Citrulline Malate Does Not Improve Muscle Recovery after Resistance Exercise in Untrained Young Adult Men

Douglas K da Silva, Jeferson L Jacinto, Walquiria B de Andrade, Mirela C Roveratti, José M Estoche, Mario C W Balvedi, Douglas B de Oliveira, Rubens A da Silva, Andreo F Aguiar, Douglas K da Silva, Jeferson L Jacinto, Walquiria B de Andrade, Mirela C Roveratti, José M Estoche, Mario C W Balvedi, Douglas B de Oliveira, Rubens A da Silva, Andreo F Aguiar

Abstract

The effects of citrulline malate (CM) on muscle recovery from resistance exercise remains unknown. We aimed to determine if citrulline malate supplementation improves muscle recovery after a single session of high-intensity resistance exercise (RE) in untrained young adult men. Nine young adult men (24.0 ± 3.3 years) participated in a double-blind crossover study in which they received 6 g of CM and placebo (PL) on two occasions, separated by a seven-day washout period. Each occasion consisted of a single session of high-intensity RE (0 h) and three subsequent fatigue tests sessions (at 24, 48, and 72 h) to assess the time course of muscle recovery. During the tests sessions, we assessed the following variables: number of maximum repetitions, electromyographic signal (i.e., root mean square (RMS) and median frequency (MF)), muscle soreness and perceived exertion, as well as blood levels of creatine kinase (CK), lactate, insulin, and testosterone:cortisol ratio. CK levels increased at 24 h post-exercise and remained elevate at 48 and 72 h, with no difference between CM and PL conditions. Muscle soreness increased at 24 h post-exercise, which progressively returned to baseline at 72 h in both conditions. Lactate levels increased immediately post-exercise and remained elevated at 24, 48, and 72 h in both conditions. No significant treatment × time interaction was found for all dependents variables (maximum repetitions, perceived exertion, CK, lactate, RMS, MF, and testosterone:cortisol ratio) during the recovery period. In conclusion, our data indicate that CM supplementation (single 6 g dose pre-workout) does not improve the muscle recovery process following a high-intensity RE session in untrained young adult men.

Keywords: amino acids; exercise; protein; skeletal muscle; supplementation; weight training.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Experimental design.
Figure 2
Figure 2
Number of maximum repetitions in the leg press (A) and hack squat (B) fatigue tests during recovery period at 24, 48, and 72 h post-exercise. Citrulline malate CM, Placebo PL. Left upper figure indicates the perceived exertion—OMNI scale (0–10) immediately after each test. Right upper figure indicates the area under curve (AUC) for 3-d recovery period. (repeated-measures ANOVA: time p > 0.05; Treatment x time p > 0.05). Data are means ± SD.
Figure 3
Figure 3
Blood CK (A) and lactate (B) levels at pre- and post-exercise session, and immediately after fatigue tests during recovery (at 24, 48, and 72 h post-exercise). Citrulline malate (CM), Placebo (PL). Upper figure indicates the area under curve (AUC) from pre- to 72 h post-exercise. (Repeated-measures ANOVA: * p < 0.05 compared to pretraining). Data are means ± SD.
Figure 4
Figure 4
Serum testosterone:cortisol ratio at pre- and post-exercise, and immediately after fatigue tests during recovery (at 24, 48, and 72 h post-exercise). Citrulline malate (CM), Placebo (PL). Upper figure indicates the area under curve (AUC) from pre- to 72 h post-exercise. (Repeated-measures ANOVA: time p > 0.05; Treatment x time p > 0.05). Data are means ± SD.
Figure 5
Figure 5
RMS (A) and MF (B) values in the leg press fatigue test at 24, 48, and 72 h after exercise session. Citrulline malate (CM), Placebo (PL). Right figure indicates the area under curve (AUC) for the three-day recovery period. (Repeated-measures ANOVA: time p > 0.05; Treatment x time p > 0.05). Data are means ± SD.

