.1111/j.1365-2303.2007.00464.x.
    1. Arbyn M., Anttila A., Jordan J., Ronco G., Schenck U., Segnan N., Wiener H., Herbert A., von Karsa L. European Guidelines for Quality Assurance in Cervical Cancer Screening. Second Edition—Summary Document. Ann. Oncol. 2010;21:448–458. doi: 10.1093/annonc/mdp471.
    1. Cervical Screening: Programme and Colposcopy Management. [(accessed on 21 January 2022)]; Available online: .
    1. Perkins R.B., Guido R.S., Castle P.E., Chelmow D., Einstein M.H., Garcia F., Huh W.K., Kim J.J., Moscicki A.-B., Nayar R., et al. 2019 ASCCP Risk-Based Management Consensus Guidelines for Abnormal Cervical Cancer Screening Tests and Cancer Precursors. J. Low. Genit. Tract Dis. 2020;24:102–131. doi: 10.1097/LGT.0000000000000525.
    1. Petry K.U., Köchel H., Bode U., Schedel I., Niesert S., Glaubitz M., Maschek H., Kühnle H. Human Papillomavirus Is Associated with the Frequent Detection of Warty and Basaloid High-Grade Neoplasia of the Vulva and Cervical Neoplasia among Immunocompromised Women. Gynecol. Oncol. 1996;60:30–34. doi: 10.1006/gyno.1996.0007.
    1. Jamieson D.J., Paramsothy P., Cu-Uvin S., Duerr A. Vulvar, Vaginal, and Perianal Intraepithelial Neoplasia in Women with or at Risk for Human Immunodeficiency Virus. Obstet. Gynecol. 2006;107:1023–1028. doi: 10.1097/01.AOG.0000210237.80211.ff.
    1. Welters M.J.P., Ma W., Santegoets S.J.A.M., Goedemans R., Ehsan I., Jordanova E.S., van Ham V.J., van Unen V., Koning F., van Egmond S.I., et al. Intratumoral HPV16-Specific T Cells Constitute a Type I–Oriented Tumor Microenvironment to Improve Survival in HPV16-Driven Oropharyngeal Cancer. Clin. Cancer Res. 2018;24:634–647. doi: 10.1158/1078-0432.CCR-17-2140.
    1. de Vos Van Steenwijk P.J., Piersma S.J., Welters M.J.P., van der Hulst J.M., Fleuren G., Hellebrekers B.W.J., Kenter G.G., van der Burg S.H. Surgery Followed by Persistence of High-Grade Squamous Intraepithelial Lesions Is Associated with the Induction of a Dysfunctional HPV16-Specific T-Cell Response. Clin. Cancer Res. 2008;14:7188–7195. doi: 10.1158/1078-0432.CCR-08-0994.
    1. Woo Y.L., Sterling J., Damay I., Coleman N., Crawford R., van der Burg S.H., Stanley M. Characterising the Local Immune Responses in Cervical Intraepithelial Neoplasia: A Cross-Sectional and Longitudinal Analysis. BJOG Int. J. Obstet. Gynaecol. 2008;115:1616–1622. doi: 10.1111/j.1471-0528.2008.01936.x.
    1. Du H., Xu T., Cui M. CGAS-STING Signaling in Cancer Immunity and Immunotherapy. Biomed. Pharmacother. 2021;133:110972. doi: 10.1016/j.biopha.2020.110972.
    1. Monnier-Benoit S., Mauny F., Riethmuller D., Guerrini J.S., Cǎpîlna M., Félix S., Seillès E., Mougin C., Prétet J.L. Immunohistochemical Analysis of CD4+ and CD8+ T-Cell Subsets in High Risk Human Papillomavirus-Associated Pre-Malignant and Malignant Lesions of the Uterine Cervix. Gynecol. Oncol. 2006;102:22–31. doi: 10.1016/j.ygyno.2005.11.039.
    1. Bottley G., Watherston O.G., Hiew Y.L., Norrild B., Cook G.P., Blair G.E. High-Risk Human Papillomavirus E7 Expression Reduces Cell-Surface MHC Class I Molecules and Increases Susceptibility to Natural Killer Cells. Oncogene. 2008;27:1794–1799. doi: 10.1038/sj.onc.1210798.
    1. Evans E.M.-L., Man S., Evans A.S., Borysiewicz L.K. Infiltration of Cervical Cancer Tissue with Human Papilloma Virus-Specific Cytotoxic T-Lymphocytes. Immunol. Lett. 1997;56:455. doi: 10.1016/S0165-2478(97)88693-2.
    1. Um S.J., Rhyu J.W., Kim E.J., Jeon K.C., Hwang E.S., Park J.S. Abrogation of IRF-1 Response by High-Risk HPV E7 Protein in Vivo. Cancer Lett. 2002;179:205–212. doi: 10.1016/S0304-3835(01)00871-0.
    1. Woo Y.L., van den Hende M., Sterling J.C., Coleman N., Crawford R.A.F., Kwappenberg K.M.C., Stanley M.A., van der Burg S.H. A Prospective Study on the Natural Course of Low-Grade Squamous Intraepithelial Lesions and the Presence of HPV16 E2-, E6- And E7-Specific T-Cell Responses. Int. J. Cancer. 2010;126:133–141. doi: 10.1002/ijc.24804.
    1. Hanahan D., Coussens L.M. Accessories to the Crime: Functions of Cells Recruited to the Tumor Microenvironment. Cancer Cell. 2012;21:309–322. doi: 10.1016/j.ccr.2012.02.022.
    1. Kobayashi A., Weinberg V., Darragh T., Smith-McCune K. Evolving Immunosuppressive Microenvironment during Human Cervical Carcinogenesis. Mucosal Immunol. 2008;1:412–420. doi: 10.1038/mi.2008.33.
    1. Hughes R.H., Norval M., Howie S.E.M. Expression of Major Histocompatibility Class II Antigens by Langerhans’ Cells in Cervical Intraepithelial Neoplasia. J. Clin. Pathol. 1988;41:253–259. doi: 10.1136/jcp.41.3.253.
