Enhanced Efficacy of a Codon-Optimized DNA Vaccine Encoding the Glycoprotein Precursor Gene of Lassa Virus in a Guinea Pig Disease Model When Delivered by Dermal Electroporation

Kathleen A Cashman, Kate E Broderick, Eric R Wilkinson, Carl I Shaia, Todd M Bell, Amy C Shurtleff, Kristin W Spik, Catherine V Badger, Mary C Guttieri, Niranjan Y Sardesai, Connie S Schmaljohn, Kathleen A Cashman, Kate E Broderick, Eric R Wilkinson, Carl I Shaia, Todd M Bell, Amy C Shurtleff, Kristin W Spik, Catherine V Badger, Mary C Guttieri, Niranjan Y Sardesai, Connie S Schmaljohn

Abstract

Lassa virus (LASV) causes a severe, often fatal, hemorrhagic fever endemic to West Africa. Presently, there are no FDA-licensed medical countermeasures for this disease. In a pilot study, we constructed a DNA vaccine (pLASV-GPC) that expressed the LASV glycoprotein precursor gene (GPC). This plasmid was used to vaccinate guinea pigs (GPs) using intramuscular electroporation as the delivery platform. Vaccinated GPs were protected from lethal infection (5/6) with LASV compared to the controls. However, vaccinated GPs experienced transient viremia after challenge, although lower than the mock-vaccinated controls. In a follow-on study, we developed a new device that allowed for both the vaccine and electroporation pulse to be delivered to the dermis. We also codon-optimized the GPC sequence of the vaccine to enhance expression in GPs. Together, these innovations resulted in enhanced efficacy of the vaccine. Unlike the pilot study where neutralizing titers were not detected until after virus challenge, modest neutralizing titers were detected in guinea pigs before challenge, with escalating titers detected after challenge. The vaccinated GPs were never ill and were not viremic at any timepoint. The combination of the codon-optimized vaccine and dermal electroporation delivery is a worthy candidate for further development.

Keywords: Lassa fever; Lassa virus; arenavirus; dermal electroporation; guinea pigs; vaccination; vaccine.

Figures

Figure 1
Figure 1
Plasmid Map and Immunoprecipitation and polyacrylamide gel electrophoresis (PAGE) of radiolabeled LASV strain Josiah glycoprotein precursor (GPC, 76 KD). (A) Map of pLASV-GPC cloned into the pWRG7077 vaccine plasmid. (B) Radioimmunoprecipitation and PAGE of LASV GPC and GP2 from COS-7 cell lysate. Expression products from COS-7 cells transfected with (Lane 1) empty vaccine plasmid pWRG7077 or (Lane 2) recombinant pLASV-GPC, and immunoprecipitated with LASV-immune guinea pig serum. The sizes of molecular weight markers M and the location of bands corresponding to GPC and GP2 are indicated.
Figure 2
Figure 2
Outcomes for IMEP study using the non-optimized LASV DNA construct. (A) Survival curve; (B) Serum viremia as measured by plaque assay; (C) Morbidity score based on observed disease signs.
Figure 3
Figure 3
Outcomes for dermal versus muscle electroporation using the codon-optimized LASV DNA construct. (A) Survival curve; (B) Serum viremia as measured by plaque assay; (C) Average body temperature changes as a function of time postinfection, and (D) Morbidity score based on observed disease signs. The grey bar indicates the normal body temperature range for guinea pigs.
Figure 4
Figure 4
Immunohistochemistry staining for LASV antigen in selected tissues of mock-vaccinated or ELGEN-MID-vaccinated guinea pigs. (A) Viral antigen staining of a mock-vaccinated lymph node (40×); (B) lymph node of a ELGEN-MID-vaccinated animal showing lymphoid hyperplasia and a lack of viral staining (20×); (C) Viral antigen staining of a mock-vaccinated spleen (40×); (D) Splenic white pulp hyperplasia in a ELGEN-MID-vaccinated guinea pig (40×); (E) Viral antigen staining of a mock-vaccinated adrenal gland (10×); (F) A lack of viral antigen staining of a ELGEN-MID-vaccinated adrenal gland (10×); (G) Viral antigen staining of a mock-vaccinated liver (20×); (H) A lack of viral antigen staining of a ELGEN-MID-vaccinated liver (10×); (I) Viral antigen staining of a mock-vaccinated kidney (20×); (J) A lack of viral antigen staining of a ELGEN-MID-vaccinated kidney (10×).
Figure 5
Figure 5
Outcome of backchallenge experiment. (A) Survival curve; (B) Average weights postchallenge; and (C) Average temperatures post-challenge for animals enrolled in the backchallenge experiment.