References

    1. Alvares T.S., Meirelles C.I.T., Bhambhani Y.N., Paschoalin V.M., Gomes P.S. l-Arginine as a potential ergogenic aid in healthy subjects. Sports Med. 2011;41:233–248. doi: 10.2165/11538590-000000000-00000.
    1. Bendahan D., Mattei J.P., Ghattas B., Confort-Gouny S., Le Guern M.E., Cozzone P.J. Citrulline/malate promotes aerobic energy production in human exercising muscle. Br. J. Sports Med. 2002;36:282–289. doi: 10.1136/bjsm.36.4.282.
    1. Bescos R., Sureda A., Tur J.A., Pons A. The effect of nitric-oxide-related supplements on human performance. Sports Med. 2012;42:99–117. doi: 10.2165/11596860-000000000-00000.
    1. Vanuxem D., Duflot J.C., Prevot H., Bernasconi P., Blehaut H., Fornaris E., Vanuxem P. Influence of an anti- asthenia agent, citrulline malate, on serum lactate and ammonia kinetics during a maximum exercise test in sedentary subjects. Semin. Hop Paris. 1990;66:477–481.
    1. Sureda A., Pons A. Arginine and cittruline supplementation in sports and exercise: Ergogenic nutrients. Med. Sport Sci. 2012;59:18–28.
    1. Perez-Guisado J., Jakeman P.M. Citrulline malate enhances athletic anaerobic performance and relieves muscle soreness. J. Strength Cond. Res. 2010;24:1215–1222. doi: 10.1519/JSC.0b013e3181cb28e0.
    1. Wax B., Kavazis A.N., Luckett W. Effects of supplemental citrulline-malate ingestion on blood lactate, cardiovascular dynamics, and resistance exercise performance in trained males. J. Diet. Suppl. 2015;13:269–282. doi: 10.3109/19390211.2015.1008615.
    1. Glenn J., Gray M., Wethington L., Stone M., Stewart R., Moyen N. Acute citrulline-malate supplementation improves upper- and lower-body submaximal weightlifting exercise performance in resistance-trained females. Eur. J. Nutr. 2017;56:775–784. doi: 10.1007/s00394-015-1124-6.
    1. Rougé C., Des Robert C., Robins A., Le Bacquer O., Volteau C., De La Cochetière M.F., Darmaun D. Manipulation of citrulline availability in humans. Am. J. Physiol. Gastrointest. Liver Physiol. 2007;293:G1061–G1067. doi: 10.1152/ajpgi.00289.2007.
    1. Sureda A., Cordova A., Ferrer M.D., Perez G., Tur J.A., Pons A. l-Citrulline malate influence over branched chain amino acid utilization during exercise. Eur. J. Appl. Physiol. 2010;110:341–351. doi: 10.1007/s00421-010-1509-4.
    1. Thibault R., Flet L., Vavasseur F., Lemerle M., Ferchaud-Roucher V., Picot D., Darmaun D. Oral citrulline does not affect whole body protein metabolism in healthy human volunteers: Results of a prospective, randomized, double-blind, cross-over study. Clin. Nutr. 2011;30:807–811. doi: 10.1016/j.clnu.2011.06.005.
    1. Bloomer R.J. Nitric oxide supplements for sports. J. Strength Cond. Res. 2010;32:14–20. doi: 10.1519/SSC.0b013e3181bdaf89.
    1. Little J.P., Forbes S.C., Candow D.G., Cornish S.M., Chilibeck P.D. Creatine, arginine alphaketoglutarate, amino acids, and medium-chain triglycerides and endurance and performance. Int. J. Sport Nutr. Exerc. Metab. 2008;18:493–508. doi: 10.1123/ijsnem.18.5.493.
    1. Wilcock I.M., Cronin J.B., Hing W.A. Physiological response to water immersion: A method for sport recovery? Sports Med. 2006;36:747–765. doi: 10.2165/00007256-200636090-00003.
    1. Briand J., Blehaut H., Calvayrac R., Laval-Martin D. Use of a microbial model for the determination of drug effects on cell metabolism and energetics: Study of citrulline-malate. Biopharm. Drug Dispos. 1992;13:1–22. doi: 10.1002/bdd.2510130102.