    1. Tay S.K., Jenkins D., Maddox P., Campion M., Singer A. Subpopulations of Langerhans’ Cells in Cervical Neoplasia. BJOG Int. J. Obstet. Gynaecol. 1987;94:10–15. doi: 10.1111/j.1471-0528.1987.tb02244.x.
    1. Viac J., Guérin-Reverchoni I., Chardonnet Y., Brémond A. Langerhans Cells and Epithelial Cell Modifications in Cervical Intraepithelial Neoplasia: Correlation with Human Papillomavirus Infection. Immunobiology. 1990;180:328–338. doi: 10.1016/S0171-2985(11)80296-2.
    1. Mota F.F., Rayment N.B., Kanan J.H., Singer A., Chain B.M. Differential Regulation of HLA-DQ Expression by Keratinocytes and Langerhans Cells in Normal and Premalignant Cervical Epithelium. Tissue Antigens. 1998;52:286–293. doi: 10.1111/j.1399-0039.1998.tb03046.x.
    1. Al-Saleh W., Giannini S.L., Jacobs N., Moutschen M., Doyen J., Boniver J., Delvenne P. Correlation of T-Helper Secretory Differentiation and Types of Antigen- Presenting Cells in Squamous Intraepithelial Lesions of the Uterine Cervix. J. Pathol. 1998;184:283–290. doi: 10.1002/(SICI)1096-9896(199803)184:3<283::AID-PATH25>;2-K.
    1. Utrera-Barillas D., Castro-Manrreza M., Castellanos E., Gutiérrez-Rodríguez M., Arciniega-Ruíz de Esparza O., García-Cebada J., Velazquez J.R., Flores-Reséndiz D., Hernández-Hernández D., Benítez-Bribiesca L. The Role of Macrophages and Mast Cells in Lymphangiogenesis and Angiogenesis in Cervical Carcinogenesis. Exp. Mol. Pathol. 2010;89:190–196. doi: 10.1016/j.yexmp.2010.06.002.
    1. Hammes L.S., Tekmal R.R., Naud P., Edelweiss M.I., Kirma N., Valente P.T., Syrjänen K.J., Cunha-Filho J.S. Macrophages, Inflammation and Risk of Cervical Intraepithelial Neoplasia (CIN) Progression-Clinicopathological Correlation. Gynecol. Oncol. 2007;105:157–165. doi: 10.1016/j.ygyno.2006.11.023.
    1. Chen X.J., Han L.F., Wu X.G., Wei W.F., Wu L.F., Yi H.Y., Yan R.M., Bai X.Y., Zhong M., Yu Y.H., et al. Clinical Significance of CD163+ and CD68+ Tumor-Associated Macrophages in High-Risk HPV-Related Cervical Cancer. J. Cancer. 2017;8:3868–3875. doi: 10.7150/jca.21444.
    1. Litwin T.R., Irvin S.R., Chornock R.L., Sahasrabuddhe V.V., Stanley M., Wentzensen N. Infiltrating T-Cell Markers in Cervical Carcinogenesis: A Systematic Review and Meta-Analysis. Br. J. Cancer. 2021;124:831–841. doi: 10.1038/s41416-020-01184-x.
    1. Jayshree R.S. The Immune Microenvironment in Human Papilloma Virus-Induced Cervical Lesions—Evidence for Estrogen as an Immunomodulator. Front. Cell. Infect. Microbiol. 2021;11:1–25. doi: 10.3389/fcimb.2021.649815.
    1. Wang Y., He M., Zhang G., Cao K., Yang M., Zhang H., Liu H. The Immune Landscape during the Tumorigenesis of Cervical Cancer. Cancer Med. 2021;10:2380–2395. doi: 10.1002/cam4.3833.
    1. Adurthi S., Krishna S., Mukherjee G., Bafna U.D., Devi U., Jayshree R.S. Regulatory T Cells in a Spectrum of HPV-Induced Cervical Lesions: Cervicitis, Cervical Intraepithelial Neoplasia and Squamous Cell Carcinoma. Am. J. Reprod. Immunol. 2008;60:55–65. doi: 10.1111/j.1600-0897.2008.00590.x.
    1. Sahebali S., van den Eynden G., Murta E.F., Michelin M.A., Cusumano P., Petignat P., Bogers J.J. Stromal Issues in Cervical Cancer: A Review of the Role and Function of Basement Membrane, Stroma, Immune Response and Angiogenesis in Cervical Cancer Development. Eur. J. Cancer Prev. 2010;19:204–215. doi: 10.1097/CEJ.0b013e32833720de.
    1. Mezache L., Paniccia B., Nyinawabera A., Nuovo G.J. Enhanced Expression of PD L1 in Cervical Intraepithelial Neoplasia and Cervical Cancers. Mod. Pathol. 2015;28:1594–1602. doi: 10.1038/modpathol.2015.108.
    1. Yang W., Song Y., Lu Y.L., Sun J.Z., Wang H.W. Increased Expression of Programmed Death (PD)-1 and Its Ligand PD-L1 Correlates with Impaired Cell-Mediated Immunity in High-Risk Human Papillomavirus-Related Cervical Intraepithelial Neoplasia. Immunology. 2013;139:513–522. doi: 10.1111/imm.12101.
    1. Feng Q., Wei H., Morihara J., Stern J., Yu M., Kiviat N., Hellstrom I., Hellstrom K.E. Th2 Type Inflammation Promotes the Gradual Progression of HPV-Infected Cervical Cells to Cervical Carcinoma. Gynecol. Oncol. 2012;127:412–419. doi: 10.1016/j.ygyno.2012.07.098.
    1. Dudek A.M., Martin S., Garg A.D., Agostinis P. Immature, Semi-Mature, and Fully Mature Dendritic Cells: Toward a DC-Cancer Cells Interface That Augments Anticancer Immunity. Front. Immunol. 2013;4:1–14. doi: 10.3389/fimmu.2013.00438.
    1. Collison L.W., Workman C.J., Kuo T.T., Boyd K., Wang Y., Vignali K.M., Cross R., Sehy D., Blumberg R.S., Vignali D.A.A. The Inhibitory Cytokine IL-35 Contributes to Regulatory T-Cell Function. Nature. 2007;450:566–569. doi: 10.1038/nature06306.
