Sleep Apnea, Hypertension and the Sympathetic Nervous System in the Adult Population

Shreyas Venkataraman, Soumya Vungarala, Naima Covassin, Virend K Somers, Shreyas Venkataraman, Soumya Vungarala, Naima Covassin, Virend K Somers

Abstract

Sleep apnea is very common in patients with cardiovascular disease, especially in patients with hypertension. Over the last few decades a number of discoveries have helped support a causal relationship between the two and even resistant hypertension. The role neurogenic mechanisms play has gathered more attention in the recent past due to their immediate bedside utility. Several innovative discoveries in pathogenesis including those exploring the role of baroreflex gain, cardiovascular variability, chemoreceptor reflex activation and the sympathetic nervous system have emerged. In this review, we discuss the epidemiology of sleep apnea and hypertension and the pathogenic mechanisms contributing to neurogenic hypertension. Furthermore, recent management strategies in addition to continuous positive airway pressure (CPAP), such as upper airway stimulation and renal denervation that target these pathogenic mechanisms, are also discussed.

Keywords: hypertension; neurogenic; obstructive sleep apnea; resistant hypertension; sleep apnea; sympathetic nervous system.

Conflict of interest statement

Dr. Virend Somers serves as a consultant for Respicardia; Bayer; Roche; Jazz Pharmaceuticals; Sleep Number and Baker Tilly.

References

    1. Javaheri S., Barbe F., Campos-Rodriguez F., Dempsey J.A., Khayat R., Javaheri S., Malhotra A., Martinez-Garcia M.A., Mehra R. Sleep Apnea. J. Am. Coll. Cardiol. 2017;69:841–858. doi: 10.1016/j.jacc.2016.11.069.
    1. Somers V., Javaheri S. Principles and Practices of Sleep Medicine. 6th ed. Elsevier Inc.; New York, NY, USA: 2017. Cardiovascular effects of sleep-related breathing disorders; pp. 1243–1252.
    1. Narkiewicz K., Somers V.K. Obstructive sleep apnea as a cause of neurogenic hypertension. Curr. Hypertens. Rep. 1999;1:268–273. doi: 10.1007/s11906-999-0032-7.
    1. Logan A.G., Perlikowski S.M., Mente A., Tisler A., Tkacova R., Niroumand M., Leung R.S.T., Bradley T.D. High prevalence of unrecognized sleep apnoea in drug-resistant hypertension. J. Hypertens. 2001;19:2271–2277. doi: 10.1097/00004872-200112000-00022.
    1. Schwab R.J., Pasirstein M., Pierson R., Mackley A., Hachadoorian R., Arens R., Maislin G., Pack A.I. Identification of Upper Airway Anatomic Risk Factors for Obstructive Sleep Apnea with Volumetric Magnetic Resonance Imaging. Am. J. Respir. Crit. Care Med. 2003;168:522–530. doi: 10.1164/rccm.200208-866OC.
    1. White D.P. Pathogenesis of obstructive and central sleep apnea. Am. J. Respir. Crit. Care Med. 2005;172:1363–1370. doi: 10.1164/rccm.200412-1631SO.
    1. Fogel R.B., Trinder J., Malhotra A., Stanchina M., Edwards J.K., Schory K.E., White D.P. Within-Breath Control of Genioglossal Muscle Activation in Humans: Effect of Sleep-Wake State. J. Physiol. 2003;550:899–910. doi: 10.1113/jphysiol.2003.038810.
    1. Heinzer R.C., Stanchina M.L., Malhotra A., Jordan A.S., Patel S.R., Lo Y.L., Wellman A., Schory K., Dover L., White D.P. Effect of increased lung volume on sleep disordered breathing in patients with sleep apnoea. Thorax. 2006;61:435–439. doi: 10.1136/thx.2005.052084.
    1. Myers K.A., Mrkobrada M., Simel D.L. Does this patient have obstructive sleep apnea? The Rational Clinical Examination systematic review. J. Am. Med. Assoc. 2013;310:731–741. doi: 10.1001/jama.2013.276185.
    1. Peppard P.E., Young T., Barnet J.H., Palta M., Hagen E.W., Hla K.M. Increased Prevalence of Sleep-Disordered Breathing in Adults. Am. J. Epidemiol. 2013;177:1006–1014. doi: 10.1093/aje/kws342.