    1. Curis E., Nicolis I., Moinard C., Osowska S., Zerrouk N., Benazeth S., Cynober L.A. Almost all about citrulline in mammals. Amino Acids. 2005;29:177–205. doi: 10.1007/s00726-005-0235-4.
    1. Cutrufello P.T., Gadomski S.J., Zavorsky G.S. The effect of l-citrulline and watermelon juice supplementation on anaerobic and aerobic exercise performance. J. Sports Sci. 2015;33:1459–1466. doi: 10.1080/02640414.2014.990495.
    1. Breuillard C., Cynober L., Moinard C. Citrulline and nitrogen homeostasis: An overview. Amino Acids. 2015;47:685–691. doi: 10.1007/s00726-015-1932-2.
    1. Takeda K., Machida M., Kohara A., Omi N., Takemasa T. Effects of citrulline supplementation on fatigue and exercise performance in mice. J. Nutr. Sci. Vitaminol. 2011;57:246–250. doi: 10.3177/jnsv.57.246.
    1. Thomas D.T., Erdman K.A., Burke L.M. American College of Sports Medicine Joint Position Statement. Nutrition and Athletic Performance. Med. Sci. Sports Exerc. 2016;48:543–568.
    1. American College of Sports Medicine position stand Progression models in resistance training for healthy adults. Med. Sci. Sports Exerc. 2009;41:687–708.
    1. Sureda A., Cordova A., Ferrer M.D., Tauler P., Perez G., Tur J.A., Pons A. Effects of L-citrulline oral supplementation on polymorphonuclear neutrophils oxidative burst and nitric oxide production after exercise. Free Radic. Res. 2009;43:828–835. doi: 10.1080/10715760903071664.
    1. Robertson R.J., Goss F.L., Rutkowski J., Lenz B., Dixon C., Timmer J., Frazee K., Dube J., Andreacci J. Concurrent validation of the OMNI perceived exertion scale for resistance exercise. Med. Sci. Sport Exerc. 2003;35:333–341. doi: 10.1249/01.MSS.0000048831.15016.2A.
    1. Day M.L., McGuigan M.R., Brice G., Foster C. Monitoring exercise intensity during resistance training using the session RPE scale. J. Strength Cond Res. 2004;18:353–358.
    1. Mattacola C.G., Perrin D.H., Gansneder B.M., Allen J.D., Mickey C.A. A comparison of visual analog and graphic rating scales for assessing pain following delayed onset muscle soreness. J. Sport Rehabil. 1997;6:38–46. doi: 10.1123/jsr.6.1.38.
    1. Aguiar A.F., Buzzachera C.F., Pereira R.M., Sanches V.C., Januário R.B., da Silva R.A., Rabelo L.M., de Oliveira Gil A.W. A single set of exhaustive exercise before resistance training improves muscular performance in young men. Eur. J. Appl. Physiol. 2015;115:1589–1599. doi: 10.1007/s00421-015-3150-8.
    1. Larivière C., Arsenault A.B., Gravel D., Gagnon D., Loisel P. Evaluation of measurement strategies to increase the reliability of EMG spectral indices to assess back muscle fatigue and recovery. J. Electromyogr. Kinesiol. 2002;12:91–102. doi: 10.1016/S1050-6411(02)00011-1.
    1. Kienbacher T., Habenicht R., Starek C., Mair P., Wolf M., Paul B., Riegler S., Kollmitzer J., Ebenbichler G. The potential use of spectral electromyographic fatigue as a screening and outcome monitoring tool of sarcopenic back muscle alterations. J. NeuroEng. Rehabil. 2014;11:1–12. doi: 10.1186/1743-0003-11-106.
