Development of an automated PD-L1 immunohistochemistry (IHC) assay for non-small cell lung cancer

Therese Phillips, Pauline Simmons, Hector D Inzunza, John Cogswell, James Novotny Jr, Clive Taylor, Xiaoling Zhang, Therese Phillips, Pauline Simmons, Hector D Inzunza, John Cogswell, James Novotny Jr, Clive Taylor, Xiaoling Zhang

Abstract

Nivolumab, a fully human IgG4 programmed death 1 (PD-1) immune checkpoint inhibitor antibody, developed by Bristol-Myers Squibb Inc., has activity across non-small cell lung cancer (NSCLC) histologies and is Food and Drug Administration approved for treatment of metastatic squamous NSCLC with progression on or after platinum-based chemotherapy. PD-L1 has been investigated as a potential biomarker to predict clinical response to nivolumab in clinical settings. We report an automated PD-L1 immunohistochemistry (IHC) assay, which was developed to detect cell surface PD-L1 in formalin-fixed paraffin-embedded human tumor tissue specimens using Dako's Autostainer Link 48. The primary antibody for this assay is a rabbit monoclonal anti-human PD-L1 antibody, clone 28-8. The specificity of 28-8 for PD-L1 was demonstrated by antigen competition and genetic deletion of PD-L1 in tumor cell lines. The specificity of the PD-L1 IHC assay was further evaluated in a collection of 30 normal human tissues. The PD-L1 IHC assay was optimized for high sensitivity and precision in routine application. A pathology scoring and interpretation method specific to nivolumab clinical studies was adopted for the assay. The analytical performance of the assay was validated for application in the determination of PD-L1 status in human NSCLC specimens. The clinical application of the assay and scoring method was further validated in 3 Clinical Laboratory Improvement Amendments certified labs. The assay is currently being investigated in a variety of clinical studies for use as an in vitro diagnostic to select and stratify patients for treatment with the anti-PD-1 therapeutic antibody, nivolumab.

Conflict of interest statement

C.T. is a consultant to Dako North America contracted through Keck School of Medicine of the University of Southern California. The remaining authors declare no conflict of interest.

Figures

FIGURE 1
FIGURE 1
Positive PD-L1 membrane staining in NSCLC tumor tissues illustrating intensity grades (top, ×20) and PD-L1 tumor scores (bottom, ×40). NSCLC indicates non–small cell lung cancer; PD-L1, programmed cell death 1 ligand 1.
FIGURE 2
FIGURE 2
Photomicrographs (×40) of HT-29 parental and PD-L1 overexpressing FFPE cell pellets stained by the PD-L1 IHC assay with and without antigen competition. FFPE indicates formalin-fixed paraffin-embedded; IHC, immunohistochemistry; NCR, negative control reagent; PD-L1, programmed cell death 1 ligand 1.
FIGURE 3
FIGURE 3
Photomicrographs (×40) of parental and PD-L1 knock-out (KO)-stable FFPE cell pellets stained by the PD-L1 IHC assay. FFPE indicates formalin-fixed paraffin-embedded; IHC, immunohistochemistry; NCR, negative control reagent; PD-L1, programmed cell death 1 ligand 1.

References

    1. Dong H, Zhu G, Tamada K, et al. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med. 1999;5:1365–1369.
    1. Freeman GJ, Long AJ, Iwai Y, et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med. 2000;192:1027–1034.
    1. Rizvi NA, Mazières J, Planchard D, et al. Activity and safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung cancer (CheckMate 063): a phase 2, single-arm trial. Lancet Oncol. 2015;16:257–265.
    1. Weber JS, D’Angelo SP, Minor D, et al. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2015;16:375–384.
    1. Robert C, Long GV, Brady B, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372:320–330.
    1. Spigel DR, Reckamp KL, Rizvi NA, et al. A phase III study (CheckMate 017) of nivolumab (NIVO; anti-programmed death-1 [PD-1]) vs. docetaxel (DOC) in previously treated advanced or metastatic squamous (SQ) cell non-small cell lung cancer (NSCLC). J Clin Oncol. 2015;33(suppl): abstract 8009.
    1. Paz-Ares L, Horn L, Borghaei H, et al. Phase III, randomized trial (CheckMate 057) of nivolumab (NIVO) versus docetaxel (DOC) in advanced non-squamous cell (non-SQ) non-small cell lung cancer (NSCLC). J Clin Oncol. 2015;33(suppl): abstract LBA109.
    1. Dong H, Strome SE, Salomao DR, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med. 2002;8:793–800.
    1. Brown JA, Dorfman DM, Ma FR, et al. Blockade of programmed death-1 ligands on dendritic cells enhances T cell activation and cytokine production. J Immunol. 2003;170:1257–1266.
    1. Konishi J, Yamazaki K, Azuma M, et al. B7-H1 expression on non-small cell lung cancer cells and its relationship with tumor-infiltrating lymphocytes and their PD-1 expression. Clin Cancer Res. 2004;10:5094–5100.
    1. Mu C-Y, Huang J-A, Chen Y, et al. High expression of PD-L1 in lung cancer may contribute to poor prognosis and tumor cells immune escape through suppressing tumor infiltrating dendritic cells maturation. Med Oncol. 2011;28:682–688.
    1. Boland JM, Kwon ED, Harrington SM, et al. Tumor B7-H1 and B7-H3 expression in squamous cell carcinoma of the lung. Clin Lung Cancer. 2013;14:157–163.
    1. Chen YB, Mu CY, Huang JA. Clinical significance of programmed death-1 ligand-1 expression in patients with non-small cell lung cancer: a 5-year-follow-up study. Tumori. 2012;98:751–755.
    1. Velcheti V, Schalper KA, Carvajal DE, et al. Programmed death ligand-1 expression in non-small cell lung cancer. Lab Invest. 2014;94:107–116.
    1. Grosso J, Inzunza DH, Wu Q, et al. Programmed death-ligand 1 (PD-L1) expression in various tumor types. J Immunother Cancer. 2013;1(suppl 1):P53.
    1. Antonia SJ, Grosso JF, Horak CE, et al. Association of tumor pd-l1 expression and immune biomarkers with clinical activity in patients with non-small cell lung cancer (NSCLC) treated with nivolumab. J Thoracic Oncology. 2013;8(suppl 2):P907.
    1. Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366:2443–2454.
    1. Taube JM, Klein A, Brahmer JR, et al. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res. 2014;20:5064–5074.
    1. Miller JC, Tan S, Qiao G, et al. A TALE nuclease architecture for efficient genome editing. Nat Biotechnol. 2011;29:143–148.
    1. CLSI. Quality assurance for design control and implementation of immunohistochemistry assays; approved guideline—second edition. I/LA28-A2, Vol. 19 No. 26:112–113.
    1. Immunoscore. Immunoscore as a new possible approach for cancer classification. Available at: . Accessed May 28, 2015.

Source: PubMed

3
Abonnere