    1. Redline S., Tishler P.V., Hans M.G., Tosteson T.D., Strohl K.P., Spry K. Racial differences in sleep-disordered breathing in African-Americans and Caucasians. Am. J. Respir. Crit. Care Med. 1997;155:186–192. doi: 10.1164/ajrccm.155.1.9001310.
    1. Somers V.K., White D.P., Amin R., Abraham W.T., Costa F., Culebras A., Daniels S., Floras J.S., Hunt C.E., Olson L.J. Sleep Apnea and Cardiovascular Disease. J. Am. Coll. Cardiol. 2008;52:686–717. doi: 10.1016/j.jacc.2008.05.002.
    1. Peppard P.E., Young T., Palta M., Skatrud J. Prospective study of the association between sleep-disordered breathing and hypertension. New Engl. J. Med. 2000;342:1378–1384. doi: 10.1056/NEJM200005113421901.
    1. Roche F., Pépin J.-L., Achour-Crawford E., Tamisier R., Pichot V., Celle S., Maudoux D., Chouchou F., Ntougou-Assoumou H.G., Lévy P. At 68 years, unrecognised sleep apnoea is associated with elevated ambulatory blood pressure. Eur. Respir. J. 2012;40:649–656. doi: 10.1183/09031936.00162710.
    1. Cereda C.W., Tamisier R., Manconi M., Andreotti J., Frangi J., Pifferini V., Bassetti C.L. Endothelial dysfunction and arterial stiffness in ischemic stroke: The role of sleep-disordered breathing. Stroke. 2013;44:1175–1178. doi: 10.1161/STROKEAHA.111.000112.
    1. Valham F., Mooe T., Rabben T., Stenlund H., Wiklund U., Franklin K.A. Increased Risk of Stroke in Patients With Coronary Artery Disease and Sleep Apnea. Circulation. 2008;118:955–960. doi: 10.1161/CIRCULATIONAHA.108.783290.
    1. Seller H. Carl Ludwig and the localization of the medullary vasomotor center: Old and new concepts of the generation of sympathetic tone. Pflug. Arch. Eur. J. Physiol. 1996;432:R94–R98.
    1. Haselton J.R., Guyenet P.G. Central respiratory modulation of medullary sympathoexcitatory neurons in rat. Am. J. Physiol. 1989;256:R739–R750. doi: 10.1152/ajpregu.1989.256.3.R739.
    1. Zoccal D.B., Machado B.H. Coupling between respiratory and sympathetic activities as a novel mechanism underpinning neurogenic hypertension. Curr. Hypertens. Rep. 2011;13:229–236. doi: 10.1007/s11906-011-0198-7.
    1. Moraes D.J.A., Zoccal D.B., Machado B.H. Medullary Respiratory Network Drives Sympathetic Overactivity and Hypertension in Rats Submitted to Chronic Intermittent Hypoxia. Hypertension. 2012;60:1374–1380. doi: 10.1161/HYPERTENSIONAHA.111.189332.
    1. Wallin B.G., Sundlof G., Eriksson B.M., Dominiak P., Grobecker H., Lindblad L.E. Plasma noradrenaline correlates to sympathetic muscle nerve activity in normotensive man. Acta Physiol. Scand. 1981;111:69–73. doi: 10.1111/j.1748-1716.1981.tb06706.x.
    1. Somers V.K., Dyken M.E., Mark A.L., Abboud F.M. Sympathetic-Nerve Activity during Sleep in Normal Subjects. New Engl. J. Med. 1993;328:303–307. doi: 10.1056/NEJM199302043280502.
    1. Narkiewicz K., van de Borne P.J., Montano N., Dyken M.E., Phillips B.G., Somers V.K. Contribution of tonic chemoreflex activation to sympathetic activity and blood pressure in patients with obstructive sleep apnea. Circulation. 1998;97:943–945. doi: 10.1161/01.CIR.97.10.943.
    1. Somers V.K., Dyken M.E., Clary M.P., Abboud F.M. Sympathetic neural mechanisms in obstructive sleep apnea. J. Clin. Investig. 1995;96:1897–1904. doi: 10.1172/JCI118235.
    1. Kleiger R.E., Miller J.P., Bigger J.T., Moss A.J., Jr. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am. J. Cardiol. 1987;59:256–262. doi: 10.1016/0002-9149(87)90795-8.