    1. Da Silva R.A., Vieira E.R., Cabrera M., Altimari L.R., Aguiar A.F., Nowotny A.H., Carvalho A.F., Oliveira M. Back muscle fatigue of younger and older adults with and without chronic low back pain using two protocols: A case-control study. J. Electromyogr. Kinesiol. 2015;25:928–936. doi: 10.1016/j.jelekin.2015.10.003.
    1. Nakagawa S., Cuthill I.C. Effect size, confidence interval and statistical significance: A practical guide for biologists. Biol. Rev. Camb. Philos. Soc. 2007;82:591–605. doi: 10.1111/j.1469-185X.2007.00027.x.
    1. Page P. Beyond statistical significance: Clinical interpretation of rehabilitation research literature. Int. J. Sports Phys. Ther. 2014;9:726–736.
    1. Batterham A.M., Hopkins W.G. Making meaningful inferences about magnitudes. Int. J. Sports Physiol. Perform. 2006;1:50–57. doi: 10.1123/ijspp.1.1.50.
    1. Wilkinson M. Distinguishing between statistical significance and practical/clinical meaningfulness using statistical inference. Sports Med. 2014;44:295–301. doi: 10.1007/s40279-013-0125-y.
    1. Hopkins W.G., Marshall S.W., Batterham A.M., Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009;41:3–13. doi: 10.1249/MSS.0b013e31818cb278.
    1. Cohen J. Statistical Power Analysis for Behavioral Sciences. 1st ed. Academic Press; New York, NY, USA: 1977. p. 490.
    1. Levillain O., Parvy P., Hassler C. Amino acid handling in uremic rats: Citrulline, a reliable marker of renal insufficiency and proximal tubular dysfunction. Metabolism. 1997;46:611–618. doi: 10.1016/S0026-0495(97)90002-0.
    1. Byrne C., Twist C., Eston R. Neuromuscular function after exercise-induced muscle damage: Theoretical and applied implications. Sports Med. 2004;34:49–69. doi: 10.2165/00007256-200434010-00005.
    1. Churchward-Venne T.A., Cotie L.M., MacDonald M.J., Mitchell C.J., Prior T., Baker S.K., Phillips S.M. Citrulline does not enhance blood flow, microvascular circulation, or myofibrillar protein synthesis in elderly men at rest or following exercise. Am. J. Physiol. Endocrinol. Metab. 2014;307:E71–E83. doi: 10.1152/ajpendo.00096.2014.
    1. De Luca C.J. Use of the surface EMG signal for performance evaluation of back muscles. Muscle Nerve. 1993;16:210–216. doi: 10.1002/mus.880160216.
    1. Arab A.M., Salavati M. Sensitivity, specificity and predictive value of the clinical trunk muscle endurance tests in low back pain. Clin. Rehabil. 2007;21:640–647. doi: 10.1177/0269215507076353.
    1. Da Silva R.A., Lariviere C., Arsenault A.B., Nadeau S., Plamondon A. The comparison of wavelet- and Fourier-based electromyographic indices of back muscle fatigue during dynamic contractions: Validity and reliability results. Electromyogr. Clin. Neurophysiol. 2008;48:147–162.
    1. Adam A., De Luca C.J. Recruitment order of motor units in human vastus lateralis muscle is maintained during fatiguing contraction. J. Neurophysiol. 2003;90:2919–2927. doi: 10.1152/jn.00179.2003.
    1. Nosaka K., Newton M., Sacco P. Delayed-onset muscle soreness does not reflect the magnitude of eccentric exercise-induced muscle damage. Scan J. Med. Sci. Sports. 2002;12:337–346. doi: 10.1034/j.1600-0838.2002.10178.x.
    1. Moinard C., Nicolis I., Neveux N., Darquy S., Bénazeth S., Cynober L. Dose-ranging effects of citrulline administration on plasma amino acids and hormonal patterns in healthy subjects: The Citrudose pharmacokinetic study. Br. J. Nutr. 2008;99:855–862. doi: 10.1017/S0007114507841110.

Source: PubMed

3
Abonnere