    1. Powrie F., Carlino J., Leach M.W., Mauze S., Coffman R.L. A Critical Role for Transforming Growth Factor-β but Not Interleukin 4 in the Suppression of T Helper Type 1-Mediated Colitis by CD45RBlow CD4+ T Cells. J. Exp. Med. 1996;183:2669–2674. doi: 10.1084/jem.183.6.2669.
    1. Shang B., Liu Y., Jiang S.J., Liu Y. Prognostic Value of Tumor-Infiltrating FoxP3+ Regulatory T Cells in Cancers: A Systematic Review and Meta-Analysis. Sci. Rep. 2015;5:1–9. doi: 10.1038/srep15179.
    1. Berraondo P., Minute L., Ajona D., Corrales L., Melero I., Pio R. Innate Immune Mediators in Cancer: Between Defense and Resistance. Immunol. Rev. 2016;274:290–306. doi: 10.1111/imr.12464.
    1. Hagerling C., Casbon A.-J., Werb Z. Balancing the Innate Immune System in Tumor Development. Trends Cell Biol. 2015;25:214–220. doi: 10.1016/j.tcb.2014.11.001.
    1. Palucka K., Banchereau J. Dendritic Cells: A Link between Innate and Adaptive Immunity. J. Clin. Immunol. 1999;19:12–25. doi: 10.1023/A:1020558317162.
    1. Origoni M., Parma M., Dell’Antonio G., Gelardi C., Stefani C., Salvatore S., Candiani M. Prognostic Significance of Immunohistochemical Phenotypes in Patients Treated for High-Grade Cervical Intraepithelial Neoplasia. BioMed Res. Int. 2013;2013:831907. doi: 10.1155/2013/831907.
    1. Johnson T.S., Munn D.H. Host Indoleamine 2,3-Dioxygenase: Contribution to Systemic Acquired Tumor Tolerance. Immunol. Investig. 2012;41:765–797. doi: 10.3109/08820139.2012.689405.
    1. Roche P.A., Furuta K. The Ins and Outs of MHC Class II-Mediated Antigen Processing and Presentation. Nat. Rev. Immunol. 2015;15:203–216. doi: 10.1038/nri3818.
    1. Shannon B., Yi T.J., Perusini S., Gajer P., Ma B., Humphrys M.S., Thomas-Pavanel J., Chieza L., Janakiram P., Saunders M., et al. Association of HPV Infection and Clearance with Cervicovaginal Immunology and the Vaginal Microbiota. Mucosal Immunol. 2017;10:1310–1319. doi: 10.1038/mi.2016.129.
    1. Fausch S.C., da Silva D.M., Rudolf M.P., Kast W.M. Human Papillomavirus Virus-Like Particles Do Not Activate Langerhans Cells: A Possible Immune Escape Mechanism Used by Human Papillomaviruses. J. Immunol. 2002;169:3242–3249. doi: 10.4049/jimmunol.169.6.3242.
    1. Hibma M.H. The Immune Response to Papillomavirus During Infection Persistence and Regression. Open Virol. J. 2013;6:241–248. doi: 10.2174/1874357901206010241.
    1. Daud I.I., Scott M.E., Ma Y., Shiboski S., Farhat S., Moscicki A.-B. Association between Toll-like Receptor Expression and Human Papillomavirus Type 16 Persistence. Int. J. Cancer. 2011;128:879–886. doi: 10.1002/ijc.25400.
    1. Halec G., Scott M.E., Farhat S., Darragh T.M., Moscicki A.B. Toll-like Receptors: Important Immune Checkpoints in the Regression of Cervical Intra-Epithelial Neoplasia 2. Int. J. Cancer. 2018;143:2884–2891. doi: 10.1002/ijc.31814.
    1. Aranda F., Vacchelli E., Obrist F., Eggermont A., Galon J., Fridman W.H., Cremer I., Tartour E., Zitvogel L., Kroemer G., et al. Trial Watch: Adoptive Cell Transfer for Anticancer Immunotherapy. OncoImmunology. 2014;3:e28344. doi: 10.4161/onci.28344.
    1. de Vos Van Steenwijk P.J., Ramwadhdoebe T.H., Goedemans R., Doorduijn E.M., van Ham J.J., Gorter A., van Hall T., Kuijjer M.L., van Poelgeest M.I.E., van der Burg S.H., et al. Tumor-Infiltrating CD14-Positive Myeloid Cells and CD8-Positive T-Cells Prolong Survival in Patients with Cervical Carcinoma. Int. J. Cancer. 2013;133:2884–2894. doi: 10.1002/ijc.28309.
    1. Ong C.B., Brandenberger C., Kiupel M., Kariagina A., Langohr I.M. Immunohistochemical Characterization and Morphometric Analysis of Macrophages in Rat Mammary Tumors. Vet. Pathol. 2015;52:414–418. doi: 10.1177/0300985814535611.
    1. Yang L., Zhang Y. Tumor-Associated Macrophages: From Basic Research to Clinical Application. J. Hematol. Oncol. 2017;10:58. doi: 10.1186/s13045-017-0430-2.
    1. Lewis C.E., Pollard J.W. Distinct Role of Macrophages in Different Tumor Microenvironments. Cancer Res. 2006;66:605–612. doi: 10.1158/0008-5472.CAN-05-4005.
    1. Abbas A.K., Lichtman A.H., Pillai S. Basic Immunology: Functions and Disorders of the Immune System. Elsevier Inc.; Amsterdam, The Netherlands: 2020. Basic Immunology: Functions and Disorders of the Immune System; pp. 1–22.
    1. Øvestad I.T., Gudlaugsson E., Skaland I., Malpica A., Kruse A.J., Janssen E.A.M., Baak J.P.A. Local Immune Response in the Microenvironment of CIN2-3 with and without Spontaneous Regression. Mod. Pathol. 2010;23:1231–1240. doi: 10.1038/modpathol.2010.109.