    1. Frattola A., Parati G., Cuspidi C., Albini F., Mancia G. Prognostic value of 24-hour blood pressure variability. J. Hypertens. 1993;11:1133–1137. doi: 10.1097/00004872-199310000-00019.
    1. Miller W.P. Cardiac arrhythmias and conduction disturbances in the sleep apnea syndrome. Prevalence and significance. Am. J. Med. 1982;73:317–321. doi: 10.1016/0002-9343(82)90716-1.
    1. Narkiewicz K., Montano N., Cogliati C., van de Borne P.J.H., Dyken M.E., Somers V.K. Altered Cardiovascular Variability in Obstructive Sleep Apnea. Circulation. 1998;98:1071–1077. doi: 10.1161/01.CIR.98.11.1071.
    1. Gula L.J., Krahn A.D., Skanes A., Ferguson K.A., George C., Yee R., Klein G.J. Heart rate variability in obstructive sleep apnea: A prospective study and frequency domain analysis. Ann. Noninvasive Electrocardiol. 2003;8:144–149. doi: 10.1046/j.1542-474X.2003.08209.x.
    1. King T.L., Heesch C.M., Clark C.G., Kline D.D., Hasser E.M. Hypoxia activates nucleus tractus solitarii neurons projecting to the paraventricular nucleus of the hypothalamus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2012;302:R1219–R1232. doi: 10.1152/ajpregu.00028.2012.
    1. Braga V.A., Soriano R.N., Braccialli A.L., de Paula P.M., Bonagamba L.G.H., Paton J.F.R., Machado B.H. Involvement of L-glutamate and ATP in the neurotransmission of the sympathoexcitatory component of the chemoreflex in the commissural nucleus tractus solitarii of awake rats and in the working heart-brainstem preparation. J. Physiol. 2007;581:1129–1145. doi: 10.1113/jphysiol.2007.129031.
    1. De Burgh Daly M., Angell-James J., Elsner R. Role of carotid-body chemoreceptors and their reflex interactions in bradycardia and cardiac arrest. Lancet. 1979;313:764–767. doi: 10.1016/S0140-6736(79)91218-2.
    1. Fletcher E.C., Lesske J., Behm R., Miller C.C., Stauss H., 3rd, Unger T. Carotid chemoreceptors, systemic blood pressure, and chronic episodic hypoxia mimicking sleep apnea. J. Appl. Physiol. 1992;72:1978–1984. doi: 10.1152/jappl.1992.72.5.1978.
    1. Zoccal D.B., Paton J.F., Machado B.H. Do changes in the coupling between respiratory and sympathetic activities contribute to neurogenic hypertension? Clin. Exp. Pharmacol. Physiol. 2009;36:1188–1196. doi: 10.1111/j.1440-1681.2009.05202.x.
    1. Peng Y.-J., Overholt J.L., Kline D., Kumar G.K., Prabhakar N.R. Induction of sensory long-term facilitation in the carotid body by intermittent hypoxia: Implications for recurrent apneas. Proc. Natl. Acad. Sci. USA. 2003;100:10073. doi: 10.1073/pnas.1734109100.
    1. Kline D.D. Plasticity in glutamatergic NTS neurotransmission. Respir. Physiol. Neurobiol. 2008;164:105–111. doi: 10.1016/j.resp.2008.04.013.
    1. Xie A., Skatrud J.B., Puleo D.S., Morgan B.J. Exposure to hypoxia produces long-lasting sympathetic activation in humans. J. Appl. Physiol. 2001;91:1555–1562. doi: 10.1152/jappl.2001.91.4.1555.
    1. Cortelli P., Lombardi C., Montagna P., Parati G. Baroreflex modulation during sleep and in obstructive sleep apnea syndrome. Auton. Neurosci. 2012;169:7–11. doi: 10.1016/j.autneu.2012.02.005.
    1. Heistad D., Abboud F.M., Mark A.L., Schmid P.G. Effect of baroreceptor activity on ventilatory response to chemoreceptor stimulation. J. Appl. Physiol. 1975;39:411–416. doi: 10.1152/jappl.1975.39.3.411.
    1. Silvani A. Physiological sleep-dependent changes in arterial blood pressure: Central autonomic commands and baroreflex control. Clin. Exp. Pharmacol. Physiol. 2008;35:987–994. doi: 10.1111/j.1440-1681.2008.04985.x.