References

    1. Buchmeier M.J., de la Torre J.C., Peters C.J. Arenaviridae: The viruses and their replication. In: Knipe D.M., Howley P.M., Griffin D.E., Lamb R.A., Martin A., Roizman B., Straus S.E., editors. Fields Virology. 5th ed. Lippincott, Williams & Wilkins; New York, NY, USA: 2007. pp. 1792–1827.
    1. Fisher-Hoch S.P., McCormick J.B. Towards a human Lassa fever vaccine. Rev. Med. Virol. 2001;11:331–341. doi: 10.1002/rmv.329.
    1. Fisher-Hoch S.P., McCormick J.B. Lassa fever vaccine. Expert Rev. Vaccines. 2004;3:189–197. doi: 10.1586/14760584.3.2.189.
    1. Cummins D., McCormick J.B., Bennett D., Samba J.A., Farrar B., Machin S.J., Fisher-Hoch S.P. Acute sensorineural deafness in Lassa fever. JAMA. 1990;264:2093–2096. doi: 10.1001/jama.1990.03450160063030.
    1. Bausch D.G., Rollin P.E., Demby A.H., Coulibaly M., Kanu J., Conteh A.S., Wagoner K.D., McMullan L.K., Bowen M.D., Peters C.J., et al. Diagnosis and clinical virology of Lassa fever as evaluated by enzyme-linked immunosorbent assay, indirect fluorescent-antibody test, and virus isolation. J. Clin. Microbiol. 2000;38:2670–2677.
    1. Baize S., Marianneau P., Loth P., Reynard S., Journeaux A., Chevallier M., Tordo N., Deubel V., Contamin H. Early and strong immune responses are associated with control of viral replication and recovery in lassa virus-infected cynomolgus monkeys. J. Virol. 2009;83:5890–5903. doi: 10.1128/JVI.01948-08.
    1. Hensley L.E., Smith M.A., Geisbert J.B., Fritz E.A., Daddario-DiCaprio K.M., Larsen T., Geisbert T.W. Pathogenesis of Lassa fever in cynomolgus macaques. Virol. J. 2011;8:205. doi: 10.1186/1743-422X-8-205.
    1. McCormick J.B., King I.J., Webb P.A., Scribner C.L., Craven R.B., Johnson K.M., Elliott L.H., Belmont-Williams R. Lassa fever. Effective therapy with ribavirin. N. Engl. J. Med. 1986;314:20–26. doi: 10.1056/NEJM198601023140104.
    1. Grant-Klein R.J., Altamura L.A., Schmaljohn C.S. Progress in recombinant DNA-derived vaccines for Lassa virus and filoviruses. Virus Res. 2011;162:148–161. doi: 10.1016/j.virusres.2011.09.005.
    1. Lukashevich I.S. Advanced vaccine candidates for Lassa fever. Viruses. 2012;4:2514–2557. doi: 10.3390/v4112514.
    1. Fisher-Hoch S.P., Hutwagner L., Brown B., McCormick J.B. Effective vaccine for lassa fever. J. Virol. 2000;74:6777–6783. doi: 10.1128/JVI.74.15.6777-6783.2000.
    1. Geisbert T.W., Jones S., Fritz E.A., Shurtleff A.C., Geisbert J.B., Liebscher R., Grolla A., Stroher U., Fernando L., Daddario K.M., et al. Development of a new vaccine for the prevention of Lassa fever. PLoS Med. 2005;2:e183. doi: 10.1371/journal.pmed.0020183.
    1. Bredenbeek P.J., Molenkamp R., Spaan W.J., Deubel V., Marianneau P., Salvato M.S., Moshkoff D., Zapata J., Tikhonov I., Patterson J., et al. A recombinant Yellow Fever 17D vaccine expressing Lassa virus glycoproteins. Virology. 2006;345:299–304. doi: 10.1016/j.virol.2005.12.001.
    1. Jiang X., Dalebout T.J., Bredenbeek P.J., Carrion R., Jr., Brasky K., Patterson J., Goicochea M., Bryant J., Salvato M.S., Lukashevich I.S. Yellow fever 17D-vectored vaccines expressing Lassa virus GP1 and GP2 glycoproteins provide protection against fatal disease in guinea pigs. Vaccine. 2011;29:1248–1257. doi: 10.1016/j.vaccine.2010.11.079.