    1. Lord S.J., Rajotte R.V., Korbutt G.S., Bleackley R.C. Granzyme B: A Natural Born Killer. Immunol. Rev. 2003;193:31–38. doi: 10.1034/j.1600-065X.2003.00044.x.
    1. Trimble C.L., Clark R.A., Thoburn C., Hanson N.C., Tassello J., Frosina D., Kos F., Teague J., Jiang Y., Barat N.C., et al. Human Papillomavirus 16-Associated Cervical Intraepithelial Neoplasia in Humans Excludes CD8 T Cells from Dysplastic Epithelium. J. Immunol. 2010;185:7107–7114. doi: 10.4049/jimmunol.1002756.
    1. Kortekaas K.E., Santegoets S.J., Abdulrahman Z., van Ham V.J., van der Tol M., Ehsan I., van Doorn H.C., Bosse T., van Poelgeest M.I.E., van der Burg S.H. High Numbers of Activated Helper T Cells Are Associated with Better Clinical Outcome in Early Stage Vulvar Cancer, Irrespective of HPV or P53 Status. J. ImmunoTher. Cancer. 2019;7:1–13. doi: 10.1186/s40425-019-0712-z.
    1. Abdulrahman Z., Kortekaas K.E., de Vos Van Steenwijk P.J., van der Burg S.H., van Poelgeest M.I.E. The Immune Microenvironment in Vulvar (Pre)Cancer: Review of Literature and Implications for Immunotherapy. Expert Opin. Biol. Ther. 2018;18:1223–1233. doi: 10.1080/14712598.2018.1542426.
    1. Kojima S., Kawana K., Tomio K., Yamashita A., Taguchi A., Miura S., Adachi K., Nagamatsu T., Nagasaka K., Matsumoto Y., et al. The Prevalence Of Cervical Regulatory T Cells in HPV-Related Cervical Intraepithelial Neoplasia (CIN) Correlates Inversely with Spontaneous Regression of CIN. Am. J. Reprod. Immunol. 2013;69:134–141. doi: 10.1111/aji.12030.
    1. Francisco L.M., Sage P.T., Sharpe A.H. The PD-1 Pathway in Tolerance and Autoimmunity. Immunol. Rev. 2010;236:219–242. doi: 10.1111/j.1600-065X.2010.00923.x.
    1. Jiang Y., Chen M., Nie H., Yuan Y. PD-1 and PD-L1 in Cancer Immunotherapy: Clinical Implications and Future Considerations. Hum. Vaccines Immunother. 2019;15:1111–1122. doi: 10.1080/21645515.2019.1571892.
    1. Shevyrev D., Tereshchenko V. Treg Heterogeneity, Function, and Homeostasis. Front. Immunol. 2020;10 doi: 10.3389/fimmu.2019.03100.
    1. van Esch E.M., Welters M.J., Jordanova E.S., Trimbos J.B.M., van der Burg S.H., van Poelgeest M.I. Treatment Failure in Patients with HPV 16-Induced Vulvar Intraepithelial Neoplasia: Understanding Different Clinical Responses to Immunotherapy. Expert Rev. Vaccines. 2012;11:821–840. doi: 10.1586/erv.12.56.
    1. Li M.O., Wan Y.Y., Sanjabi S., Robertson A.K.L., Flavell R.A. Transforming Growth Factor-β Regulation of Immune Responses. Annu. Rev. Immunol. 2006;24:99–146. doi: 10.1146/annurev.immunol.24.021605.090737.
    1. Liu K., Huang A., Nie J., Tan J., Xing S., Qu Y., Jiang K. IL-35 Regulates the Function of Immune Cells in Tumor Microenvironment. Front. Immunol. 2021;12:1–10. doi: 10.3389/fimmu.2021.683332.
    1. Prata T.T.M., Bonin C.M., Ferreira A.M.T., Padovani C.T.J., Fernandes C.E., Machado A.P., Tozetti I.A. Local Immunosuppression Induced by High Viral Load of Human Papillomavirus: Characterization of Cellular Phenotypes Producing Interleukin-10 in Cervical Neoplastic Lesions. Immunology. 2015;146:113–121. doi: 10.1111/imm.12487.
    1. Peghini B.C., Abdalla D.R., Barcelos A.C.M., Teodoro L.D.G.V.L., Murta E.F.C., Michelin M.A. Local Cytokine Profiles of Patients with Cervical Intraepithelial and Invasive Neoplasia. Hum. Immunol. 2012;73:920–926. doi: 10.1016/j.humimm.2012.06.003.
    1. Li S., Gowans E.J., Chougnet C., Plebanski M., Dittmer U. Natural Regulatory T Cells and Persistent Viral Infection. J. Virol. 2008;82:21–30. doi: 10.1128/JVI.01768-07.
    1. Maglennon G.A., McIntosh P., Doorbar J. Persistence of Viral DNA in the Epithelial Basal Layer Suggests a Model for Papillomavirus Latency Following Immune Regression. Virology. 2011;414:153–163. doi: 10.1016/j.virol.2011.03.019.
    1. Gravitt P.E. The Known Unknowns of HPV Natural History. J. Clin. Investig. 2011;121:4593–4599. doi: 10.1172/JCI57149.
    1. Trimble C.L., Piantadosi S., Gravitt P., Ronnett B., Pizer E., Elko A., Wilgus B., Yutzy W., Daniel R., Shah K., et al. Spontaneous Regression of High-Grade Cervical Dysplasia: Effects of Human Papillomavirus Type and HLA Phenotype Human Cancer Biology. Clin Cancer Res. 2005;11:4717–4723. doi: 10.1158/1078-0432.CCR-04-2599.
    1. Godfrey M.A.L., Nikolopoulos M., Garner J.E., Adib T.R., Mukhopadhyay D., Rains J.S., Harper C.A., Wuntakal R. Conservative Management of Cervical Intraepithelial Neoplasia Grade 2 (CIN2) in Women under 30 Years of Age: A Cohort Study. Eur. J. Obstet. Gynecol. Reprod. Biol. 2018;228:267–273. doi: 10.1016/j.ejogrb.2018.07.018.