    1. Narkiewicz K., van de Borne P.J., Pesek C.A., Dyken M.E., Montano N., Somers V.K. Selective potentiation of peripheral chemoreflex sensitivity in obstructive sleep apnea. Circulation. 1999;99:1183–1189. doi: 10.1161/01.CIR.99.9.1183.
    1. Narkiewicz K., Kato M., Pesek C.A., Somers V.K. Human Obesity Is Characterized by a Selective Potentiation of Central Chemoreflex Sensitivity. Hypertension. 1999;33:1153–1158. doi: 10.1161/01.HYP.33.5.1153.
    1. Bonsignore M.R., Parati G., Insalaco G., Castiglioni P., Marrone O., Romano S., Salvaggio A., Mancia G., Bonsignore G., di Rienzo M. Baroreflex control of heart rate during sleep in severe obstructive sleep apnoea: Effects of acute CPAP. Eur. Respir. J. 2006;27:128. doi: 10.1183/09031936.06.00042904.
    1. Parati G., Di Rienzo M., Bonsignore M., Insalaco G., Marrone O., Castiglioni P., Giovanni B., Giuseppe M. Autonomic cardiac regulation in obstructive sleep apnea syndrome: Evidence from spontaneous baroreflex analysis during sleep. J. Hypertens. 1997;15:1621–1626. doi: 10.1097/00004872-199715120-00063.
    1. Narkiewicz K., van de Borne P.J., Cooley R.L., Dyken M.E., Somers V.K. Sympathetic activity in obese subjects with and without obstructive sleep apnea. Circulation. 1998;98:772–776. doi: 10.1161/01.CIR.98.8.772.
    1. Monahan K.D., Leuenberger U.A., Ray C.A. Effect of repetitive hypoxic apnoeas on baroreflex function in humans. J. Physiol. 2006;574:605–613. doi: 10.1113/jphysiol.2006.108977.
    1. Patel S.R., Larkin E.K., Mignot E., Lin L., Redline S. The Association of Angiotensin Converting Enzyme (ACE) Polymorphisms with Sleep Apnea and Hypertension. Sleep. 2007;30:531–533. doi: 10.1093/sleep/30.4.531.
    1. Buck D., Diefenbach K., Penzel T., Malzahn U., Roots I., Fietze I. Genetic polymorphisms in endothelin-receptor-subtype-a-gene as susceptibility factor for obstructive sleep apnea syndrome. Sleep Med. 2010;11:213–217. doi: 10.1016/j.sleep.2009.06.009.
    1. Bengtsson Boström K., Hedner J., Grote L., Melander O., Von Wowern F., Råstam L., Groop L., Lindblad U. Polymorphisms in α- and β-Adrenergic Receptor Genes, Hypertension, and Obstructive Sleep Apnea: The Skaraborg Sleep Study. Int. J. Hypertens. 2010;2010:1–8. doi: 10.4061/2010/458410.
    1. Alajmi M., Mulgrew A.T., Fox J., Davidson W., Schulzer M., Mak E., Ryan C.F., Fleetham J., Choi P., Ayas N.T. Impact of Continuous Positive Airway Pressure Therapy on Blood Pressure in Patients with Obstructive Sleep Apnea Hypopnea: A Meta-analysis of Randomized Controlled Trials. Lung. 2007;185:67–72. doi: 10.1007/s00408-006-0117-x.
    1. Bratton D.J., Stradling J.R., Barbé F., Kohler M. Effect of CPAP on blood pressure in patients with minimally symptomatic obstructive sleep apnoea: A meta-analysis using individual patient data from four randomised controlled trials. Thorax. 2014;69:1128. doi: 10.1136/thoraxjnl-2013-204993.
    1. Fava C., Dorigoni S., Dalle Vedove F., Danese E., Montagnana M., Guidi G.C., Narkiewicz K., Minuz P. Effect of CPAP on Blood Pressure in Patients With OSA/Hypopnea: A Systematic Review and Meta-analysis. Chest. 2014;145:762–771. doi: 10.1378/chest.13-1115.
    1. Iftikhar I.H., Valentine C.W., Bittencourt L.R., Cohen D.L., Fedson A.C., Gislason T., Penzel T., Phillips C.L., Yu-sheng L., Pack A.I. Effects of continuous positive airway pressure on blood pressure in patients with resistant hypertension and obstructive sleep apnea: A meta-analysis. J. Hypertens. 2014;32:2341–2350. doi: 10.1097/HJH.0000000000000372.