    1. Pushko P., Geisbert J., Parker M., Jahrling P., Smith J. Individual and bivalent vaccines based on alphavirus replicons protect guinea pigs against infection with Lassa and Ebola viruses. J. Virol. 2001;75:11677–11685. doi: 10.1128/JVI.75.23.11677-11685.2001.
    1. Branco L.M., Grove J.N., Geske F.J., Boisen M.L., Muncy I.J., Magliato S.A., Henderson L.A., Schoepp R.J., Cashman K.A., Hensley L.E., et al. Lassa virus-like particles displaying all major immunological determinants as a vaccine candidate for Lassa hemorrhagic fever. Virol. J. 2010;7:279. doi: 10.1186/1743-422X-7-279.
    1. Tjelle T.E., Salte R., Mathiesen I., Kjeken R. A novel electroporation device for gene delivery in large animals and humans. Vaccine. 2006;24:4667–4670. doi: 10.1016/j.vaccine.2005.08.068.
    1. National Research Council Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the Care and Use of Laboratory Animals. 8th ed. The National Academies Press; Washington, DC, USA: 2011.
    1. Hooper J.W., Kamrud K.I., Elgh F., Custer D., Schmaljohn C.S. DNA vaccination with hantavirus M segment elicits neutralizing antibodies and protects against seoul virus infection. Virology. 1999;255:269–278. doi: 10.1006/viro.1998.9586.
    1. Lenz O., ter Meulen J., Klenk H.D., Seidah N.G., Garten W. The Lassa virus glycoprotein precursor GP-C is proteolytically processed by subtilase SKI-1/S1P. Proc. Natl. Acad. Sci. USA. 2001;98:12701–12705. doi: 10.1073/pnas.221447598.
    1. Schmaljohn C., Vanderzanden L., Bray M., Custer D., Meyer B., Li D., Rossi C., Fuller D., Fuller J., Haynes J., et al. Naked DNA vaccines expressing the prM and E genes of Russian spring summer encephalitis virus and Central European encephalitis virus protect mice from homologous and heterologous challenge. J. Virol. 1997;71:9563–9569.
    1. Hirao L.A., Draghia-Akli R., Prigge J.T., Yang M., Satishchandran A., Wu L., Hammarlund E., Khan A.S., Babas T., Rhodes L., et al. Multivalent smallpox DNA vaccine delivered by intradermal electroporation drives protective immunity in nonhuman primates against lethal monkeypox challenge. J. Infect. Dis. 2011;203:95–102. doi: 10.1093/infdis/jiq017.
    1. Laddy D.J., Yan J., Khan A.S., Andersen H., Cohn A., Greenhouse J., Lewis M., Manischewitz J., King L.R., Golding H., et al. Electroporation of synthetic DNA antigens offers protection in nonhuman primates challenged with highly pathogenic avian influenza virus. J. Virol. 2009;83:4624–4630. doi: 10.1128/JVI.02335-08.
    1. Dupuy L.C., Richards M.J., Ellefsen B., Chau L., Luxembourg A., Hannaman D., Livingston B.D., Schmaljohn C.S. A DNA vaccine for venezuelan equine encephalitis virus delivered by intramuscular electroporation elicits high levels of neutralizing antibodies in multiple animal models and provides protective immunity to mice and nonhuman primates. Clin. Vaccine Immunol. 2011;18:707–716. doi: 10.1128/CVI.00030-11.