    1. Lee M.H., Finlayson S.J., Gukova K., Hanley G., Miller D., Sadownik L.A. Outcomes of Conservative Management of High Grade Squamous Intraepithelial Lesions in Young Women. J. Low. Genit. Tract Dis. 2018;22:212–218. doi: 10.1097/LGT.0000000000000399.
    1. Koeneman M.M., van Lint F.H.M., van Kuijk S.M.J., Smits L.J.M., Kooreman L.F.S., Kruitwagen R.F.P.M., Kruse A.J. A Prediction Model for Spontaneous Regression of Cervical Intraepithelial Neoplasia Grade 2, Based on Simple Clinical Parameters. Hum. Pathol. 2017;59:62–69. doi: 10.1016/j.humpath.2016.09.012.
    1. Loopik D.L., Doucette S., Bekkers R.L.M., Bentley J.R. Regression and Progression Predictors of CIN2 in Women Younger than 25 Years. J. Low. Genit. Tract Dis. 2016;20:213–217. doi: 10.1097/LGT.0000000000000215.
    1. Kingnate C., Supoken A., Kleebkaow P., Chumworathayi B., Luanratanakorn S., Kietpeerakool C. Is Age an Independent Predictor of High-Grade Histopathology in Women Referred for Colposcopy after Abnormal Cervical Cytology? Asian Pac. J. Cancer Prev. 2015;16:7231–7235. doi: 10.7314/APJCP.2015.16.16.7231.
    1. Moscicki A.B., Ma Y., Wibbelsman C., Darragh T.M., Powers A., Farhat S., Shiboski S. Rate of and Risks for Regression of Cervical Intraepithelial Neoplasia 2 in Adolescents and Young Women. Obstet. Gynecol. 2010;116:1373–1380. doi: 10.1097/AOG.0b013e3181fe777f.
    1. Nikolich-Žugich J. The Twilight of Immunity: Emerging Concepts in Aging of the Immune System. Nat. Immunol. 2018;19:10–19. doi: 10.1038/s41590-017-0006-x.
    1. Makinodan T., Kay M.M.B. Age Influence on the Immune System. Adv. Immunol. 1980;29:287–330. doi: 10.1016/S0065-2776(08)60047-4.
    1. Giannella L., Giorgi Rossi P., Delli Carpini G., di Giuseppe J., Bogani G., Gardella B., Monti E., Liverani C.A., Ghelardi A., Insinga S., et al. Age-Related Distribution of Uncommon HPV Genotypes in Cervical Intraepithelial Neoplasia Grade 3. Gynecol. Oncol. 2021;161:741–747. doi: 10.1016/j.ygyno.2021.03.025.
    1. Gadducci A., Barsotti C., Cosio S., Domenici L., Genazzani A.R. Smoking Habit, Immune Suppression, Oral Contraceptive Use, and Hormone Replacement Therapy Use and Cervical Carcinogenesis: A Review of the Literature. Gynecol. Endocrinol. 2011;27:597–604. doi: 10.3109/09513590.2011.558953.
    1. de Mello Silva M.V., Coutinho I.C., Heráclio S.D.A., Fittipaldi H.M., Katz L. Factors Associated with the Persistence/Recurrence of CIN2/3 in Women Submitted to Loop Electrosurgical Excision Procedure in a Teaching Hospital in Northeastern Brazil: A Case-Control Study. J. Low. Genit. Tract Dis. 2014;18:286–290. doi: 10.1097/LGT.0000000000000014.
    1. Matsumoto K., Oki A., Furuta R., Maeda H., Yasugi T., Takatsuka N., Hirai Y., Mitsuhashi A., Fujii T., Iwasaka T., et al. Tobacco Smoking and Regression of Low-Grade Cervical Abnormalities. Cancer Sci. 2010;101:2065–2073. doi: 10.1111/j.1349-7006.2010.01642.x.
    1. Poppe W.A.J., Ide P.S., Drijkoningen M.P.G., Lauweryns J.M., van Assche A. Tobacco Smoking Impairs the Local Immunosurveillance in the Uterine Cervix. Gynecol. Obstet. Investig. 1995;39:34–38. doi: 10.1159/000292372.
    1. Barton S.E., Jenkins D., Cuzick J., Maddox P.H., Edwards R., Singer A. Effect of Cigarette Smoking on Cervical Epithelial Immunity: A Mechanism for Neoplastic Change? Lancet. 1988;332:652–654. doi: 10.1016/S0140-6736(88)90469-2.
    1. Lam J.U.H., Rebolj M., Dugué P.A., Bonde J., von Euler-Chelpin M., Lynge E. Condom Use in Prevention of Human Papillomavirus Infections and Cervical Neoplasia: Systematic Review of Longitudinal Studies. J. Med. Screen. 2014;21:38–50. doi: 10.1177/0969141314522454.
    1. Munk A.C., Gudlaugsson E., Ovestad I.T., Lovslett K., Fiane B., Hidle B.V.D., Kruse A.J., Skaland I., Janssen E.A.M., Baak J.P.A. Interaction of Epithelial Biomarkers, Local Immune Response and Condom Use in Cervical Intraepithelial Neoplasia 2–3 Regression. Gynecol. Oncol. 2012;127:489–494. doi: 10.1016/j.ygyno.2012.09.010.
    1. Hogewoning C.J.A., Bleeker M.C.G., van den Brule A.J.C., Voorhorst F.J., Snijders P.J.F., Berkhof J., Westenend P.J., Meijer C.J.L.M. Condom Use Promotes Regression of Cervical Intraepithelial Neoplasia and Clearance of Human Papillomavirus: A Randomized Clinical Trial. Int. J. Cancer. 2003;107:811–816. doi: 10.1002/ijc.11474.
    1. Munk A.C., Gudlaugsson E., Malpica A., Fiane B., Løvslett K.I., Kruse A.J., Øvestad I.T., Voorhorst F., Janssen E.A.M., Baak J.P.A. Consistent Condom Use Increases the Regression Rate of Cervical Intraepithelial Neoplasia 2–3. PLoS ONE. 2012;7:e45114. doi: 10.1371/journal.pone.0045114.