    1. Muxfeldt E.S., Margallo V., Costa L.M.S., Guimarães G., Cavalcante A.H., Azevedo J.C.M., de Souza F., Cardoso C.R.L., Salles G.F. Effects of Continuous Positive Airway Pressure Treatment on Clinic and Ambulatory Blood Pressures in Patients With Obstructive Sleep Apnea and Resistant Hypertension. Hypertension. 2015;65:736–742. doi: 10.1161/HYPERTENSIONAHA.114.04852.
    1. Martínez-García M.-A., Capote F., Campos-Rodríguez F., Lloberes P., Díaz de Atauri M.J., Somoza M., Barbé F., Durán-Cantolla J., Aizpuru F., Mañas E., et al. Effect of CPAP on Blood Pressure in Patients With Obstructive Sleep Apnea and Resistant Hypertension: The HIPARCO Randomized Clinical TrialCPAP for Resistant HypertensionCPAP for Resistant Hypertension. JAMA. 2013;310:2407–2415. doi: 10.1001/jama.2013.281250.
    1. Kushida C.A., Nichols D.A., Holmes T.H., Quan S.F., Walsh J.K., Gottlieb D.J., Simon R.D., Guilleminault C., White D.P., Goodwin J.L. Effects of continuous positive airway pressure on neurocognitive function in obstructive sleep apnea patients: The Apnea Positive Pressure Long-term Efficacy Study (APPLES) Sleep. 2012;35:1593–1602. doi: 10.5665/sleep.2226.
    1. Rosen C.L., Auckley D., Benca R., Foldvary-Schaefer N., Iber C., Kapur V., Michael Rueschman M.P.H., Zee P., Susan R. A multisite randomized trial of portable sleep studies and positive airway pressure autotitration versus laboratory-based polysomnography for the diagnosis and treatment of obstructive sleep apnea: The HomePAP study. Sleep. 2012;35:757–767. doi: 10.5665/sleep.1870.
    1. Strohl K.P., Saunders N.A., Feldman N.T., Hallett M. Obstructive sleep apnea in family members. New Engl. J. Med. 1978;299:969–973. doi: 10.1056/NEJM197811022991801.
    1. Kezirian E.J., Boudewyns A., Eisele D.W., Schwartz A.R., Smith P.L., Van De Heyning P.H., De Backer W.A. Electrical stimulation of the hypoglossal nerve in the treatment of obstructive sleep apnea. Sleep Med. Rev. 2010;14:299–305. doi: 10.1016/j.smrv.2009.10.009.
    1. Saboisky J.P., Butler J.E., McKenzie D.K., Gorman R.B., Trinder J.A., White D.P., Gandevia S.C. Neural drive to human genioglossus in obstructive sleep apnoea. J.Physiol. 2007;585:135–146. doi: 10.1113/jphysiol.2007.139584.
    1. Ragab S., Bader El Din M., Hefny M., El Tabakh M. Hypoglossal nerve conduction studies in patients with obstructive sleep apnea. Egypt. J. Otolaryngol. 2013;29:176–181.
    1. Schwartz A.R., Bennett M.L., Smith P.L., De Backer W., Hedner J., Boudewyns A., van de Heyning P., Ejnell H., Hochban W., Knaack L., et al. Therapeutic electrical stimulation of the hypoglossal nerve in obstructive sleep apnea. Arch. Otolaryngol. Head Neck Surg. 2001;127:1216–1223. doi: 10.1001/archotol.127.10.1216.
    1. Decker M.J., Haaga J., Arnold J.L., Atzberger D., Strohl K.P. Functional electrical stimulation and respiration during sleep. J. Appl. Physiol. 1993;75:1053–1061. doi: 10.1152/jappl.1993.75.3.1053.
    1. Eastwood P.R., Barnes M., Walsh J.H., Maddison K.J., Hee G., Schwartz A.R., Smith P.L., Malhotra A., McEvoy R.D., Wheatley J.R., et al. Treating obstructive sleep apnea with hypoglossal nerve stimulation. Sleep. 2011;34:1479–1486. doi: 10.5665/sleep.1380.
    1. Van de Heyning P.H., Badr M.S., Baskin J.Z., Cramer Bornemann M.A., De Backer W.A., Dotan Y., Hohenhorst W., Knaack L., Lin H., Maurer J.T., et al. Implanted upper airway stimulation device for obstructive sleep apnea. Laryngoscope. 2012;122:1626–1633. doi: 10.1002/lary.23301.