    1. Jahrling P.B., Smith S., Hesse R.A., Rhoderick J.B. Pathogenesis of Lassa virus infection in guinea pigs. Infect. Immun. 1982;37:771–778.
    1. Amanna I.J., Messaoudi I., Slifka M.K. Protective immunity following vaccination: How is it defined? Hum. Vaccines. 2008;4:316–319. doi: 10.4161/hv.4.4.5751.
    1. Plotkin S.A. Immunologic correlates of protection induced by vaccination. Pediatr. Infect. Dis. J. 2001;20:63–75. doi: 10.1097/00006454-200101000-00013.
    1. Enria D.A., Mills J.N., Bausch D.G., Shieh W.J., Peters C.J. Arenavirus infections. In: Guerrant R.L., Walker D.H., Weller P.F., editors. Tropical Infectious Diseases: Principles, Pathogens & Practice. 3rd ed. Elsevier; New York, NY, USA: 2011. p. 1130.
    1. Fisher-Hoch S.P., McCormick J.B., Auperin D., Brown B.G., Castor M., Perez G., Ruo S., Conaty A., Brammer L., Bauer S. Protection of rhesus monkeys from fatal Lassa fever by vaccination with a recombinant vaccinia virus containing the Lassa virus glycoprotein gene. Proc. Natl. Acad. Sci. USA. 1989;86:317–321. doi: 10.1073/pnas.86.1.317.
    1. McDonnell W.M., Askari F.K. DNA vaccines. N. Engl. J. Med. 1996;334:42–45. doi: 10.1056/NEJM199601043340110.
    1. Dean H.J. Epidermal delivery of protein and DNA vaccines. Expert Opin. Drug Deliv. 2005;2:227–236. doi: 10.1517/17425247.2.2.227.
    1. Fuller D.H., Loudon P., Schmaljohn C. Preclinical and clinical progress of particle-mediated DNA vaccines for infectious diseases. Methods. 2006;40:86–97. doi: 10.1016/j.ymeth.2006.05.022.
    1. Sardesai N.Y., Weiner D.B. Electroporation delivery of DNA vaccines: Prospects for success. Curr. Opin. Immunol. 2011;23:421–429. doi: 10.1016/j.coi.2011.03.008.
    1. Kutzler M.A., Weiner D.B. Developing DNA vaccines that call to dendritic cells. J. Clin. Invest. 2004;114:1241–1244.
    1. Hirao L.A., Wu L., Khan A.S., Satishchandran A., Draghia-Akli R., Weiner D.B. Intradermal/subcutaneous immunization by electroporation improves plasmid vaccine delivery and potency in pigs and rhesus macaques. Vaccine. 2008;26:440–448. doi: 10.1016/j.vaccine.2007.10.041.
    1. Kutzler M.A., Weiner D.B. DNA vaccines: Ready for prime time? Nat. Rev. Genet. 2008;9:776–788. doi: 10.1038/nrg2432.
    1. Gaffal E., Schweichel D., Tormo D., Steitz J., Lenz J., Basner-Tschakarjan E., Limmer A., Tuting T. Comparative evaluation of CD8+CTL responses following gene gun immunization targeting the skin with intracutaneous injection of antigen-transduced dendritic cells. Eur. J. Cell Biol. 2007;86:817–826. doi: 10.1016/j.ejcb.2006.07.002.
    1. Peachman K.K., Rao M., Alving C.R. Immunization with DNA through the skin. Methods. 2003;31:232–242. doi: 10.1016/S1046-2023(03)00137-3.
    1. Sudowe S., Dominitzki S., Montermann E., Bros M., Grabbe S., Reske-Kunz A.B. Uptake and presentation of exogenous antigen and presentation of endogenously produced antigen by skin dendritic cells represent equivalent pathways for the priming of cellular immune responses following biolistic DNA immunization. Immunology. 2009;128:e193–e205. doi: 10.1111/j.1365-2567.2008.02947.x.

Source: PubMed

3
Abonnere