    1. Koeneman M.M., Hendriks N., Kooreman L.F.S., Winkens B., Kruitwagen R.F.P.M., Kruse A.J. Prognostic Factors for Spontaneous Regression of High-Risk Human Papillomavirus-Positive Cervical Intra-Epithelial Neoplasia Grade 2. Int. J. Gynecol. Cancer. 2019;29:1003–1009. doi: 10.1136/ijgc-2019-000343.
    1. Jensen K.E., Schmiedel S., Norrild B., Frederiksen K., Iftner T., Kjaer S.K. Parity as a Cofactor for High-Grade Cervical Disease among Women with Persistent Human Papillomavirus Infection: A 13-Year Follow-Up. Br. J. Cancer. 2013;108:234–239. doi: 10.1038/bjc.2012.513.
    1. Muñoz N., Franceschi S., Bosetti C., Moreno V., Herrero R., Smith J.S., Shah K.V., Meijer C.J., Bosch F.X. Role of Parity and Human Papillomavirus in Cervical Cancer: The IARC Multicentric Case-Control Study. Lancet. 2002;359:1093–1101. doi: 10.1016/S0140-6736(02)08151-5.
    1. Castle P.E., Schiffman M., Wheeler C.M., Solomon D. Evidence for Frequent Regression of Cervical Intraepithelial Neoplasia–Grade 2. Obstet. Gynecol. 2009;113:18–25. doi: 10.1097/AOG.0b013e31818f5008.
    1. Kulmala S.M.A., Syrjänen S.M., Gyllensten U.B., Shabalova I.P., Petrovichev N., Tosi P., Syrjänen K.J., Johansson B.C. Early Integration of High Copy HPV16 Detectable in Women with Normal and Low Grade Cervical Cytology and Histology. J. Clin. Pathol. 2006;59:513–517. doi: 10.1136/jcp.2004.024570.
    1. Huang L.W., Chao S.L., Lee B.H. Integration of Human Papillomavirus Type-16 and Type-18 Is a Very Early Event in Cervical Carcinogenesis. J. Clin. Pathol. 2008;61:627–631. doi: 10.1136/jcp.2007.052027.
    1. Castanheira C.P., Sallas M.L., Nunes R.A.L., Lorenzi N.P.C., Termini L. Microbiome and Cervical Cancer. Pathobiology. 2021;88:187–197. doi: 10.1159/000511477.
    1. Singer M., Borg M., Ouburg S., Morré S.A. The Relation of the Vaginal Microbiota to Early Pregnancy Development during in Vitro Fertilization Treatment—A Meta-Analysis. J. Gynecol. Obstet. Hum. Reprod. 2019;48:223–229. doi: 10.1016/j.jogoh.2019.01.007.
    1. Kyrgiou M., Mitra A., Moscicki A.-B. Does the Vaginal Microbiota Play a Role in the Development of Cervical Cancer? Transl. Res. 2017;179:168–182. doi: 10.1016/j.trsl.2016.07.004.
    1. Juliana N.C.A., Suiters M.J.M., Al-Nasiry S., Morré S.A., Peters R.P.H., Ambrosino E. The Association Between Vaginal Microbiota Dysbiosis, Bacterial Vaginosis, and Aerobic Vaginitis, and Adverse Pregnancy Outcomes of Women Living in Sub-Saharan Africa: A Systematic Review. Front. Public Health. 2020;8 doi: 10.3389/fpubh.2020.567885.
    1. Łaniewski P., Ilhan Z.E., Herbst-Kralovetz M.M. The Microbiome and Gynaecological Cancer Development, Prevention and Therapy. Nat. Rev. Urol. 2020;17:232–250. doi: 10.1038/s41585-020-0286-z.
    1. Mitra A., MacIntyre D.A., Paraskevaidi M., Moscicki A.-B., Mahajan V., Smith A., Lee Y.S., Lyons D., Paraskevaidis E., Marchesi J.R., et al. The Vaginal Microbiota and Innate Immunity after Local Excisional Treatment for Cervical Intraepithelial Neoplasia. Genome Med. 2021;13:176. doi: 10.1186/s13073-021-00977-w.
    1. Al-Nasiry S., Ambrosino E., Schlaepfer M., Morré S.A., Wieten L., Voncken J.W., Spinelli M., Mueller M., Kramer B.W. The Interplay Between Reproductive Tract Microbiota and Immunological System in Human Reproduction. Front. Immunol. 2020;11:378. doi: 10.3389/fimmu.2020.00378.
    1. Valenti P., Rosa L., Capobianco D., Lepanto M.S., Schiavi E., Cutone A., Paesano R., Mastromarino P. Role of Lactobacilli and Lactoferrin in the Mucosal Cervicovaginal Defense. Front. Immunol. 2018;9:376. doi: 10.3389/fimmu.2018.00376.
    1. Łaniewski P., Herbst-Kralovetz M.M. Bacterial Vaginosis and Health-Associated Bacteria Modulate the Immunometabolic Landscape in 3D Model of Human Cervix. Npj Biofilms Microbiomes. 2021;7:88. doi: 10.1038/s41522-021-00259-8.
    1. Anahtar M.N., Byrne E.H., Doherty K.E., Bowman B.A., Yamamoto H.S., Soumillon M., Padavattan N., Ismail N., Moodley A., Sabatini M.E., et al. Cervicovaginal Bacteria Are a Major Modulator of Host Inflammatory Responses in the Female Genital Tract. Immunity. 2015;42:965–976. doi: 10.1016/j.immuni.2015.04.019.
    1. Abdulrahman Z., de Miranda N.F.C.C., Hellebrekers B.W.J., de Vos van Steenwijk P.J., van Esch E.M.G., van der Burg S.H., van Poelgeest M.I.E. A Pre-Existing Coordinated Inflammatory Microenvironment is Associated with Complete Response of Vulvar High-Grade Squamous Intraepithelial Lesions to Different Forms of Immunotherapy. Int. J. Cancer. 2020;147:2914–2923. doi: 10.1002/ijc.33168.