    1. Strollo P.J., Soose R.J., Maurer J.T., de Vries N., Cornelius J., Froymovich O., Hanson R.D., Padhya T.A., Steward D.L., Gillespie M.B., et al. Upper-Airway Stimulation for Obstructive Sleep Apnea. New Engl. J. Med. 2014;370:139–149. doi: 10.1056/NEJMoa1308659.
    1. Walia H.K., Thompson N.R., Strohl K.P., Faulx M.D., Waters T., Kominsky A., Foldvary-Schaefer N., Mehra R. Upper Airway Stimulation versus Positive Airway Pressure Impact on Blood Pressure and Sleepiness Symptoms in Obstructive Sleep Apnea. Chest. 2019;157:173–183. doi: 10.1016/j.chest.2019.06.020.
    1. Narkiewicz K., Somers V.K. The sympathetic nervous system and obstructive sleep apnea: Implications for hypertension. J. Hypertens. 1997;15:1613–1619. doi: 10.1097/00004872-199715120-00062.
    1. Esler M., Jennings G., Lambert G., Meredith I., Horne M., Eisenhofer G. Overflow of catecholamine neurotransmitters to the circulation: Source, fate, and functions. Physiol. Rev. 1990;70:963–985. doi: 10.1152/physrev.1990.70.4.963.
    1. Takahashi K., Ueda S., Kobayashi T., Nishiyama A., Fujisawa Y., Sugaya T., Shiota S., Takahashi K., Gohda T., Horikoshi S., et al. Chronic intermittent hypoxia-mediated renal sympathetic nerve activation in hypertension and cardiovascular disease. Sci. Rep. 2018:8. doi: 10.1038/s41598-018-36159-9.
    1. Krum H., Schlaich M., Whitbourn R., Sobotka P.A., Sadowski J., Bartus K., Kapelak B., Walton A., Sievert H., Thambar S., et al. Catheter-based renal sympathetic denervation for resistant hypertension: A multicentre safety and proof-of-principle cohort study. Lancet. 2009;373:1275–1281. doi: 10.1016/S0140-6736(09)60566-3.
    1. Bhatt D.L., Kandzari D.E., O’Neill W.W., D’Agostino R., Flack J.M., Katzen B.T., Leon M.B., Liu M., Mauri L., Negoita M., et al. A Controlled Trial of Renal Denervation for Resistant Hypertension. New Engl. J. Med. 2014;370:1393–1401. doi: 10.1056/NEJMoa1402670.
    1. Townsend R.R., Mahfoud F., Kandzari D.E., Kario K., Pocock S., Weber M.A., Ewen S., Tsioufis K., Tousoulis D., Sharp A.S.P., et al. Catheter-based renal denervation in patients with uncontrolled hypertension in the absence of antihypertensive medications (SPYRAL HTN-OFF MED): A randomised, sham-controlled, proof-of-concept trial. Lancet. 2017;390:2160–2170. doi: 10.1016/S0140-6736(17)32281-X.
    1. Witkowski A., Prejbisz A., Florczak E., Kądziela J., Śliwiński P., Bieleń P., Michałowska I., Kabat M., Warchoł E., Januszewicz M., et al. Effects of Renal Sympathetic Denervation on Blood Pressure, Sleep Apnea Course, and Glycemic Control in Patients With Resistant Hypertension and Sleep Apnea. Hypertension. 2011;58:559–565. doi: 10.1161/HYPERTENSIONAHA.111.173799.
    1. Warchol-Celinska E., Prejbisz A., Kadziela J., Florczak E., Januszewicz M., Michalowska I., Dobrowolski P., Kabat M., Sliwinski P., Klisiewicz A., et al. Renal Denervation in Resistant Hypertension and Obstructive Sleep Apnea. Hypertension. 2018;72:381–390. doi: 10.1161/HYPERTENSIONAHA.118.11180.
    1. Wolf J., Drozdowski J., Czechowicz K., Winklewski P.J., Jassem E., Kara T., Somers V.K., Narkiewicz K. Effect of beta-blocker therapy on heart rate response in patients with hypertension and newly diagnosed untreated obstructive sleep apnea syndrome. Int. J. Cardiol. 2016;202:67–72. doi: 10.1016/j.ijcard.2015.08.139.

Source: PubMed

3
Abonnere