    1. Abdulrahman Z., de Miranda N., van Esch E.M.G., de Vos Van Steenwijk P.J., Nijman H.W., Welters J.P.M., van Poelgeest M.I.E., van der Burg S.H. Pre-Existing Inflammatory Immune Microenvironment Predicts the Clinical Response of Vulvar High-Grade Squamous Intraepithelial Lesions to Therapeutic HPV16 Vaccination. J. Immunother. Cancer. 2020;8 doi: 10.1136/jitc-2020-000563.
    1. Terlou A., van Seters M., Kleinjan A., Heijmans-Antonissen C., Santegoets L.A.M., Beckmann I., van Beurden M., Helmerhorst T.J.M., Blok L.J. Imiquimod-Induced Clearance of HPV Is Associated with Normalization of Immune Cell Counts in Usual Type Vulvar Intraepithelial Neoplasia. Int. J. Cancer. 2010;127:2831–2840. doi: 10.1002/ijc.25302.
    1. Sauder D.N. Immunomodulatory and Pharmacologic Properties of Imiquimod. J. Am. Acad. Dermatol. 2000;43:6–11. doi: 10.1067/mjd.2000.107808.
    1. Miller R.L., Gerster J.F., Owens M.L., Slade H.B., Tomai M.A. Review Article Imiquimod Applied Topically: A Novel Immune Response Modifier and New Class of Drug. Int. J. Immunopharmacol. 1999;21:1–14. doi: 10.1016/S0192-0561(98)00068-X.
    1. de Witte C.J., van de Sande A.J.M., van Beekhuizen H.J., Koeneman M.M., Kruse A.J., Gerestein C.G. Imiquimod in Cervical, Vaginal and Vulvar Intraepithelial Neoplasia: A Review. Gynecol. Oncol. 2015;139:377–384. doi: 10.1016/j.ygyno.2015.08.018.
    1. Schön M.P., Schön M. Imiquimod: Mode of Action. Br. J. Dermatol. 2007;157:8–13. doi: 10.1111/j.1365-2133.2007.08265.x.
    1. Galon J., Bruni D. Approaches to Treat Immune Hot, Altered and Cold Tumours with Combination Immunotherapies. Nat. Rev. Drug Discov. 2019;18:197–218. doi: 10.1038/s41573-018-0007-y.
    1. Gerard C.L., Delyon J., Wicky A., Homicsko K., Cuendet M.A., Michielin O. Turning Tumors from Cold to Inflamed to Improve Immunotherapy Response. Cancer Treat. Rev. 2021;101:102227. doi: 10.1016/j.ctrv.2021.102227.
    1. Chen F.P. Efficacy of Imiquimod 5% Cream for Persistent Human Papillomavirus in Genital Intraepithelial Neoplasm. Taiwan. J. Obstet. Gynecol. 2013;52:475–478. doi: 10.1016/j.tjog.2013.10.004.
    1. Lin C.T., Qiu J.T., Wang C.J., Chang S.D., Tang Y.H., Wu P.J., Jung S.M., Huang C.C., Chou H.H., Jao M.S., et al. Topical Imiquimod Treatment for Human Papillomavirus Infection in Patients with and without Cervical/Vaginal Intraepithelial Neoplasia. Taiwan. J. Obstet. Gynecol. 2012;51:533–538. doi: 10.1016/j.tjog.2012.09.006.
    1. Pachman D.R., Barton D.L., Clayton A.C., McGovern R.M., Jefferies J.A., Novotny P.J., Sloan J.A., Loprinzi C.L., Gostout B.S. Randomized Clinical Trial of Imiquimod: An Adjunct to Treating Cervical Dysplasia. Am. J. Obstet. Gynecol. 2012;206:42.e1–42.e7. doi: 10.1016/j.ajog.2011.06.105.
    1. van der Burg S.H., Arens R., Ossendorp F., van Hall T., Melief C.J.M. Vaccines for Established Cancer: Overcoming the Challenges Posed by Immune Evasion. Nat. Rev. Cancer. 2016;16:219–233. doi: 10.1038/nrc.2016.16.
    1. Welters M.J.P., Kenter G.G., Piersma S.J., Vloon A.P.G., Löwik M.J.G., Berends-van Der Meer D.M.A., Drijfhout J.W., Valentijn A.R.P.M., Wafelman A.R., Oostendorp J., et al. Induction of Tumor-Specific CD4+ and CD8+ T-Cell Immunity in Cervical Cancer Patients by a Human Papillomavirus Type 16 E6 and E7 Long Peptides Vaccine. Clin. Cancer Res. 2008;14:178–187. doi: 10.1158/1078-0432.CCR-07-1880.
    1. Frazer I.H., Quinn M., Nicklin J.L., Tan J., Perrin L.C., Ng P., O’Connor V.M., White O., Wendt N., Martin J., et al. Phase 1 Study of HPV16-Specific Immunotherapy with E6E7 Fusion Protein and ISCOMATRIXTM Adjuvant in Women with Cervical Intraepithelial Neoplasia. Vaccine. 2004;23:172–181. doi: 10.1016/j.vaccine.2004.05.013.
    1. de Vos Van Steenwijk P.J., Ramwadhdoebe T.H., Löwik M.J.G., van der Minne C.E., Berends-Van Der Meer D.M.A., Fathers L.M., Valentijn A.R.P.M., Oostendorp J., Fleuren G.J., Hellebrekers B.W.J., et al. A Placebo-Controlled Randomized HPV16 Synthetic Long-Peptide Vaccination Study in Women with High-Grade Cervical Squamous Intraepithelial Lesions. Cancer Immunol. Immunother. 2012;61:1485–1492. doi: 10.1007/s00262-012-1292-7.
    1. Kaufmann A.M., Nieland J.D., Jochmus I., Baur S., Friese K., Gabelsberger J., Gieseking F., Gissmann L., Glasschröder B., Grubert T., et al. Vaccination Trial with HPV16 L1E7 Chimeric Virus-like Particles in Women Suffering from High Grade Cervical Intraepithelial Neoplasia (CIN 2/3) Int. J. Cancer. 2007;121:2794–2800. doi: 10.1002/ijc.23022.
    1. Trimble C.L., Morrow M.P., Kraynyak K.A., Shen X., Dallas M., Yan J., Edwards L., Parker R.L., Denny L., Giffear M., et al. Safety, Efficacy, and Immunogenicity of VGX-3100, a Therapeutic Synthetic DNA Vaccine Targeting Human Papillomavirus 16 and 18 E6 and E7 Proteins for Cervical Intraepithelial Neoplasia 2/3: A Randomised, Double-Blind, Placebo-Controlled Phase 2b Trial. Lancet. 2015;386:2078–2088. doi: 10.1016/S0140-6736(15)00239-1.
    1. Maldonado L., Teague J.E., Morrow M.P., Jotova I., Wu T.C., Wang C., Desmarais C., Boyer J.D., Tycko B., Robins H.S., et al. Intramuscular Therapeutic Vaccination Targeting HPV16 Induces T Cell Responses That Localize in Mucosal Lesions. Sci. Transl. Med. 2014;6:221ra13. doi: 10.1126/scitranslmed.3007323.
    1. van Pachterbeke C., Bucella D., Rozenberg S., Manigart Y., Gilles C., Larsimont D., vanden Houte K., Reynders M., Snoeck R., Bossens M. Topical Treatment of CIN 2+ by Cidofovir: Results of a Phase II, Double-Blind, Prospective, Placebo-Controlled Study. Gynecol. Oncol. 2009;115:69–74. doi: 10.1016/j.ygyno.2009.06.042.
    1. Hurt C.N., Jones S.E.F., Madden T.A., Fiander A., Nordin A.J., Naik R., Powell N., Carucci M., Tristram A. Recurrence of Vulval Intraepithelial Neoplasia Following Treatment with Cidofovir or Imiquimod: Results from a Multicentre, Randomised, Phase II Trial (RT3VIN) BJOG Int. J. Obstet. Gynaecol. 2018;125:1171–1177. doi: 10.1111/1471-0528.15124.
    1. Tristram A., Hurt C.N., Madden T., Powell N., Man S., Hibbitts S., Dutton P., Jones S., Nordin A.J., Naik R., et al. Activity, Safety, and Feasibility of Cidofovir and Imiquimod for Treatment of Vulval Intraepithelial Neoplasia (RT3VIN): A Multicentre, Open-Label, Randomised, Phase 2 Trial. Lancet Oncol. 2014;15:1361–1368. doi: 10.1016/S1470-2045(14)70456-5.
    1. Bossens M., Jost M., van Pachterbeke C., de Maertelaer V., Simon P., Frankenne F., Hubert P., Evrard B., Snoeck R. Safety and Tolerance of Cidofovir as a 2% Gel for Local Application in High-Grade Cervical Intraepithelial Neoplasia: A Phase 1 Investigation. Int. J. Clin. Pharmacol. Ther. 2018;56:134–141. doi: 10.5414/CP203126.
    1. Snoeck R., Noel J.C., Muller C., de Clercq E., Bossens M. Cidofovir, a New Approach for the Treatment of Cervix Intraepithelial Neoplasia Grade III (CIN III) J. Med. Virol. 2000;60:205–209. doi: 10.1002/(SICI)1096-9071(200002)60:2<205::AID-JMV16>;2-8.
    1. Desravines N., Miele K., Carlson R., Chibwesha C., Rahangdale L. Topical Therapies for the Treatment of Cervical Intraepithelial Neoplasia (CIN) 2–3: A Narrative Review. Gynecol. Oncol. Rep. 2020;33:100608. doi: 10.1016/j.gore.2020.100608.
    1. Mutombo A.B., Simoens C., Tozin R., Bogers J., van Geertruyden J.P., Jacquemyn Y. Efficacy of Commercially Available Biological Agents for the Topical Treatment of Cervical Intraepithelial Neoplasia: A Systematic Review. Syst. Rev. 2019;8:132. doi: 10.1186/s13643-019-1050-4.
    1. Glaspy J.A. Pembrolizumab for the Treatment of Cervical Intraepithelial Neoplasia (NCT04712851) [(accessed on 22 February 2022)]; Available online: .
    1. Hoyt C.C. Multiplex Immunofluorescence and Multispectral Imaging: Forming the Basis of a Clinical Test Platform for Immuno-Oncology. Front. Mol. Biosci. 2021;8:674747. doi: 10.3389/fmolb.2021.674747.
    1. da Silva M., de Albuquerque B., Allyrio T., de Almeida V., Cobucci R., Bezerra F., Andrade V., Lanza D., de Azevedo J., de Araújo J., et al. The Role of HPV-induced Epigenetic Changes in Cervical Carcinogenesis (Review) Biomed. Rep. 2021;15:60. doi: 10.3892/br.2021.1436.
    1. Kremer W., Steenbergen R., Heideman D., Kenter G., Meijer C. The Use of Host Cell DNA Methylation Analysis in the Detection and Management of Women with Advanced Cervical Intraepithelial Neoplasia: A Review. BJOG Int. J. Obstet. Gynaecol. 2021;128:504–514. doi: 10.1111/1471-0528.16395.
    1. Kortekaas K.E., Santegoets S.J., Tas L., Ehsan I., Charoentong P., van Doorn H.C., van Poelgeest M.I.E., Mustafa D.A.M., van der Burg S.H. Primary Vulvar Squamous Cell Carcinomas with High T Cell Infiltration and Active Immune Signaling Are Potential Candidates for Neoadjuvant PD-1/PD-L1 Immunotherapy. J. ImmunoTher. Cancer. 2021;9:e003671. doi: 10.1136/jitc-2021-003671.
    1. Mitra A., MacIntyre D.A., Lee Y.S., Smith A., Marchesi J.R., Lehne B., Bhatia R., Lyons D., Paraskevaidis E., Li J.V., et al. Cervical Intraepithelial Neoplasia Disease Progression Is Associated with Increased Vaginal Microbiome Diversity. Sci. Rep. 2015;5:16865. doi: 10.1038/srep16865.

Source: PubMed

3
Abonnere